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SUM AND DIFFERENCE SETS CONTAINING INTEGER POWERS
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Abstract. Let n > m > 2 be positive integers and n = (m + 1)l + r, where 0 6 r 6 m.
Let C be a subset of {0, 1, . . . , n}. We prove that if

|C| >

{

⌊n/2⌋+ 1 if m is odd,

ml/2 + δ if m is even,

where ⌊x⌋ denotes the largest integer less than or equal to x and δ denotes the cardinality
of even numbers in the interval [0,min{r, m − 2}], then C − C contains a power of m. We
also show that these lower bounds are best possible.
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1. Introduction

For a set of integers A, let A + A = {a1 + a2 : a1, a2 ∈ A} and A −A = {a1 − a2 :

a1, a2 ∈ A}. For any integers d and q, we define the sets

d + A = {d + a : a ∈ A},

d − A = {d − a : a ∈ A},

and

q ∗ A = {qa : a ∈ A}.

In [3], Erdős and Freiman proved a conjecture of Erdős and Freud (see [2]) which

states that if C ⊆ [1, n] with |C| > n/3, then some power of 2 is the sum of distinct
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elements of C. Later Nathanson and Sárközy [7] showed that at most 30961 distinct

summands from C are needed to obtain a power of 2 and 30961 can be replaced by

3504 if the summands are not required to be distinct. In 1996, Lev [6] gave a very

nice proof to reduce 3504 to 4. This result is sharp since Alon (see [1]) gave an

example to show that here four elements cannot be replaced by three elements. The

key of Lev’s proof is the following lemma:

Let C ⊆ [0, n], and assume |C| > 1

2
n + 1. Then either C contains a power of 2, or

there exist two distinct elements of C whose sum is a power of 2.

By Lev’s lemma, it is easy to get the following result:

Let C ⊆ [0, n] with 0 ∈ C and |C| > n/2+1. Then there exists a power of 2 which

can be represented as a sum of two elements of C.

Recently, Pan [8] extended this result to the power of m (m > 3):

Let C ⊆ [0, n] with 0 ∈ C and |C| > (1− 1/m)n + 1. Then there exists a power of

m which can be represented as a sum of two elements of C.

For related results one may refer to ([4], [5]). In this paper we prove the following

results.

Theorem 1. Let n > m > 2 be positive integers and n = (m + 1)l + r, where

0 6 r 6 m. Let

τ(m, n) =

{

⌊n/2⌋+ 1 if m is odd,

ml/2 + δ if m is even,

where δ denotes the cardinality of even numbers in the interval [0, min{r, m − 2}].

Then

(i) if C is a subset of [0, n] with |C| > τ(m, n), then C −C contains either 1 or m;

(ii) there exists a subset C of [0, n] with |C| = τ(m, n) such that C −C contains no

power of m.

Based on the method by Lev and Pan, in the following theorem we remove the

condition 0 ∈ C in Pan’s result.

Theorem 2. Let C ⊆ [0, n] and |C| > (1− 1/m)n+ 1. Then there exists a power

of m which can be represented as a sum of two elements of C.
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2. Proofs

In the proof of Theorem 1, let A, B, C, . . . denote some strictly increasing sequences

of non-negative integers and an, bn, cn, . . . be their n-th elements.

P r o o f of Theorem 1(i). Suppose that m is odd. Since

|C| > ⌊n/2⌋+ 1,

there exists an integer n0 such that n0 ∈ C and n0 + 1 ∈ C. Otherwise,

c⌊n/2⌋+2 > c⌊n/2⌋+1 + 2 > . . . > c1 + 2(⌊n/2⌋+ 1) > n,

which is impossible. Since (n0 + 1) − n0 = 1 ∈ C − C, Theorem 1(i) holds when m

is odd.

Suppose that m is even. Let n = (m+1)l+r, where 0 6 r 6 m.We first construct

a maximal cardinality set A ⊆ [0, n] by the greedy algorithm such that A−A contains

neither 1 nor m. Let

A =

( ∞
⋃

k=0

Ak

)

∩ [0, n],

where

Ak = k(m + 1) + 2 ∗ [0, m/2− 1].

Then

|A| = ml/2 + δ,

where δ denotes the cardinality of even numbers in the interval [0, min{r, m− 2}]. If

we denote |A| by h, then we have that ah 6 n < ah+1.

Suppose that C ⊆ [0, n] with |C| > h and C − C contains neither 1 nor m. If we

can prove that ch+1 > ah+1, then ch+1 > n, a contradiction. Thus, in order to prove

Theorem 1(i), it is sufficient to prove ck > ak for all integers k 6 h + 1.

The proof is by induction on k. If k = 1, then a1 = 0, and so c1 > a1. Let j > 2,

and assume that ck > ak for all integers k < j. Since 1 /∈ C−C, we have ci+1−ci > 2

for all i 6 h.

From the construction of the set A, we have that

ai+1 − ai = 2 or ai+1 − ai = 3

for all i 6 h. In addition, ai+1 − ai = 3 if and only if ai − ai−m/2+1 = m − 2.

If aj − aj−1 = 2, then cj > cj−1 + 2 > aj−1 + 2 = aj .

Now we assume that aj − aj−1 = 3. It follows that aj−1 − aj−m/2 = m − 2.
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If cj−1 > aj−1 + 1, then cj > cj−1 + 2 > aj−1 + 3 = aj .

If cj−1 = aj−1, then cj−1 − cj−m/2 > 2(m/2− 1) = m− 2. On the other hand, by

the induction hypothesis, we get

cj−1 − cj−m/2 = aj−1 − cj−m/2 6 aj−1 − aj−m/2 = m − 2.

Therefore,

cj−1 = cj−m/2 + m − 2,

and so

cj 6= cj−1 + 2.

Otherwise,

cj = cj−1 + 2 = cj−m/2 + m

and then

cj − cj−m/2 = m ∈ C − C,

which is a contradiction. Therefore we have that

cj > cj−1 + 3 > aj−1 + 3 = aj .

Hence ck > ak for all k 6 h + 1.

This completes the proof of Theorem 1(i). �

P r o o f of Theorem 1(ii). Let N denote all of the non-negative integers. Suppose

that m is odd. Let C be all the even numbers in the interval [0, n]. Then |C| =

⌊n/2⌋+ 1, and no power of m is contained in C − C.

Suppose that m is even. Let C = A, where A is the same as that in the proof of

Theorem 1(i). Then |C| = ml/2+δ, where δ denotes the cardinality of even numbers

in the interval [0, min{r, m− 2}]. Now, we prove that C −C contains no power of m.

Since (Ak − Ak) ∩ N ⊆ 2 ∗ [0, m/2 − 1] for any integer k ∈ [0, l + 1], we have that

Ak −Ak contains no power of m. Now we consider the set Ak1
−Ak2

for all k1 6= k2.

Suppose that 0 6 k2 < k1 6 l + 1.

If 2 ∤ k1+k2, then Ak1
−Ak2

is a set of odd numbers excluding 1, and so it contains

no power of m.

If 2 | k1 + k2, then

(Ak1
− Ak2

) ∩ N ⊆ [(k1 − k2)(m + 1) − m + 2, (k1 − k2)(m + 1) + m − 2].

Since 2m+2 | m2k+m and 2m+2 | m2k+1−m, for any l, we haveml = (2m+2)t±m.

It follows that Ak1
−Ak2

contains no power of m, and then A−A contains no power

of m. Hence we see that C − C also contains no power of m.

This completes the proof of Theorem 1(ii). �
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Corollary 1. Let n be a positive integer. If C is a subset of [0, n] with |C| >

⌊n/3⌋+ 1, then C − C contains a power of 2.

Before the proof of Theorem 2, we set up a notation. For an interval A, let |A|

denote the cardinality of integers in the interval A.

P r o o f of Theorem 2. The proof is by induction on n. It is easy to check that

the result is true for n 6 m. Let n > m, and assume that the result holds for all

positive integers n′ < n. Choose t > 1 such that mt 6 n < mt+1.

Case 1. mt 6 n < (mt+1 + 1)/2. Since

|C ∩ [0, mt]| >

(

1 −
1

m

)

n + 1 − (n − mt) >
mt + 1

2
,

there exists an integer i ∈ [0, mt] such that i ∈ C and mt − i ∈ C. It follows that

mt = i + (mt − i) ∈ C + C,

and thus the result holds in this case.

Case 2. (mt+1 + 1)/2 6 n < mt+1. Suppose that m is odd. Let

r = n − (mt+1 + 1)/2.

Then r > 0. Let

A = [0, (mt+1 − 1)/2 − r − 1]

and

B = [(mt+1 − 1)/2 − r, (mt+1 + 1)/2 + r].

Then C is the disjoint union of C ∩ A and C ∩ B, and

|C| = |C ∩ A| + |C ∩ B|.

If mt+1 /∈ (C ∩ B) + (C ∩ B), then C ∩ B contains at most one of the two integers

(mt+1 − 1)/2 − i, (mt+1 + 1)/2 + i for each i = 0, 1, . . . , r. Therefore

|C ∩ B| 6 r + 1 =
|B|

2
.

It follows that

|C ∩ A| = |C| − |C ∩ B|

>

(

1 −
1

m

)

(|A| + |B| − 1) + 1 −
|B|

2

>
(

1 −
1

m

)

(|A| − 1) + 1.
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Suppose that m is even. Let

r = n − 1

2
mt+1.

Then r > 1. Let

A = [0, 1

2
mt+1 − r − 1]

and

B = [1
2
mt+1 − r, 1

2
mt+1 + r].

If mt+1 /∈ (C ∩ B) + (C ∩ B), then

mt+1

2
/∈ C ∩ B

and C ∩B contains at most one of the two integers mt+1/2− i, mt+1/2 + i for each

i = 1, . . . , r. It follows that

|C ∩ B| 6 r =
|B| − 1

2
.

Thus, we also have

|C ∩ A| = |C| − |C ∩ B|

>

(

1 −
1

m

)

(|A| + |B| − 1) + 1 −
|B| − 1

2

>
(

1 −
1

m

)

(|A| − 1) + 1.

If A = {0}, then |C∩A| > 1, which is impossible. By the induction hypothesis, we

infer that (C ∩A) + (C ∩ A) contains a power of m. Hence C + C contains a power

of m.

This completes the proof of Theorem 2. �

Corollary 2. Let m > 3 and n′ be positive integers. Suppose that C′ is a subset

of [0, n′] such that |C′| > (1 − 1/m)n′ + 1. Then some power of m is the sum of

exactly four elements of C′.

P r o o f of Corollary 2. Since |C′| > (1 − 1/m)n′ + 1, we have |C′ + C′| >

2|C′| − 1 > 2(1− 1/m)n′ +1. Since C′ +C′ ⊆ [0, 2n′], we can apply Theorem 2 with

C = C′ + C′ and 2n′ = n. It follows that some power of m can be written as the

sum of exactly four elements of C′, which completes the proof of Corollary 2. �
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