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Abstract. Let BHKi — {Bfl""K"’, t > 0}, i = 1,2 be two independent, d-dimensional
bifractional Brownian motions with respective indices H; € (0,1) and K; € (0,1]. Assume
d > 2. One of the main motivations of this paper is to investigate smoothness of the collision
local time

T
Iy :/ s gl Kayqs T >0,
0
where § denotes the Dirac delta function. By an elementary method we show that I is
smooth in the sense of Meyer-Watanabe if and only if min{H1 K1, HoK2} < 1/(d + 2).

Keywords: bifractional Brownian motion, collision local time, intersection local time,
chaos expansion
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1. INTRODUCTION

We consider two independent bifractional Brownian motions B K1 and BH2-Kz
on R d > 2, with respective indices H; € (0,1) and K; € (0,1], i = 1,2. This
means that we have two d-dimensional independent centered Gaussian processes
BHvEr — (pHOEY 4> 0} and BH2 K> = {BF2%2 ¢ > 0} with covariance structure
given by

BB BN = 5 R (1)

E[BI2 K21 2 K2oj] — 5, RH2.K2 (¢ o)
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where i, =1,...,d, s,t > 0 and

1
RFCE(t, ) = S (827 4 82080 — [t — sPHO] =12,

Bifractional Brownian motion is H;K;-self similar, and satisfies the estimates (see
Houdré-Villa [4])

(L1) 27— P < (B IR) < 21K g2

Thus, Kolmogorov’s continuity criterion implies that the bifractional Brownian mo-
tion is Holder continuous of order § strictly less than H;K;. This process was first

introduced by Houdré-Villa [4]. B1-Kt is neither a Markov process nor a semimartin-
1
2
analysis are not available when dealing with BH:%Xt. More works on bifractional

gale unless H; = 5 and K; = 1. So many of the powerful techniques from stochastic
Brownian motion can be found in Es-sebaiy-Tudor [3], Kruk et al. [8], Lei-Nualart [9],
Russo-Tudor [13], Tudor-Xiao [15], Yan et al. [17], [18] and the references therein.

Clearly, if K; = 1, the process BH::%1 ig the classical fractional Brownian motion.
In recent years the fractional Brownian motion has become an object of intense
study, due to its interesting properties and its applications in various scientific areas
including telecommunications, turbulence, image processing and finance. Recall that
the fractional Brownian motion (fBm) with Hurst index H € (0,1) is a mean zero
Gaussian process B = {BH 't > 0} such that

Ru(t,s) = BIBI B = 5127 4 52 |1 — 5"

for all t,s > 0. For H = 1/2, BH coincides with the standard Brownian motion B.
B is neither a semimartingale nor a Markov process unless H = 1/2. Some sur-
veys and complete literature could be found in Hu [6], Mishura [10], Nualart [12].
On the other hand, many authors have proposed to use more general self-similar
Gaussian processes and random fields as stochastic models. Such applications have
raised many interesting theoretical questions about self-similar Gaussian processes
and fields in general. Therefore, some generalizations of the fBm were introduced.
However, in contrast to the extensive studies on fBm, there has been little systematic
investigation on other self-similar Gaussian processes. The main reason for this is
the complexity of dependence structures for self-similar Gaussian processes which do
not have stationary increments.

Recently, Jiang-Wang [7] (see also Yan et al. [17]) considered the collision local
time of two independent, 1-dimensional bifractional Brownian motions BF# i =

970



{B"%i t > 0}, i = 1,2 with respective indices H; € (0,1), K; € (0,1]. The so-
called collision local time is formally defined as

T
Iy = / §(BFKr — pH2Rayds, T >0,
0

where § denotes the Dirac delta function. It is a measure of the amount of time that
the trajectories of the two processes, BH1:51 and BH2:K2  collide on the time interval
[0,7]. They showed that the random variable Iz exists in L? for all T > 0, and it
is smooth in the sense of Meyer-Watanabe if min{ H1 K7, HoK2} < 1/3. Moreover,
Shen-Yan [14] showed the condition is also necessary, which motivates the following
question:

> What are the necessary and sufficient conditions for smoothness of Ip with

d>27

In this paper we consider this and a related problem. One of our main results is

the following.

Theorem 1.1. Let Iy, T > 0 be the collision local time process of two inde-
pendent, d-dimensional bifractional Brownian motions BHi-Ki = {BF#5i 4 > o},
i = 1,2 with respective indices H; € (0,1), K; € (0,1]. Then for every T > 0,
the random variable I is smooth in the sense of Meyer-Watanabe if and only if
min{HlKl, HQKQ} < 1/(d + 2)

The paper is organized as follows. In Section 2, we recall some facts for the chaos
expansion. The proof of Theorem 1.1 will be given in Section 3. In Section 4,
as a related problem we study the intersection local time of two independent, d-
BHK BH-K with the same indices

dimensional bifractional Brownian motions and

H € (0,1), K € (0,1], which is formally defined as
I[(B™K BHK) = / / s(BMN — BEE) dst;
0J0

we show that it exists in L? if and only if HK < 2/d (this result is in accordance
with the paper Nualart et al. [11]), and it is smooth in the sense of Meyer-Watanabe
if and only if HK < 2/(d + 2).
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2. PRELIMINARIES

In this section, we first recall the chaos expansion, which is an orthogonal decom-
position of L?(€2, P). We refer to Hu [5], Nualart [12] and the references therein for
more details. Let X = {X,¢ € [0,T]} be a d-dimensional Gaussian process defined
on the probality space (2, %, P) with mean zero. If p,(z1,...,2x) is a polynomial
of degree n of k variables z1,...,xx, then we call pn(thll, .. .,Xti:) a polynomial
functional of X with ¢1,...,t; € [O T]and 1 < iy,...,ix < d. Let &2, be the com-
pletion with respect to the LQ(Q, P) norm of the set {pm(Xtill, ... ,Xti:): 0<m<n,
t € [0,T]}. Clearly 2, is a subspace of L?({2, P). If %,, denotes the orthogonal
complement of &, 1 in £, then L%(Q, P) is actually the direct sum of 4,, i.e.,

(2.1) L*(Q,P) = é%n.
n=0

Namely, for any functional F' € L?(Q, P) there are F, in %,,, n = 0,1,2,..., such
that

(2.2) F=%"F,.

NE

3
Il
=]

The decomposition (2.2) is called the chaos expansion of F and F,, is called the n-th
chaos of F'. Clearly, we have

o0

(2.3) E(|F?) Z (1Fal?)

Recall that the Meyer-Watanabe test function space % (see Watanabe [16]) is defined
as - -
U = {F €L*(Q,P): F=Y F,and » nE(|F,*) < oo},
n=0 n=0
and F € L?((, P) is said to be smooth if F € % .
Now, for F' € L?(Q, P), we define an operator Y, with x € [0, 1] by

oo
(2.4) YT.F:= Z/@"Fn.
n=0

Set O(k) := Y zF, then ©(1) = F. Define ®o () := 4= (||O(x)||?), where ||F|? :=
E(|F|?) for F € L*(Q, P). We have

inn" LE(|F.%).

1

(2.5)

Note that [O(x) |2 = E(O(x)[2) = > E(x"|Fu]?).

n=1
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Proposition 2.1. Let F € L?(, P). Then F € % if and only if ®g(1) < oo.

Consider two d-dimensional independent bifractional Brownian motions BH+ ¥ =
{BtH""K"', t > 0}, i = 1,2, with respective indices H; € (0,1), K; € (0,1]. Let H,(x),
x € R be the Hermite polynomial of degree n. That is,

1 2,, 0" 2
— (_1\" z°/2 —x%/2
(2.6) Hy(z) =(-1) ¢ gt .

Then
otr— t2/2 Ztn

for all t € ¥ and = € R, which implies that

expliu(g, BN - Bl 4 U’ (€, Var(B, BHEil _ gl Ka2yey

= Z(iu)”a"(t,g)H

Hi,K1 _ pHa,Ks
(<£7Bt U(t7§)Bt >)7

where i = v/—1 and o(¢,&) = \/Var BifvEel _ pH2 K2y 612 g6, ¢ € RY, Because of
the orthogonality of {H,(x), 2z € R},cz,, we see that

Hi,K1 H> K>
(iu)nO'n(t,f)Hn(<§’Bt - Bt >)

a(t,€)
is the n-th chaos of exp(iu(¢, B — g2 5>y 4 Tu?(¢)? Var(Bf-Kt _ g K22y,
for all t > 0. Similarly, we can prove the same results if we use BH K — BE-K instead

HK Hjy, K
Othh 1_Bt27 2

3. EXISTENCE AND SMOOTHNESS OF THE COLLISION LOCAL TIME

In this section we consider the existence and smoothness of the collision local
time process. Our main object is to prove Theorem 1.1 by using the idea of An-
Yan [1] and Chen-Yan [2]. For simplicity throughout this paper we let C' stand
for a positive constant depending only on the subscripts and whose value may be
different in different appearances. Let B %Ki = {BtH""K"', t > 0},1=1,2, be two
independent, d-dimensional bifractional Brownian motions with respective indices
H; € (0,1), K; € (0,1]. The so-called collision local time of BH1:K1 and BH2-K2 s
formally defined as

T
(3.1) Iy = / §(BHvKy _ pHaKayqs T >0,
0
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where § is the Dirac delta function. In order to give a rigorous meaning to I we
approximate the Dirac delta function by the heat kernel

1 ; 2
(3.2) (o) = G /Rde<s7x>e clel*/2 ¢
For € > 0 we define
T
(3:3) ler = / pe (B — BH2 K2 g
0

T
—_(21)(1// ei<fxBfl’K1*Bf2’K2>.e*€|§|2/2d5d8.
T 0 JRra

First, we will prove the following theorem.

Theorem 3.1 (Existence of the collision local time). Let H; € (0,1), K; € (0, 1].
Assume d > 2. Thenl. 1 converges in L? ase — 0ifand only if H{ K1 NHo Ky < 1/d.
Moreover, if the limit is denoted by I, then I € L?(Q, P).

Before proving Theorem 3.1, we need some preparations. Denote
A\ = Valr(BtI"IlyKlyl _ BtH2’K2’2)

and

0ss = E|(BI N1 plia K2y (pH KT gl )

for s,t > 0. Then it is easy to obtain

T
(3.4) Ell.r] = (273 7 /0 (s +¢)" %2 ds
and
2 1 2 1—d/2
(3.5) E[i2;]= i /{QT]Z[(AS +e)( A +e) — o2, Y dsdt.

By symmetry one may assume 0 < s <t < T, and we set s = xt, 0 < z < 1. Thus
we can rewrite Ay and o, as

(3.6) As = (zt)2H1 K1 4 (gt)2H2 K0
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1
(3.7) 0u1 = 51, [((2Hr 4 (t)2H0) K _ (¢ — p)2HiK)
1
+ %[(t% + (2t)22) K2 (1t — ) 2H2K2)
(2H1 K
= e[+ 22 — (1 - )2
(2H2 K>

+ 272[(1 4 (E2H2)K2 _ (1 _ $)2H2K2],
It follows that

4H 1 K (AH2 K> (2H1 K1 +2H2 K

(38) M — 02 = i 1(@) + g (@) + ——p—9(@),

s

where
fori=1,2, and
g(x) — 2K1+K2 (xQHlKl + xQHQKQ) _ 2(1 + xQHl)Kl(]. + xQHQ)KQ
_ 2(]_ _ x)2H1K1+2H2K2 + 2(1 + {E2H1)K1(1 _ {E)2H2K2
+2(1 + a?H2) K2 (1 — g2,
In order to prove Theorem 3.1 we need to estimate f;(x), ¢ = 1,2, and g(x). For
simplicity we assume that the notation F' < G means that there are positive constants

(1 and C5 such that
C1G(x) < F(z) < C2G(x)

in the common domain for F and G. For a,b € R, a Ab := min{a,b} and a V b :=
max{a, b}.
Lemma 3.1. Let 0 < H; < 1,0 < K; <1, for i = 1,2. Then we have
(3.9) filz) < 2?7l (1 — g)2Hil
(3.10) g(x) < p?HrEa (] — g)2H2K2 4 g 2Ha Ko (] gy2H K
for all x € [0, 1].

Clearly, the estimates (3.9) and (3.10) can be proved by using the asymptotic
property of functions

L) 9(2)
xQH,K,(l _ a«:)QH,K, ? - » xQHlKl(l _ x)QHQKQ + m2H2K2(1 _ x)QHlKl

as ¢ — 0 and = — 1, respectively.
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Proof of Theorem 3.1. A slight extension of (3.5) yields

1

Bllerlyr) = G [ (0w +e)(0 ) — g2 2 st
(2m) [0,T)2

Consequently, a necessary and sufficient condition for the convergence in L?(£2, P)
of I 7 is that

Ar = / (A — 02,) "2 dsdt < oo.
[0,7)2 ’

Thus, it is sufficient to prove that
Ar = / Ashi — 02,)"¥?dsdt < oo
(0,772 ’

if and only if H1 K1 A Ho Ko < 1/d. Tt follows from Lemma 3.1 that

Ashe — 02,
t4H1K1 4Hs Ko t2H1K1+2H2K2
= QQ—Klfl(l") + 22—Kzf2(33) + Wg(ﬂ?)
=~ (xQHlKthHlKl + x2H2K2t2H2K2)[(1 _ x)QHlKthHlKl + (1 _ x)2H2K2t2H2K2]

— (82H1K1 + SQHQKQ)[(t . 8)2H1K1 + (t o S)QHQKQ]

for all 0 < s < t and = = s/t. We have

T pT
// (AeXs — 02,) "2 ds dt
0J0

T t
= Oty Ha / « / i B (e e D e I €
0 0

T t 1
XCTHHKK/dt/ ds
1,42, 81,02 d(H1Ki1NH2 K d(Hi K1 NHy K :
0 0 gd(H1K1NH> 2)(t—8)( 1K1iAH2K>3)

It follows that

T pT
(3.11) / / (Aeds — 02) "2 dsdt < o0
0 J0

if and only if H1 K1 A Ho Ky < ]./d [l

The following proposition is important for the proof of Theorem 1.1.
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Proposition 3.1. Let )\, 05 denote as above. Then for T' > 0, Iy € % if and
only if

T T
(3.12) / / 02 (Meds — gjt)—d/z’—l dsdt < oo.
0Jo

In order to prove Proposition 3.1, we need some preliminaries. Let X,Y be two
random variables with joint Gaussian distribution such that E(X) = E(Y) = 0 and
E(X?) = E(Y?) = 1. Then for all n,m > 0 we have (see, for example, Nualart [12])

0, m # n,
(3'13) E(Hn(X)Hm(Y)) = 1

H[E(XY)]", m=n.

Lemma 3.2 (Chen-Yan [2]). Suppose d > 1. For any = € [—1,1) we have

Z Z ( (2k1)!)!-....(2(kd)d!! ) 2" = x(l — )" @24,

It follows from o?, < A\ that

0%, 0%, (1 0%, )*<d/2+1>< 1 )d/2

(A — 0209270 ~ X U AN Ao

Xi z”: on(2k; — DI (2kg — D)1 02

ov 2k ) o (2R (AsAp)nted/2”

ki4...4+kg=n

Proof of Proposition 3.1. For e > 0,7 > 0 we denote
Oc(u, Tl 1) = E(|Tﬁl6,T|2)

and ©(u,T,lr) = E(|Tlr|?). Thus, by Proposition 2.1 we have to prove
that (3.12) holds if and only if ®g(1) < co. Clearly, we have

T
zE,T:/ p(B5 — BIR2) e
0

T
_ (;)d// Q6B BRI —cle?/2 4e gy
T o0 JRrd

1 T 2
:_// o= E ol
(zﬂ)d 0 JRre

Hi,K1 _ pH2,K2 0
xZi“o"(t,{)Hn<<£’Bt i E)Bt >)d§thZFn.
n=0 ’ n=0
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Thus, by (3.13) and Lemma 3.2 we have

E(|Fal)

i

[/ / —HOHDIERHA ) g (1 €)™ (5. 1m)
0,712 JR2d

(& B = BTN o, B — B
H, H, dédndsdt
% ( o (L, ) ) ( o(s,n) ) sdnds

= 1
-5 0", dsdt
Z (2n)2d(n - 1)' /[O,T]2 ot

X/ e~ HOHIE AP (e pan de dp
R

= T Y Tdsdt
Z (21)24(2n — 1)! /[o,T]2 Os,t A8

X e—%((M+s>|£|2+(xs+e)\m2)<£777>2n e dy

L - 2n(2ky — D). (2kg — 1N
- (Qn)dz 2 (121@1)!!-...-(21@(1;!

X : dsdt
/[o,T]z (N +e)(As +e))ntd/2

- / 05 +e)(As +2) — 03 ,) " M ds dt,
[0,7]?
where we have used the following fact:
oo
/nge—%()\t-‘rE)fz df _ 2/ ng‘e—%()\t"l‘E)Ez df
R
2k+zr(k- + )(At +&) 3 = \2n(2k — DI (A + )~ *F2),

It follows that

lim @e ( // 02 (AXs — 02 )2 M dsdt

for all T' > 0. This completes the proof. (I

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1. By Proposition 3.1, it is sufficient to prove that

T T
/ / Qit()\t)\g - Qit)_d/z_l dsdt < oo
0 Jo

if and only if min{H, K1, Ho K>} < 1/(d+2). Without loss of generality we may
assume s < t and s = zt, where z € [0, 1]. It follows from Lemma 3.1 that

ASAt _ Qg,t =~ (52H1K1 + S2H2K2)[(t _ 5)2H1K1 + (t _ 5)2H2K2]

forall 0 < s <t and z = s/t.
First, we give the proof of the sufficient condition. Since

e 2H\K 2 K
05t = Hr, (14 225K (1 — )2 Ky
t2H2K2
+ QT[(l + xQHz)Kz —(1- x)QHsz] < THhE: | p2H:Ks
we have

T ,T
/ / Qg,t(AtAs - Q§7t)7(d+2)/2 dsdt
0J0
Tt (T2HE) | P2HaKa)2 g
< CHl,Kl,HQ,m/O dt/O [s2H1 K1 4 2H2KG](d42)/2[(t — )2 K0 4 (f — §)2H2K2](d+2)/2

T t
1
< CT,Hl,Hz,Kl,Kz/O dt/o S(d+2)(H1K1AH2K2)(t _ S)(d+2)(H1K1/\H2K2) ds < oo

it HHKG AN HaKo < 1/(d+ 2).

Now we give the proof of the necessary condition. We split the proof into two
cases.

Case I. We claim that

for 0 < 2H;K; < 1, H; € (0,1), K; € (0,1]. In fact, by differentiation the expression

is non-negative for all 0 < =z < 1. It follows that

I 2H K 2H\ K (PR 2Ho\K. 2Ho K
05t = 57; [(1+ 225 (1 — p)?rEa) 4 T (14 22H2)K2 _ (1 — g)2H2K2)
I K1 om , PO K 2H.
2 2K1 K12 R R ZTKQQ 271% 2
_ ﬁtzHlKlmQHl n ﬁtzHgmsz2
2 2
> min{ﬁ &}(f?HlKl g2 | 2HaKa  2Hay
272 '
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This yields for T > 0

T T
[ 2o - oozasar
0Jo

T t (t2H1K1x2H1 _’_t2H2K2x2H2)2
> Ck, Kz/ dt/ ds
) 0 0 [82H1K1 + 82H2K2](d+2)/2[(t _ 5)2H1K1 + (t _ S)QHQKQ](d-‘rQ)/Q

T t (t2H1 K{—2H, 82H1 + t2H2K2—2H2 82H2)2
:CK17K2/ dt/ 2H, K 2H, K7 (d12)/2 2H K S RaT a2 08
o o R AR = s PR (= )R

T t gA(H1AH2)
> C’T,Hl,HQ,Kl,KZ/O dt/o S(d+2)(H1K1/\H2K2)(t — S)(d+2)(H1K1/\H2K2) ds.

Case II. We claim that
for 1 < 2H,K; <2,H; € (0,1), K; € (0,1]. It follows that

K Ky

RN > min{ 55

}(SQHlKl T 82H2K2).

This yields for T > 0

T T
/ / Qg,t()‘tAs - Qi,t)_(d+2)/2 dsdit
0Jo

(S2H1K1 + 82H2K2)2 dS

T
2 Cu, Hy Ky K> /Odt/o [$ZH Ky 4 2H2K](d+2)/2[(f — 5)2H0 K1 1 (t — 5)2H2K2](d42)/2

T gt
ds
= CH, Hy K1 K> /Odt/O [s2Hi Ky g2H2 K] (d=2)/2[(¢ — )2H1 K1 4 (¢ — §)2H2K2](d+2)/2
T ot 1
> CT,Hl,Hz,Kl,Kz /0 dt/o S(d72)(H1K1/\H2K2)(t _ S)(d+2)(H1K1/\H2K2) ds.

It follows that

T T
(3.14) / / Q?,t(/\t/\s — Qit)*%*l dsdt < oo
0Jo

if and only if min{H1 K1, Ho K>} < 1/(d+ 2). O
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4. EXISTENCE AND SMOOTHNESS OF THE INTERSECTION LOCAL TIME

In this section we study the intersection local time of two independent, d-
dimensional bifractional Brownian motions B¥-¥ and B-¥ with the same indices
H € (0,1), K € (0, 1], which is formally defined as

T ,T
I(BH’K,BH’K):// 8B — B K)dsdt;
0J0

it is a measure of the amount of time that the trajectories of the two processes B K
and B¥X intersect on the time interval [0, T]. Nualart et al. [11] consider intersection
local time for two independent, d-dimensional fractional Brownian motions. They
prove that the intersection local time exists in L? if and only if Hd < 2. The object
of study in this section will be the smoothness of the intersection local time of BK
and B®-X We show that I(BH-K, EHK) is smooth in the sense of Meyer-Watanabe
if and only if HK < 2/(d + 2). Our method used here is essentially due to An-Yan [1]
and Chen-Yan [2].

As we pointed out, the definition is only formal, in order to give a rigorous meaning
to I(BH: K BH.K) we approximate the Dirac delta function by the heat kernel

1 : 2
4.1 o(x) = &) o —elél* /2 q¢.
4D Pe() (2m)? /[Rd ¢ ¢ d

For ¢ > 0 we define

T pT
(4.2) IE(BH’K,BH’K):// pe(BE — BEKY 45 dt
0J0

1 o i(¢, BN K —BH-K) —E\E\Q/ngd dt
= et 5 s e sdt.
w7 ), L.

First, we consider the existence of the intersection local time process.

Theorem 4.1 (Existence of the intersection local time). Let H € (0,1), K €
(0,1. Assume d > 2. Then I.(B*X BHK) converges in L? as ¢ — 0 if and
only if HKd < 2. Moreover, if the limit is denoted by I(BY:X BH.K)  then
I(BEK BHEY ¢ [2(Q, P).
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Denote

HEK1 3§
(4.3) ast = Var(B;™t — pHK2) — 20K 4 J2HK
(= Var(BHED _ BHK2) _ 2HK | 2HK

st = E[(Bg{’K’l _ Ef,KQ)(Bf,K,l _ Ef,K,Q)]
1
_ 2_K[(t2H +U2H)K _ |t _ ’U|2HK]

1
4 2_K[(52H +u2H)K _ |S _u|2HK]

for all s,¢,u,v > 0. By Nualart et al. [11], we have

_ 1 T pT 3
(4.4) E[IE(BH’K,BH’K)]:W/O/O (as,¢ + )" Y2 dsdt,

(4.5) B[I2(BTH, BTR)]
—1 —
= o0d / ((as +€)(@up +€) — 0240.0) Y*dsdt dudo.
2m)® Jo,7y4
Without loss of generality we may assume v < ¢, u < s and v = xf, u = ys with
z,y € [0,1]. Then we can rewrite a,, and Qs ¢4, as

(4.6) (o = z2HERHK | 2HK 2HK

)

1
Os,t,u,v = 2—Kt2HK[(1 + JTQH)K — (1 — x)2HK]

1
+ 2_KS2HK[(1 +y2H)K o (1 _ y)ZHK].

It follows that

t4HK S4HK tZHKSQHK

(4.7) Qs,tQu,w — Qg,t,u,v = 22—Kf($) + QQ—Kf(y) + 227;(9(% ),

where

f(.l?) = 22Kx2HK _ [(1 + J)2H)K _ (1 _ x)QHK]Q
and
(4.8) gz, y) = 228 (@5 421

= 2[4+ 2K — (1 - 2)?HEY(1 4+ )5 — (1 y)?7E].
Thus, by Lemma 3.1 we get
(4.9) f(z) < 227K (1 — g)2HK
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and
(4.10) g(@,y) < a1 — )2 2R (1 — g)2HE

for all z,y € [0, 1].
Proof of Theorem 4.1. A slight extension of (4.5) yields

E[I. (BH’Ka EH’K)IU(BH’Ka EH’K)]

1 _
JNCRE /[o (st ) = )™ dsdt dud

Consequently, a necessary and sufficient condition for the convergence in L?(, P)
of I.(BH-X BH-K) is that

Ar = / (Qs.t@up — 024 L)~ Y% dsdt dudo < oco.
(0,774 o
Thus, it is sufficient to prove that
Ar = / (G540 — 024 40) Y?*dsdtdudy < 0o
0,74 by,

if and only if HKd < 2. By symmetry we have

T pt pT ps
Ar = 4/ // / (Gs.4@unw — 024 4o) Y?dudsdudt.
0 JoJo Jo Y

By (4.9) and (4.10) we have

, AHK GAHK (2HK 2HK
As,t0u,p — Of v = 22—Kf($) + QQ—Kf(y) + 227;(9(% Y)

= [(HHK 2HE (] _ ) 2HEK | AHK 2HK (] \2HK
L (2HE QHE ((2HK (1 2HE | 2HK (] )2HK)
PPHK2HK | 2HK 2K (1 ) 2HEK2HK | (1 )2HK 2HK]

= |

X[UQHK—I—UQHK”(t—’U)QHK—I—(S—U)QHK]

forall 0 < v<t,0<u<sand z=nv/t,y=u/s. This yields for all H € (0,1),
K e (0,1]and T >0

T t T s
Ar < C/ dt/ (K (t — v)HE)=d/2 dv/ ds/ (B (s — u)TE)=d/2 qy
0 0 0 0
T 1 2
_ C(/ [—HKd dt/ o HEd/2(1 x)HKd/2> < o0,
0 0
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if HKd < 2. On the other hand, making a change to spherical coordinates, as the
integrand in A7 is always positive, we have

Ar > / [(vHE 2B (¢ — 0)2HE 1 (5 — u)?HE)] =42 45 dt du dv
Dr
T
= / p3T2HEd g / ©(6)dé
0 [S]

Dy = {(s,t,u,v) € R}: s* +* +u® + 0> < T?}.

where

Note that the angular integral is different from zero thanks to the positivity of the
integrand. It follows that

T (T T ;T
(4.11) //// (asytau,v—git?uw)*dﬂdsdtdudv<oo
0Jo Jo Jo

if and only if HKd < 2. O

H,K pHK
B , B

Next we establish the smoothness of the random variable I( ) under

some restrictions on parameters.

Theorem 4.2. Suppose that d > 2. Let I(B%K, EHK) be the intersection local
time of two independent, d-dimensional bifractional Brownian motions B"-%X and
BHK with H € (0,1), K € (0,1]. Then for every T > 0, the random variable
I(BH’K,EH’K) is smooth in the sense of Meyer-Watanabe if and only if HK <
2/(d+2).

In order to prove Theorem 4.2, we need the following proposition.

Proposition 4.1. Let asy, Gy, 0s,tuv be as above. For all T > 0, I(BH7K7

BHK) ¢ 9 if and only if

(4.12) / Qi,t,u,v(a&ta’u,v — ggyt’uyv)_d/z_l dudvdsdt < co.
[0, 774

Proof. The proposition could be proved along the lines of the proof of Propo-
sition 3.1. For the sake of completeness, we give the main arguments of the proof.
For e > 0, T > 0 we denote

0. (k) := B(|Yypl(B", BHH)?)
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and O(k) := E(|T\/EI(BH’K,§H’K)|2). Thus, by Proposition 2.1 it suffices to

prove (4.12) if and only if ®g(1) < co. Notice that

T pT
LB 5 = [ B - By asai

1 T, T e . g K _FH.K 2 /9
_ﬁ/// (6B ~BIN) o—elel®/2 g¢ g5 a
TC Rd
/// e~ 3(ascte)lel”
27’[ Rd

BHK BHK>

5 oo
le "(t,5,€)H (< oD )dgdsdt:;an.

Thus, by (3.13) and Lemma 3.2 we have

o, (1) = ) nB(F.[)

BH.K _ BH.K

H,K
XH”(@’BZ@,S,S >>Hn(<n,

oo 1 .
— Z m /[0 " 0%t uw dudvdsdt

% / e~ B (@ tolel*+aw v+l (g A ge dy
o

= 2. onon — 1) n o dudvdsdt
Z (2n)2d(2n—1)!/[07T]4 05 tu,p dudvds

% o~ 3 ((as,t+e)[€]* +(au,v+e)[n|?) (&, m)>" dedn

o(u,v,n)

Ll & = 2n(2ky — D). (2kg — 1N
(2 DIDY 2k1)! - (2kg)!!
(27) =l ki, ka=0 (2k) (2ka)
ki+...+ka=n

Qs t,u,v
X S dudvdsdt
/W ((ass +&)(au, + )+

= / Q?,t,u,v((asﬂf +é&)(auy +¢) — Qi,t,u,v)_dm_l dudvdsdt.
(0,774

v >)d£dndudvdsdt

|:/[ ” /[de ((as,t+5)|£|2+((lu,v+€)‘77‘2)0-71(2(:757§)0n(u,v,n)
0,T
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It follows that

lim ®e, (1) = / 02 (s @uw — 02,4 )P dudvdsdt
[0,7]4

e—0

for all T' > 0. This completes the proof. ([

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. By Proposition 2.1 and Proposition 4.1 it suffices to
show that

(4.13) / ggyt’uyv(asytau,v — ggyt’uyv)_d/z_l dudvdsdt < oo
[0, 74

if and only if HK < 2/(d+ 2). By (4.9) and (4.10) we have

s 40 — Q?,t,u,v = [xQHKtQHK 4 yQHKSQHK][(l _ x)QHKtQHK + (1 _ y)QHKSQHK].

First, we give the proof of the necessary condition.
When HK > 1/2, we have

(1 +J)2H)K _ (1 —J))2HK > (1 +J)2H)K -1 +J)2HK > J)2HK
for all x € (0, 1), which leads to

L(tQHKxQHK_’_SQHK 2HK)

Os,t,uv = K Y

It follows that

T pT pT pT
//// (asatauﬂf_gg,t,u,v) § 1Q§tuvd8dth’dv
0

(12HK 20K 4 2HK 2HK )
CTHK//// s Y )s - dydsdxdt
(1 — x)2HK2HK 4 (] — y)2HK g2HK )1+5
(12HK g2HK | 2HK 2HK) o
CTHK//// RETT R Y )s N dydsdzdt
2HK | (] — y)2HK g2HK) +4

2HE 41, 2HK
> CT,H,K/ dy/ dx/ dt/ ds HK(1+d/2)—1(] _ )2HK(1+d/2)
LA-HE(d—2)
CTHK/ dy/ )2 HK(1+d/2) dz

—CT,H,K/ 4-HK(d— 2)(1 x)172HK(1+d/2) dz,
0

which implies that HK < 2/(d + 2) if the convergence (4.13) holds.
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When HK < %, we have
(1 + xQH)K _ (1 _ {E)2HK > K2K71£L'2H

for « € (0, 1), which leads to

K
Ostun > : (tQHK 2H | 2HK QH).

Yy
It follows that

T T T T
//// (as,tau,v_ggtuv) (d+2)/295 uvdsdtdudv
o Jo Jo Jo

1,1 01 p1
scnns [

oJoJoJo

. (tQHKxQH T SQHKyQH)Qst dydsdzdt

(22HK2HK  2HK 2HK)(d+2)/2((1 — g)2HK2HK 4 (] — y)2HK g2HK)(d+2)/2

(12H g2H 4 2H 2HY2 g
> Cr.i.x //// (1 — 2)2HK2HK | (] _ y)2HK 2HK)(d+2)/2 dydsdzdé

SBH+1
CTHK/ dy/ dx/ dt/ ds tHK(d+2)— 1(1_x)HK(d+2)

p8H+4—HK (d+2) ol 1 8H+4-HK(d+2)
CTHK/ dy/ 1 —J) HK(d+2) dx = CT7H,KT /0 (1 _m)HK(d+2)—1 dl‘,

which implies that HK < 2/(d + 2) if the convergence (4.13) holds.
Now we give the proof of the sufficient condition. Notice that

1
Os,t,u,v = Q—KtQHK[(l + QTQH)K (1-— a:)QHK]

4 2_KSQHK[(1 + yQH)K _ (1 _ y)QHK] < 2T2HK

for all z,y € (0,1) and s,t € (0,T). It follows that

/ / / / Qs tQy,0 — Qstuv) (d+2)/293tuvdUdsdvdt
<C THE duds dv dt
H,K [V2HK 4 2HK)((t — )2HK 4 (5 — )2HK)|(d+2)/2

SC’RH,K//// (uHKvHK(s—u)HK(t—U)HK)fd/Qfldudsdvdt
0 JoJo Jo

T rs 2
:CT,H,K<// u—HK—HKd/Q(S_u)—HK—HKd/QdudS)
0J0

T 1 9
— CT,H,K(/ gl 2HK-HKd ds/ y—HKfHKd/Q(l . y)fHKfHKd/Q dy> < 00
0 0

it HK < 2/(d+ 2). Thus, the proof is completed. O
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Remark 4.1. Let B7-X be a bifractional Brownian motion and let W be a Brow-

nian motion independent of B”-¥ . Define the process X X as
(4.14) XK :/ (1 — e )=+ /2 gy,
0

Then XK is a centered Gaussian process, and Lei-Nualart [9] showed that the
following decomposition holds:

(4.15) o x4 B/" L yBIK,

where % means the equality in distributions, B is a fractional Brownian motion
with Hurst index HK and

2-KK

TR _ 9(1-K)/2.
r1-K) C:

Ci =

Thus, if we could show that the collision local times of X 1K1 and XH2:K2 and

the intersection local times of XX and XH#K are smooth in the sense of Meyer-

Watanabe, then the main results in this paper could be proved briefly.
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References

[1] L. An, L. Yan: Smoothness for the collision local time of fractional Brownian motion.
Preprint, 2010.

[2] C.Chen, L. Yan: Remarks on the intersection local time of fractional Brownian motions.
Stat. Probab. Lett. 81 (2011), 1003-1012.

[3] K. Es-Sebaiy, C.A. Tudor: Multidimensional bifractional Brownian motion: Ité6 and
Tanaka formulas. Stoch. Dyn. 7 (2007), 365—-388.

[4] Ch. Houdré, J. Villa: An example of infinite dimensional quasi-helix. Stochastic models.
Seventh symposium on probability and stochastic processes, June 23-28, 2002, Mexico
City, Mexico. Selected papers. Providence, RI: American Mathematical Society (AMS),
Contemp. Math. 336 (2003), 195-201.

[5] Y. Hu: Self-intersection local time of fractional Brownian motion - via chaos expansion.
J. Math, Kyoto Univ. 41 (2001), 233-250.

[6] Y. Hu: Integral transformations and anticipative calculus for fractional Brownian mo-
tions. Mem. Am. Math. Soc. 825 (2005).

[7] Y. Jiang, Y. Wang: Self-intersection local times and collision local times of bifractional
Brownian motions. Sci. China, Ser. A 52 (2009), 1905-1919.

[8] I. Kruk, F. Russo, C. A. Tudor: Wiener integrals, Malliavin calculus and covariance mea-
sure structure. J. Funct. Anal. 249 (2007), 92-142.

[9] P.Lei, D. Nualart: A decomposition of the bifractional Brownian motion and some ap-
plications. Stat. Probab. Lett. 79 (2009), 619-624.

988



[10]
[11]
[12]
[13]
[14]
[15]

[16]

[17]

18]

Y. Mishura: Stochastic Calculus for Fractional Brownian Motions and Related Processes.
Lecture Notes in Mathematics 1929. Springer, Berlin, 2008.

D. Nualart, S. Ortiz-Latorre: Intersection local time for two independent fractional Brow-
nian motions. J. Theor. Probab. 20 (2007), 759-767.

D. Nualart: The Malliavin Calculus and Related Topics. 2nd ed. Probability and Its
Applications. Springer, Berlin, 2006.

F. Russo, C. A. Tudor: On bifractional Brownian motion. Stochastic Processes Appl. 116
(2006), 830-856.

G. Shen, L. Yan: Smoothness for the collision local times of bifractional Brownian mo-
tions. Sci. China, Math. 54 (2011), 1859-1873.

C. A. Tudor, Y. Xiao: Sample path properties of bifractional Brownian motion. Bernoulli
13 (2007), 1023-1052.

S. Watanabe: Lectures on Stochastic Differential Equations and Malliavin Calculus. Lec-
tures on Mathematics and Physics. Mathematics, 73. Tata Institute of Fundamental
Research. Springer, Berlin, 1984.

L. Yan, J. Liu, C. Chen: On the collision local time of bifractional Brownian motions.
Stoch. Dyn. 9 (2009), 479-491.

L. Yan, B. Gao, J. Liu: The Bouleau-Yor identity for a bi-fractional Brownian motion.
To appear in Stochastics 2012.

Authors’ addresses: Guangjun Shen, Department of Mathematics, Anhui Normal

University, 1 East Beijing Rd., Wuhu 241000, P. R. China, e-mail: guangjunshen@yahoo.
com.cn; Litan Yan, Department of Mathematics, Donghua University, 2999 North
Renmin Rd., Songjiang, Shanghai 201620, P.R. China, e-mail: litanyan@dhu.edu.cn;
Chao Chen, Department of Mathematics, East China University of Science and Tech-
nology, 130 Mei Long Rd., Xuhui, Shanghai 200237, P.R. China.

989



		webmaster@dml.cz
	2020-07-03T20:13:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




