Czechoslovak Mathematical Journal

Jian Hua Yin

A Havel-Hakimi type procedure and a sufficient condition for a sequence to be potentially $S_{r, s}$-graphic

Czechoslovak Mathematical Journal, Vol. 62 (2012), No. 3, 863-867
Persistent URL: http://dml.cz/dmlcz/143030

Terms of use:

© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

A HAVEL-HAKIMI TYPE PROCEDURE AND
 A SUFFICIENT CONDITION FOR A SEQUENCE TO BE POTENTIALLY $S_{r, s}$-GRAPHIC

Jian-Hua Yin, Haikou

(Received August 17, 2011)

Abstract. The split graph $K_{r}+\overline{K_{s}}$ on $r+s$ vertices is denoted by $S_{r, s}$. A non-increasing sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of nonnegative integers is said to be potentially $S_{r, s}$-graphic if there exists a realization of π containing $S_{r, s}$ as a subgraph. In this paper, we obtain a Havel-Hakimi type procedure and a simple sufficient condition for π to be potentially $S_{r, s}$-graphic. They are extensions of two theorems due to A. R. Rao (The clique number of a graph with given degree sequence, Graph Theory, Proc. Symp., Calcutta 1976, ISI Lect. Notes Series 4 (1979), 251-267 and An Erdős-Gallai type result on the clique number of a realization of a degree sequence, unpublished).

Keywords: graph, split graph, degree sequence
MSC 2010: 05C07

1. Introduction

A sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ of nonnegative integers is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is referred to as a realization of π. The following well-known result due to Hakimi [1] and Havel [2] gives a necessary and sufficient condition for π to be graphic.

Let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a non-increasing sequence of nonnegative integers. Let $d_{1}^{\prime} \geqslant d_{2}^{\prime} \geqslant \ldots \geqslant d_{n-1}^{\prime}$ be the rearrangement in non-increasing order of $d_{2}-1$, $d_{3}-1, \ldots, d_{d_{1}+1}-1, d_{d_{1}+2}, \ldots, d_{n}$. Then $\pi^{\prime}=\left(d_{1}^{\prime}, d_{2}^{\prime}, \ldots, d_{n-1}^{\prime}\right)$ is called the residual sequence of π.

This work was supported by National Natural Science Foundation of China (Grant No. 11161016) and SRF for ROCS, SEM.

Theorem 1.1 (Hakimi [1] and Havel [2]). π is graphic if and only if π^{\prime} is graphic.
A sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is said to be potentially K_{r+1} graphic if there is a realization G of π containing K_{r+1} as a subgraph.

Definition. If π has a realization G containing K_{r+1} on those vertices having degree d_{1}, \ldots, d_{r+1}, then π is potentially A_{r+1}-graphic.

In [4], Rao showed that a non-increasing sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is potentially A_{r+1}-graphic if and only if it is potentially K_{r+1}-graphic. In [4], Rao considered the problem of characterizing potentially K_{r+1}-graphic sequences and developed a Havel-Hakimi type procedure to determine the maximum clique number of a graph with a given degree sequence π. This procedure can also be used to construct a graph with the degree sequence π and containing K_{r+1} on the first $r+1$ vertices.

Let $n \geqslant r+1$ and let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a non-increasing sequence of nonnegative integers with $d_{r+1} \geqslant r$. We construct sequences π_{1}, \ldots, π_{r} as follows. We first construct the sequence

$$
\pi_{1}=\left(d_{2}-1, \ldots, d_{r+1}-1, d_{r+2}^{(1)}, \ldots, d_{n}^{(1)}\right)
$$

from π by deleting d_{1}, reducing the first d_{1} remaining terms of π by one, and then reordering the last $n-r-1$ terms to be non-increasing. For $2 \leqslant i \leqslant r$, we construct

$$
\pi_{i}=\left(d_{i+1}-i, \ldots, d_{r+1}-i, d_{r+2}^{(i)}, \ldots, d_{n}^{(i)}\right)
$$

from

$$
\pi_{i-1}=\left(d_{i}-i+1, \ldots, d_{r+1}-i+1, d_{r+2}^{(i-1)}, \ldots, d_{n}^{(i-1)}\right)
$$

by deleting $d_{i}-i+1$, reducing the first $d_{i}-i+1$ remaining terms of π_{i-1} by one, and then reordering the last $n-r-1$ terms to be non-increasing.

Theorem 1.2 (Rao [4]). π is potentially A_{r+1}-graphic if and only if π_{r} is graphic.
In [5], Rao gave a simple sufficient condition for a graphic sequence to be potentially A_{r+1}-graphic.

Theorem 1.3 (Rao [5]). Let $n \geqslant r+1$ and let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing graphic sequence. If $d_{r+1} \geqslant 2 r-1$, then π is potentially A_{r+1}-graphic.

Let $S_{r, s}=K_{r}+\overline{K_{s}}$, the split graph on $r+s$ vertices, where $\overline{K_{s}}$ is the complement of K_{s} and + denotes the standard join operation. Clearly, $S_{r, 1}=K_{r+1}$. Therefore, the graph $S_{r, s}$ is an extension of the graph K_{r+1}. A sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is said to be potentially $S_{r, s}$-graphic if there is a realization G of π containing $S_{r, s}$ as
a subgraph. If π has a realization G containing $S_{r, s}$ on those vertices having degrees $d_{1}, d_{2}, \ldots, d_{r+s}$ such that the vertices of K_{r} have degrees d_{1}, \ldots, d_{r} and the vertices of $\overline{K_{s}}$ have degrees d_{r+1}, \ldots, d_{r+s}, then π is potentially $A_{r, s}$-graphic. Yin [6] showed that a non-increasing sequence $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ is potentially $A_{r, s}$-graphic if and only if it is potentially $S_{r, s}$-graphic. Related research has been done by Lai et al (see [3]). In the present paper, we develop a Havel-Hakimi type procedure (Theorem 1.4) to determine whether a non-increasing sequence π is potentially $A_{r, s}$-graphic. This is an extension of Theorem 1.2 (which corresponds to $s=1$). This procedure can also be used to construct a graph with the degree sequence π and containing $S_{r, s}$ on the first $r+s$ vertices.

Let $n \geqslant r+s$ and let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a non-increasing sequence of nonnegative integers with $d_{r} \geqslant r+s-1$ and $d_{r+s} \geqslant r$. We construct sequences π_{1}, \ldots, π_{r} as follows. We first construct the sequence

$$
\pi_{1}=\left(d_{2}-1, \ldots, d_{r}-1, d_{r+1}-1, \ldots, d_{r+s}-1, d_{r+s+1}^{(1)}, \ldots, d_{n}^{(1)}\right)
$$

from π by deleting d_{1}, reducing the first d_{1} remaining terms of π by one, and then reordering the last $n-r-s$ terms to be non-increasing. For $2 \leqslant i \leqslant r$, we construct

$$
\pi_{i}=\left(d_{i+1}-i, \ldots, d_{r}-i, d_{r+1}-i, \ldots, d_{r+s}-i, d_{r+s+1}^{(i)}, \ldots, d_{n}^{(i)}\right)
$$

from

$$
\pi_{i-1}=\left(d_{i}-i+1, \ldots, d_{r}-i+1, d_{r+1}-i+1, \ldots, d_{r+s}-i+1, d_{r+s+1}^{(i-1)}, \ldots, d_{n}^{(i-1)}\right)
$$

by deleting $d_{i}-i+1$, reducing the first $d_{i}-i+1$ remaining terms of π_{i-1} by one, and then reordering the last $n-r-s$ terms to be non-increasing.

Theorem 1.4. π is potentially $A_{r, s}$-graphic if and only if π_{r} is graphic.
Moreover, we also give a simple sufficient condition for a graphic sequence to be potentially $A_{r, s^{-}}$-graphic. This is an extension of Theorem 1.3 (which corresponds to $s=1$).

Theorem 1.5. Let $n \geqslant r+s$ and let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a non-increasing graphic sequence. If $d_{r+s} \geqslant 2 r+s-2$, then π is potentially $A_{r, s}$-graphic.

2. Proofs of Theorems 1.4 and 1.5

Pro of of Theorem 1.4. Assume that π is potentially $A_{r, s}$-graphic. Then π has a realization G with a vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{G}\left(v_{i}\right)=d_{i}$ for $1 \leqslant i \leqslant n$ and G contains $S_{r, s}$ on $v_{1}, v_{2}, \ldots, v_{r+s}$ so that $V\left(K_{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $V\left(\overline{K_{s}}\right)=\left\{v_{r+1}, \ldots, v_{r+s}\right\}$. We now show that π has a realization G such that v_{1} is adjacent to vertices $v_{r+s+1}, \ldots, v_{d_{1}+1}$. If otherwise, we may choose such a realization H of π such that the number of vertices adjacent to v_{1} in $\left\{v_{r+s+1}, \ldots, v_{d_{1}+1}\right\}$ is maximum. Let $v_{i} \in\left\{v_{r+s+1}, \ldots, v_{d_{1}+1}\right\}$ and $v_{1} v_{i} \notin E(H)$, and let $v_{j} \in\left\{v_{d_{1}+2}, \ldots, v_{n}\right\}$ and $v_{1} v_{j} \in E(H)$. We may assume $d_{i}>d_{j}$ since the order of i and j can be interchanged if $d_{i}=d_{j}$. Hence there is a vertex $v_{t}, t \neq i, j$ such that $v_{i} v_{t} \in E(H)$ and $v_{j} v_{t} \notin E(H)$. Clearly, $G=\left(H \backslash\left\{v_{1} v_{j}, v_{i} v_{t}\right\}\right) \cup\left\{v_{1} v_{i}, v_{j} v_{t}\right\}$ is a realization of π such that $d_{G}\left(v_{i}\right)=d_{i}$ for $1 \leqslant i \leqslant n, G$ contains $S_{r, s}$ on $v_{1}, v_{2}, \ldots, v_{r+s}$ with $V\left(K_{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $V\left(\overline{K_{s}}\right)=\left\{v_{r+1}, \ldots, v_{r+s}\right\}$, and G has the number of vertices adjacent to v_{1} in $\left\{v_{r+s+1}, \ldots, v_{d_{1}+1}\right\}$ larger than that of H. This contradicts the choice of H. Clearly, π_{1} is the degree sequence of $G-v_{1}$ and is potentially $A_{r-1, s^{-}}$ graphic. Repeating this procedure, we can see that π_{i} is potentially $A_{r-i, s}$-graphic successively for $i=2, \ldots, r$. In particular, π_{r} is -graphic.

Suppose that π_{r} is graphic and is realized by a graph G_{r} with a vertex set $V\left(G_{r}\right)=$ $\left\{v_{r+1}, \ldots, v_{n}\right\}$ such that $d_{G_{r}}\left(v_{i}\right)=d_{i}$ for $r+1 \leqslant i \leqslant n$. For $i=r, \ldots, 1$, form G_{i-1} from G_{i} by adding a new vertex v_{i} that is adjacent to each of v_{i+1}, \ldots, v_{r+s} and also to the vertices of G_{i} with degrees $d_{r+s+1}^{(i-1)}-1, \ldots, d_{d_{i}+1}^{(i-1)}-1$. Then, for each i, G_{i} has degrees given by π_{i}, and G_{i} contains $S_{r-i, s}$ on $r+s-i$ vertices v_{i+1}, \ldots, v_{r+s} whose degrees are $d_{i+1}-i, \ldots, d_{r+s}-i$ so that $V\left(K_{r-i}\right)=\left\{v_{i+1}, \ldots, v_{r}\right\}$ and $V\left(\overline{K_{s}}\right)=$ $\left\{v_{r+1}, \ldots, v_{r+s}\right\}$. In particular, G_{0} has degrees given by π and contains $S_{r, s}$ on $r+s$ vertices v_{1}, \ldots, v_{r+s} whose degrees are d_{1}, \ldots, d_{r+s} so that $V\left(K_{r}\right)=\left\{v_{1}, \ldots, v_{r}\right\}$ and $V\left(\overline{K_{s}}\right)=\left\{v_{r+1}, \ldots, v_{r+s}\right\}$.

Proof of Theorem 1.5. Let $n \geqslant r+s$ and let $\pi=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be a nonincreasing graphic sequence with $d_{r+s} \geqslant 2 r+s-2$. By Theorem 1.3, π is potentially A_{r}-graphic. Therefore, we may assume that G is a realization of π with a vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $d_{G}\left(v_{i}\right)=d_{i}$ for $1 \leqslant i \leqslant n, G$ contains K_{r} on v_{1}, \ldots, v_{r} and $M=e_{G}\left(\left\{v_{1}, \ldots, v_{r}\right\},\left\{v_{r+1}, \ldots, v_{r+s}\right\}\right)$ (that is the number of edges between $\left\{v_{1}, \ldots, v_{r}\right\}$ and $\left\{v_{r+1}, \ldots, v_{r+s}\right\}$) is maximum. If $M=r s$, then G contains $S_{r, s}$ on $v_{1}, v_{2}, \ldots, v_{r+s}$ with $V\left(K_{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $V\left(\overline{K_{s}}\right)=\left\{v_{r+1}, \ldots, v_{r+s}\right\}$. In other words, π is potentially $A_{r, s}$-graphic. Assume that $M<r s$. Then there exist a $v_{k} \in\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and a $v_{m} \in\left\{v_{r+1}, \ldots, v_{r+s}\right\}$ such that $v_{k} v_{m} \notin E(G)$. Let

$$
\begin{aligned}
& A=N_{G \backslash\left\{v_{1}, \ldots, v_{r+s}\right\}}\left(v_{k}\right) \backslash N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right), \\
& B=N_{G \backslash\left\{v_{1}, \ldots, v_{r+s}\right\}}\left(v_{k}\right) \cap N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right) .
\end{aligned}
$$

Then $x y \in E(G)$ for $x \in N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right)$ and $y \in N_{G \backslash\left\{v_{1}, \ldots, v_{r+s}\right\}}\left(v_{k}\right)$. Otherwise, if $x y \notin E(G)$, then $G^{\prime}=\left(G \backslash\left\{v_{k} y, v_{m} x\right\}\right) \cup\left\{v_{k} v_{m}, x y\right\}$ is a realization of π and contains $S_{r, s}$ on $v_{1}, v_{2}, \ldots, v_{r+s}$ with $V\left(K_{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $V\left(\overline{K_{s}}\right)=\left\{v_{r+1}, \ldots, v_{r+s}\right\}$ such that

$$
e_{G^{\prime}}\left(\left\{v_{1}, \ldots, v_{r}\right\},\left\{v_{r+1}, \ldots, v_{r+s}\right\}\right)>M
$$

which contradicts the choice of G. Thus, B is complete. We consider the following two cases.

Case 1. $A=\emptyset$. Then $2 r+s-2 \leqslant d_{k}=d_{G}\left(v_{k}\right) \leqslant r+s-2+|B|$, and so $|B| \geqslant r$. Since each vertex in $N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right)$ is adjacent to each vertex in B and $\left|N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right)\right| \geqslant 2 r+s-2-(r-1)=r+s-1$, it is easy to see that the induced subgraph of $N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right) \cup\left\{v_{m}\right\}$ in G contains $S_{r, s}$ as a subgraph. Thus, π is potentially $A_{r, s}$-graphic.

Case 2. $A \neq \emptyset$. Let $a \in A$. If there are $x, y \in N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right)$ such that $x y \notin E(G)$, then

$$
G^{\prime}=\left(G \backslash\left\{v_{m} x, v_{m} y, v_{k} a\right\}\right) \cup\left\{v_{k} v_{m}, a v_{m}, x y\right\}
$$

is a realization of π and contains $S_{r, s}$ on $v_{1}, v_{2}, \ldots, v_{r+s}$ with $V\left(K_{r}\right)=\left\{v_{1}, v_{2}, \ldots, v_{r}\right\}$ and $V\left(\overline{K_{s}}\right)=\left\{v_{r+1}, \ldots, v_{r+s}\right\}$ such that

$$
e_{G^{\prime}}\left(\left\{v_{1}, \ldots, v_{r}\right\},\left\{v_{r+1}, \ldots, v_{r+s}\right\}\right)>M
$$

which contradicts the choice of G. Thus, $N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right)$ is complete. Since $\left|N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right)\right| \geqslant r+s-1$ and $v_{m} z \in E(G)$ for any $z \in N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right)$, it is easy to see that the induced subgraph of $N_{G \backslash\left\{v_{1}, \ldots, v_{r}\right\}}\left(v_{m}\right) \cup\left\{v_{m}\right\}$ in G is complete, and so contains $S_{r, s}$ as a subgraph. Thus, π is potentially $A_{r, s}{ }^{-}$graphic.

References

[1] S. L. Hakimi: On realizability of a set of integers as degrees of the vertices of a linear graph. I. J. Soc. Ind. Appl. Math. 10 (1962), 496-506.
[2] V. Havel: A remark on the existence of finite graphs. Čas. Mat. 80 (1955), 477-480. (In Czech.)
[3] C. H. Lai, L. L. Hu: Potentially $K_{m}-G$-graphical sequences: a survey. Czech. Math. J. 59 (2009), 1059-1075.
[4] A. R. Rao: The clique number of a graph with a given degree sequence. Graph theory, Proc. Symp., Calcutta 1976, ISI Lect. Notes 4. 1979, pp. 251-267.
[5] A. R. Rao: An Erdős-Gallai type result on the clique number of a realization of a degree sequence. Unpublished.
[6] J. H. Yin: A Rao-type characterization for a sequence to have a realization containing a split graph. Discrete Math. 311 (2011), 2485-2489.

Author's address: Jian-Hua Yin, Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, P. R. China, e-mail: yinjh®ustc.edu.

