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FINITE SPECTRA AND QUASINILPOTENT EQUIVALENCE

IN BANACH ALGEBRAS

Rudi M. Brits, Heinrich Raubenheimer, Johannesburg

(Received September 14, 2011)

Abstract. This paper further investigates the implications of quasinilpotent equivalence
for (pairs of) elements belonging to the socle of a semisimple Banach algebra. Specifically,
not only does quasinilpotent equivalence of two socle elements imply spectral equality, but
also the trace, determinant and spectral multiplicities of the elements must agree. It is
hence shown that quasinilpotent equivalence is established by a weaker formula (than that
of the spectral semidistance). More generally, in the second part, we show that two elements
possessing finite spectra are quasinilpotent equivalent if and only if they share the same set
of Riesz projections. This is then used to obtain further characterizations in a number of
general, as well as more specific situations. Thirdly, we show that the ideas in the preceding
sections turn out to be useful in the case of C∗-algebras, but now for elements with infinite
spectra; we give two results which may indicate a direction for further research.

Keywords: finite rank elements, quasinilpotent equivalence, normal elements

MSC 2010 : 46H05, 46H10

1. Introduction

This paper is a continuation of work done in [12] and [13]. The notion of quasinilpo-

tent equivalence for linear operators is due to Colojoarǎ and Foiaş [5], [6]. Their ideas

have been extended to general Banach algebras by Razpet in [13].

Throughout this paper A is a Banach algebra with unit 1 over the field C of

complex numbers. The spectrum of a ∈ A will be denoted by σ(a, A), the “nonzero”

spectrum, σ(a, A) \ {0}, by σ′(a, A), and the spectral radius of a ∈ A by r(a, A).

Whenever there is no ambiguity we shall drop the A in σ and r. An element a ∈ A

is said to be quasinilpotent if σ(a) = {0}, equivalently lim
n

‖an‖1/n = 0. The set of

quasinilpotent elements is denoted by QN(A), and the Jacobson radical, a subset of

QN(A), by Rad(A). If x ∈ A, then comm(x) is the commutant of x. For n ∈ N we
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denote the algebra consisting of all n × n complex matrices by Mn(C). Finally, if

x ∈ A then by convention x0 = 1.

For each a, b ∈ A associate operators La, Rb and Ca,b acting on A by the relations

Lax = ax, Rbx = xb and Ca,bx = (La − Rb)x

for all x ∈ A. It is easy to see that La, Rb and Ca,b are bounded linear operators on

A, i.e., La, Rb, Ca,b ∈ L(A).

2. Quasinilpotent equivalence

Let a, b ∈ A. Since the operators La and Rb commute

(2.1) Cn
a,bx =

n∑

k=0

(−1)k

(
n

k

)
an−kxbk

for all x ∈ A. We have

(2.2) Cn+1
a,b x = a(Cn

a,bx) − (Cn
a,bx)b,

and also, if c ∈ A, one can prove ([7])

(2.3) Cn
a,b(xy) =

n∑

k=0

(
n

k

)
(Cn−k

a,c x)(Ck
c,by)

for all x, y ∈ A. A straightforward computation shows that for each λ ∈ C

(2.4) eλae−λb =
∞∑

j=0

λjCj
a,b1

j!
.

Define ̺ : A × A → R by

(2.5) ̺(a, b) = lim sup
n

‖Cn
a,b1‖

1/n.

We note that the precise relationship between ̺(a, b) and ̺(b, a) is apparently un-

known. If, however, a and b commute then by (2.5) ̺(a, b) = ̺(b, a) = r(a− b). Now

define

(2.6) d(a, b) = max{̺(a, b), ̺(b, a)}.
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The identity (2.3) can be used to prove that the function d is a semimetric on A,

called the spectral semidistance from a to b. In general d is not a metric on A, with

pathologies already evident on pairs of elements belonging to QN(A) (see the remarks

preceding Proposition 2.2 in [13] or Proposition 2.1 of the present paper). Following

[13], elements a, b ∈ A are called quasinilpotent equivalentif d(a, b) = 0. If a and b

are quasinilpotent equivalent then σ(a) = σ(b) (see [12, Theorem 2.1]), a property

which will be used throughout this paper without further reference. The semimetric

d seems worthwhile studying because it is really an extension of the spectral radius:

For each a ∈ A we have d(a, 0) = r(a).

Proposition 2.1 is a generalization of the fact that any two elements belonging

to QN(A) are quasinilpotent equivalent [12]. Lemmas 2.2 and 2.3 will be used in

forthcoming results.

Proposition 2.1. Let A be a Banach algebra, a ∈ A, and suppose q ∈ A is

quasinilpotent. Then

̺(a, q) = ̺(q, a) = r(a).

P r o o f. It follows from [13, p. 380 (6)] that

̺(a, q) 6 ̺(a, 0) + ̺(0, q) = ̺(a, 0) 6 ̺(a, q) + ̺(q, 0) = ̺(a, q).

In a similar way ̺(q, a) = r(a). �

Lemma 2.2. Let A be a Banach algebra, a, b ∈ A, and suppose q, r ∈ QN(A)

commute with a and b respectively. Then

̺(a + q, b + r) = ̺(a, b).

P r o o f. Again from [13, p. 380 (6)] we have that

̺(a + q, b + r) 6 ̺(a + q, a) + ̺(a, b + r) = ̺(a, b + r)

6 ̺(a, b) + ̺(b, b + r) = ̺(a, b).

It therefore also follows that

̺(a, b) = ̺((a + q) − q, (b + r) − r) 6 ̺(a + q, b + r).

�
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Lemma 2.3. If ̺(a, b) = 0 then ̺(ak, bk) = 0 for each k ∈ N.

P r o o f. Fix k ∈ N. Since La and Rb commute factorization gives

Cak,bk = Lak − Rbk = Lk
a − Rk

b = P (La, Rb)(La − Rb)

where P := P (La, Rb) is an operator commuting with La and Rb. It thus follows

that ̺(ak, bk) 6 r(P )̺(a, b). �

3. Finite rank elements and quasinilpotent equivalence

In this section we shall require that A be a semiprime Banach algebra, i.e., xAx =

{0} implies x = 0 holds for all x ∈ A. It can be shown that all semisimple Banach

algebras are semiprime. Following Puhl [11] we call an element 0 6= a ∈ A rank one

if aAa ⊆ Ca. Denote the set of these elements by F1. By [11, Lemma 2.7] F1A,

AF1 = F1. A projection (idempotent) belonging to F1 is called a minimal projection.

Let F denote the set of all u ∈ A of the form u =
n∑

i=1

ui with ui ∈ F1. We call F

the set of finite rank elements of A. F is a two sided ideal in A and it coincides

with the socle of A, i.e., Soc(A) = F . If a ∈ Soc(A), then σ(a) is a finite set and

hence, corresponding to α ∈ σ(a), one can find a small circle Γα isolating α from the

remaining spectrum of a. We denote by

p(α, a) =
1

2πi

∫

Γα

(λ − a)−1 dλ

the Riesz projection associated with a and α. If α /∈ σ(a), then, by Cauchy’s Theo-

rem, p(α, a) = 0. Recall that p(α, a) belongs to the bicommutant of a.

For another approach to rank one and finite rank elements see [2], [8]; if A is

a semisimple Banach algebra then the notion of rank one and finite rank elements in

the sense of Puhl [11] coincides with the notion of rank one and finite rank elements

in the sense of Aupetit and Mouton ([8, Theorem 4] and [2, Theorem 2.12]).

Let A be a semiprime Banach algebra and a, b ∈ A. Suppose a, b ∈ F1 and

d(a, b) = 0. If a ∈ QN(A) then σ(a) = σ(b) = {0}. In view of [11, Section 2 and

Lemma 2.8] a2 = b2 = 0. If we suppose a, b ∈ F , d(a, b) = 0 and a ∈ QN(A), then

again σ(a) = σ(b) = {0}. Now, in view of [9, Lemma 3.10], there is a natural number

m such that am = bm = 0.

Let A be a semisimple Banach algebra and a ∈ A. Following Aupetit and Mouton

we define the rank of a by

(3.1) rank(a) = sup
x∈A

#σ′(xa) 6 ∞,
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where the symbol #K denotes the number of distinct elements in a set K ⊆ C. With

respect to (3.1) recall that Jacobson’s Lemma says σ′(xa) = σ′(ax). If x ∈ A is such

that #σ′(xa) = rank(a), then we say a assumes its rank at x. Useful in this regard

is the fact that, for each a ∈ Soc(A), the set

(3.2) E(a) = {x ∈ A : #σ′(xa) = rank(a)}

is dense and open in A. For a ∈ Soc(A), Aupetit and Mouton define the trace and

determinant as:

tr(a) =
∑

λ∈σ(a)

λm(λ, a)(3.3)

det(1 + a) =
∏

λ∈σ(a)

(1 + λ)m(λ,a)(3.4)

where m(λ, a) is the multiplicity of a at λ. A brief description of the notion of

multiplicity in the abstract case goes as follows (for particular details one should

consult [2]): Let a ∈ Soc(A), λ ∈ σ(a) and let Vλ be an open disk centered at λ such

that Vλ contains no other points of σ(a). It can be shown [2, p. 119–120] that there

exists an open ball, say U ⊂ A, centered at 1 such that #[σ(xa) ∩ Vλ] is constant as

x runs through E(a) ∩ U . This constant integer is the multiplicity of a at λ.

In the operator case, A = L(X), where X is a Banach space, the “spectral” rank,

trace and determinant all coincide with the respective classical operator definitions.

To develop the results in this section we need the following basic:

Lemma 3.1. Let X be a finite dimensional normed space with basis {e1, . . . , ek}.

If T : X → X is a linear operator such that for each j

lim sup
n

‖T nej‖
1/n = 0,

then T is nilpotent.

P r o o f. Since dimX < ∞ there is a constant c > 0 such that for each x =

α1e1 + . . . + αkek with ‖x‖ 6 1 one has that |α1| + . . . + |αk| 6 c. Thus

lim sup
n

[ sup
‖x‖61

‖T nx‖1/n] 6 lim sup
n

[c1/n max
j

‖T nej‖
1/n]

6

k∑

j=0

lim sup
n

[c1/n‖T nej‖
1/n] = 0.
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So the hypothesis implies that

lim
n→∞

‖T n‖1/n = 0,

which means that T is quasinilpotent. But, since dimX < ∞, T is in fact nilpotent.

�

As one would expect, Lemma 3.1 can also be proved via spectral arguments,

avoiding the norm altogether. Regarding Lemma 3.1, recall that it follows from

local spectral theory, that if for arbitrary x in a Banach space X , ‖T nx‖1/n → 0,

then T ∈ L(X) is quasinilpotent [10, Corollary 34.5]. We proceed to show that, for

elements belonging to Soc(A), quasinilpotent equivalence is implied by the formally

weaker requirement ̺(a, b) = 0. Moreover, if this is the case, then one does not merely

have σ(a) = σ(b), but also that the multiplicities, m(λ, a) andm(λ, b), corresponding

to nonzero spectral points λ coincide. We first need to establish

Theorem 3.2. Let A be a semisimple Banach algebra and a, b ∈ Soc(A). Then

̺(a, b) = 0 ⇒ tr(a) = tr(b).

P r o o f. Since each element of Soc(A) is algebraic it follows that the set L =

{ambn : m, n ∈ Z
+} spans a finite dimensional vector space containing 1, a and b.

DenoteX = spanL. It is clear that the linear operator Ca,b mapsX intoX . Let Y be

the subspace of X spanned by the orbit {Cn
a,b1: n ∈ Z

+}. Then, using Lemma 3.1,

the hypothesis ̺(a, b) = 0 implies that Ca,b is a nilpotent operator on Y . It follows

that there is N ∈ N such that

(3.5) eλae−λb =

N∑

j=0

λjCj
a,b1

j !
.

Notice that

det(eλae−λb) = det(eλa) det(e−λb) = etr(λa)etr(−λb) = eλtr(a−b).

Write p(λ) =
N∑

j=1

λjCj
a,b1/j ! and observe that, for each λ ∈ C,

rank(p(λ)) 6

N∑

j=1

rank(Cj
a,b1) := M < ∞.
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Combining this with (3.5) we have

|eλtr(a−b)| = |det(1 + p(λ))|

6 [1 + r(p(λ)]M 6 [1 + ‖(p(λ)‖]M 6

[
1 +

N∑

j=1

‖Cj
a,b1‖

j !
|λ|j

]M

,

which implies that the entire function λ 7→ eλtr(a−b) has polynomial growth, and must

therefore be a polynomial. It thus follows that λ 7→ eλtr(a−b) is in fact constantly 1

and hence tr(a − b) = 0 which completes the proof. �

Corollary 3.3. Let A be a semisimple Banach algebra and let a, b ∈ Soc(A). If

̺(a, b) = 0 then r(a) = r(b).

P r o o f. If ̺(a, b) = 0, then, by Lemma 2.3, ̺(ak, bk) = 0 for each k ∈ N.

Theorem 3.2 and [2, Theorem 3.5] imply

r(a) = lim sup
k

|tr(ak)|1/k = lim sup
k

|tr(bk)|1/k = r(b).

�

In view of the next result Corollary 3.3 is short lived.

Corollary 3.4. Let A be a semisimple Banach algebra and let a, b ∈ Soc(A).

Then

̺(a, b) = 0 ⇔ ̺(b, a) = 0.

P r o o f. Suppose ̺(a, b) = 0. The first part of the proof of Theorem 3.2 shows

that q(λ) = eλae−λb is a polynomial in λ with coefficients belonging to A. Thus,

to establish the result, it suffices to show that q−1(λ) is also a polynomial. Let B

be the Banach algebra generated by {1, a, b}. Then B is finite dimensional, but not

necessarily semisimple. Denote B̃ = B/Rad(B) and for each x ∈ B, by x̃ the image

of x under the canonical homomorphism C : B → B̃. Since B̃ is now semisimple it

follows that there is a least integer N0 such that B̃ is a (generally non-surjective)

algebra embedding into MN0
(C). In this way we may view B̃ as a closed unital

subalgebra of MN0
(C). The polynomial q̃(λ) is therefore a N0 × N0 matrix whose

entries, say q̃i,j(λ), are polynomials in λ with coefficients belonging to C. Moreover,

for each λ ∈ C, q̃(λ) is invertible in MN0
(C). We now calculate

q̃−1(λ) =
1

det(q̃(λ))
b(λ)
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where b(λ) is aN0×N0 matrix depending analytically on λ. Since its (i, j) entry is the

(j, i) cofactor of q̃(λ), and q̃(λ) is a polynomial, it follows that b(λ) is a polynomial.

But from Theorem 3.2 we get that det(q̃(λ)) = det(q(λ)) = 1 for each λ ∈ C, whence

it follows that q̃−1(λ) = b(λ) is a polynomial. Returning to the algebra B, we now

have the following: There exists a polynomial p(λ) ∈ B such that q−1(λ) = p(λ) +

r(λ) where, for each λ, r(λ) ∈ Rad(B). From this one obtains p(λ)q(λ)+r(λ)q(λ) = 1

where r(λ)q(λ) ∈ Rad(B). Since dimB < ∞ there is M ∈ N (independent of λ)

such that [1 − p(λ)q(λ)]M = 0 for each λ ∈ C. The binomial expansion on the left

then yields

(3.6) 1 =
M∑

j=1

(−1)j+1

(
M

j

)
[p(λ)q(λ)]j .

Finally, multiplication of (3.6) throughout by q−1(λ) on the right shows that q−1(λ)

is a polynomial. �

Corollary 3.5. Let A be a semisimple Banach algebra and a, b ∈ Soc(A). Then

̺(a, b) = 0 ⇒ det(1 + λa) = det(1 + λb), λ ∈ C.

P r o o f. If 1 ∈ σ(−λa) = σ(−λb) the result follows trivially. So assume the

contrary. Since elements belonging to the socle have discrete spectrum log(1 + λa)

and log(1 + λb) exist in A. Furthermore, if λ ∈ U := {λ : ‖λa‖ < 1 and ‖λb‖ < 1}

then

log(1 + λa) =

∞∑

j=1

1

j
(−λa)j+1 and log(1 + λb) =

∞∑

j=1

1

j
(−λb)j+1.

Combining this with Lemma 2.3 and Theorem 3.2, the linearity of the trace implies

that tr(log(1 + λa)) = tr(log(1 + λb)) and hence

det(1 + λa) = etr(log(1+λa)) = etr(log(1+λb)) = det(1 + λb)

for all λ ∈ U . Since the entire functions λ 7→ det(1 + λa) and λ 7→ det(1 + λb) agree

on the open set U they also agree on C. �
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Corollary 3.6. Let A be a semisimple Banach algebra and let a, b ∈ Soc(A). If

̺(a, b) = 0 then m(λ, a) = m(λ, b) for each λ ∈ σ′(a) = σ′(b).

P r o o f. With the hypothesis we can write σ′(a) = σ′(b) = {λ1, . . . , λk}. Thus

det(1 + λa) =

k∏

i=1

(1 + λλi)
m(λi,a) =

k∏

i=1

(1 + λλi)
m(λi,b) = det(1 + λb)

holds for all λ ∈ C. But if m(λj , a) 6= m(λj , b) for some j, then the order of the root

−λ−1
j of det(1 + λa) is not uniquely determined which is absurd. �

Corollary 3.7. Let A be a semisimple Banach algebra. If a, b ∈ Soc(A) then

a = b if and only ̺(xa, xb) = 0 for all x in an arbitrary small open subset N of

Soc(A).

P r o o f. For the reverse implication: Fix y ∈ N and let x ∈ Soc(A) be arbitrary.

There exists ε > 0 such that ̺((y + λx)a, (y + λx)b) = 0 for |λ| < ε. The linearity

of the trace, together with Theorem 3.2, gives tr(xa) = tr(xb) and the result is

immediate from [2, Corollary 3.6]. �

Since the definition of multiplicity, m(λ, a), involves products of a with other

elements x ∈ A it is interesting that ̺(a, b) = 0 can establish the conclusion in

Corollary 3.6; after all, the expression ̺(a, b) concerns only the elements a and b. On

the other hand, quasinilpotent equivalence of a and b cannot, in the general sense,

establish any connection between the respective ranks of a and b; if a, b ∈ QN(A)

then irrespective of rank we have ̺(a, b) = 0. Theorem 4.2 in the following section

clarifies these issues.

4. Riesz projections and quasinilpotent equivalence

The main result of [13] says that any two quasinilpotent equivalent elements,

which are simultaneously roots of an entire function, f , possessing only simple zeros,

must necessarily be equal. Inspection of the proof reveals that the (rather strong)

assumptions concerning the function f , somewhat obscure a useful consequence of

quasinilpotent equivalence which involves the Riesz projections associated with iso-

lated spectral values. We show here, for the case of elements with finite spectra,

how this can be used to derive spectral-algebraic characterizations of quasinilpotent

equivalence.

A modification of the proof of [13, Theorem 3.1] yields Lemma 4.1 which is also

used later to obtain the main result in Section 5.
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Lemma 4.1. Let A be a Banach algebra. Suppose d(a, b) = 0 and that λ1 6= 0

is an isolated point of σ(a) = σ(b). If the Riesz projections p1 = p(λ1, a) and

q1 = p(λ1, b) satisfy ap1 = λ1p1 and bq1 = λ1q1, then p1 = q1.

P r o o f. Define

F (λ) =

∞∑

r=0

Cr
b,a1

(λ − λ1)r+1

which converges for λ 6= λ1 since d(a, b) = 0. Using the identity

(4.1) (λ − b)Cr
b,a1 = (Cr

b,a1)(λ − a) − Cr+1
b,a 1,

together with ap1 = λ1p1, observe that the series given by

(λ − b)F (λ)p1 =
∞∑

r=0

Cr
b,a1(λ − a) − Cr+1

b,a 1

(λ − λ1)r+1
p1

is telescopic whence we obtain

(λ − b)F (λ)p1 = p1.

If Γ1 is a small circle disjoint from σ(a), and surrounding only λ1 ∈ σ(a) then

(4.2) p1 =
1

2πi

∫

Γ1

F (λ)p1 dλ =
1

2πi

∫

Γ1

(λ − b)−1p1 dλ = q1p1.

Now define

G(λ) =
∞∑

r=0

Cr
b,a1

(λ1 − λ)r+1

which also converges for λ 6= λ1. A rearrangement of the identity (4.1) then gives

q1G(λ)(a − λ) =

∞∑

r=0

q1

(b − λ)Cr
b,a1 − Cr+1

b,a 1

(λ1 − λ)r+1

so that, similar to the case for F ,

q1G(λ)(a − λ) = q1.

Multiplication by (a − λ)−1 followed by integration along Γ1, as in (4.2), yields

−q1 = −q1p1

and the conclusion follows. �
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In the case of finite spectra, quasinilpotent equivalence implies equality of the

Riesz projections p(λj , a) and p(λj , b) even without the additional conditions re-

quired in Lemma 4.1; the simple idea here is to show that quasinilpotent equivalence

of a and b implies quasinilpotent equivalence of two related but possibly different

elements, say ã and b̃, which have the same spectra, as well as the same sets of Riesz

projections corresponding to a and b respectively, but, for which the requirements

in Lemma 4.1 do hold for all the Riesz projections corresponding to nonzero spec-

trum values (equality of the Riesz projections p(0, a) and p(0, b), if 0 belongs to the

spectrum, follows from the fact that the Riesz projections sum to 1):

Theorem 4.2. Let A be a Banach algebra. If a, b ∈ A and σ(a) is finite, then

d(a, b) = 0 if and only if the following conditions hold:

(i) σ(a) = σ(b)

(ii) p(λ, a) = p(λ, b) for each λ ∈ σ(a).

P r o o f. (⇒): Quasinilpotent equivalence implies (i). If a and b are quasinilpo-

tent, then (ii) is trivial; so assume the contrary. Writing σ(a) = σ(b) = {λ1, . . . , λn}

the Holomorphic Calculus [3, Proposition 7.9] implies

a =

n∑

i=1

api and b =

n∑

i=1

bqi

where pi = p(λi, a) and qi = p(λi, b). If we notice further, from the Spectral Mapping

Theorem, that {(a − λi)pi}
n
i=1 is a set of commuting quasinilpotents and similarly

that {(b− λi)qi}
n
i=1 is a set of commuting quasinilpotents, then it follows, using the

fact that the Riesz projections sum to 1, that

(4.3) σ(a − (λ1p1 + . . . + λnpn)) = {0} = σ(b − (λ1q1 + . . . + λnqn)).

Since d is a semimetric (4.3) implies

d(λ1p1 + . . . + λnpn, λ1q1 + . . . + λnqn)

6 d(λ1p1 + . . . + λnpn, a) + d(a, b) + d(b, λ1q1 + . . . + λnqn) = 0.

This implies pi = qi for each i by Lemma 4.1.

(⇐): If a, and hence b, are quasinilpotent the result follows trivially. Otherwise

write σ(b) = σ(a) = {λ1, . . . , λn}. As above, using (ii), we can write

a =

n∑

i=1

api and b =

n∑

i=1

bpi
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where pi = p(λi, a) = p(λi, b). Again applying the Spectral Mapping Theorem to

{(a − λi)pi}
n
i=1 and {(b − λi)pi}

n
i=1, but now using [13, Corollary 2.1] and Proposi-

tion 2.1, we see that

d(a, b) = d(ap1 + . . . + apn, bp1 + . . . + bpn)

= d((a − λ1)p1 + . . . + (a − λn)pn, (b − λ1)p1 + . . . + (b − λn)pn) = 0.

�

Theorem 4.2 sheds light on the remark following Corollary 3.7: If a ∈ Soc(A) and

λ ∈ σ′(a), then [2, Theorem 2.6] shows that m(λ, a) = rankp(λ, a).

Theorem 4.3. Let A be a Banach algebra. If a, b ∈ A and σ(a) is finite, then

d(a, b) = 0 if and only if a−b can be expressed as the difference of two quasinilpotent

elements, ra and rb, commuting with a and b respectively.

P r o o f. (⇒): The proof of Theorem 4.2 shows that we can write

a =

n∑

i=1

api and b =

n∑

i=1

bpi

where pi = p(λi, a) = p(λi, b). It is then elementary that

(4.4) a − b =

n∑

i=1

(api − λipi) −

n∑

i=1

(bpi − λipi).

Setting the first summation on the right equal to ra, and the second to rb, the result

follows.

(⇐): With the hypothesis, and using Lemma 2.2 in the end

a − b = ra − rb ⇒ a − ra = b − rb ⇒ d(a − ra, b − rb) = 0 ⇒ d(a, b) = 0.

�

Corollary 4.4. Let A be a Banach algebra. If a, b ∈ A and σ(a) is finite, then

d(a, b) = 0 if and only if there exists c ∈ A, commuting with a and b, such that both

a−c and b−c are quasinilpotent. In particular, if A is semisimple, and a, b ∈ Soc(A),

then c can be located in Soc(A), and quasinilpotency can be reduced to nilpotency.

P r o o f. Suppose d(a, b) = 0. Using Theorem 4.3, take c = a − ra = b − rb.

Conversely, if c commutes with a and b, and both a− c and b− c are quasinilpotent,

then write a − b = (a − c) − (b − c); the result follows from Theorem 4.3. For the

second part, to find c ∈ Soc(A), use the fact that the Riesz projections corresponding

to nonzero spectrum points of a and b also belong to Soc(A). Notice then that any

quasinilpotent element in Soc(A) is in fact nilpotent. �
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In [12, Theorem 3.3] a special case of Theorem 4.3 appears: a ∈ Soc(A) and b ∈ A

are quasinilpotent equivalent, and a assumes its rank at 1, a property which entails

api = λipi for each Riesz projection pi = p(λi, a); however b does not necessarily

share the property, so that a 6= b is possible. The most general conclusion here is

that a− b is a quasinilpotent element commuting with a (in fact a and b commute).

Of course, this is in accordance with Theorem 4.3 above; and in fact the result is

immediate from (4.4). It is further clear, as also shown in [12, Theorem 3.2], that if

b is in the socle and assumes its rank at 1, then a = b. We conclude this section by

extending the results in [12], but now in a different direction. The arguments in [12]

relied on Aupetit and Mouton’s Diagonalization Theorem: An element a ∈ Soc(A)

which assumes its rank at 1 takes the form a = λ1p1+ . . .+λnpn where pi = p(λi, pi).

The following generalization of [2, Theorem 2.8] was proved in [4, Theorem 3.1]:

Theorem 4.5 (Generalized Diagonalization Theorem). Let A be a semisimple

Banach algebra and 0 6= a ∈ Soc(A). Then a is a linear combination of mutually

orthogonal minimal idempotents if and only if a assumes its rank at a commuting

y ∈ A; that is, if and only if there exists y ∈ A commuting with a such that

rank(a) = #σ′(ya).

Theorem 4.6. Let A be a semisimple Banach algebra with a, b ∈ Soc(A), and

suppose a and b assume their respective ranks on comm(a) and comm(b). Then

̺(a, b) = 0 if and only if a = b.

P r o o f. By Theorem 4.5 we can write

a = λ1p1 + . . . + λnpn

and

b = α1q1 + . . . + αmqm

where the pi form a set of mutually orthogonal minimal projections, and the λi are

(not necessarily distinct) scalars. The same statement holds of course for the qi and

αi. The pi and qi are not necessarily Riesz projections. However, if some λi appears

more than once in the above representation of a, then the total sum of the orthogonal

minimal projections with coefficients equal to λi gives the Riesz projection p(λi, a).

Theorem 4.5 thus implies that the Riesz projections are mutually orthogonal, and

hence, following the proof of Theorem 4.3, ra = 0. The same argument gives rb = 0,

and a = b follows from Theorem 4.3. �

In [12, Theorem 3.3] the requirement that a be maximal rank can be relaxed to

the weaker “a assumes it rank on comm(a)”:
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Theorem 4.7. Let A be a semisimple Banach algebra with a ∈ Soc(A), and

suppose a assumes its rank on comm(a). If b ∈ A, then d(a, b) = 0 if and only if

a − b is quasinilpotent, and a commutes with b.

P r o o f. If d(a, b) = 0, then a − b = ra − rb with ra and rb as in Theorem 4.3.

Since a assumes its rank on comm(a), the argument in the proof of Theorem 4.6

shows that ra = 0. Hence a − b = −rb ∈ QN(A). Since rb commutes with b it also

follows from a−b = −rb that a and b commute. Conversely, if a−b is quasinilpotent,

and a commutes with b, then d(a, b) = r(a − b) = 0. �

5. C*-algebras and quasinilpotent equivalence

In this section we investigate the effect of elements being quasinilpotent equivalent

in C*-algebras. The first result characterizes elements b in a C*-algebra which are

quasinilpotent equivalent to a normal element a with finite spectrum:

Theorem 5.1. Let A be a C*-algebra and let a be a normal element of A with

finite spectrum. If b ∈ A then d(a, b) = 0 if and only if a − b is quasinilpotent, and

a commutes with b.

P r o o f. (⇐): If a − b ∈ QN(A) and ab = ba, then, by the comment following

(2.5), d(a, b) = r(a − b) = 0.

(⇒): If σ(a) = {λ1, . . . , λk} then in view of [1, Corollary 6.2.8] there exist self

adjoint orthogonal projections p1, . . . , pk in the commutative closed subalgebra gen-

erated by 1, a and a∗, such that p1+. . .+pk = 1 and a = λ1p1+. . .+λkpk. Moreover,

the proof of the aforementioned result shows that pj = p(λj , a) for each j. Since the

projections are orthogonal, api = λipi for 1 6 i 6 k. The result is then clear from

the comments following Corollary 4.4. �

Theorem 5.2. Let A be a C*-algebra. If a and b are normal elements of A, and

if 0 is the only possible accumulation point of σ(a), then d(a, b) = 0 if and only if

a = b.

P r o o f. If σ(a) is finite, then the result follows as a special case of Theorem 5.1.

So we may assume σ(a) = σ(b) = {λ1, λ2, . . .}∪{0 = λ0} where (λj) is a sequence of

nonzero complex numbers converging to 0. For each n ∈ N define fn(λ) and hn(λ)

on σ(a), by

fn(λj) =

{
1, 0 < j 6 n,

0, j > n or j = 0

1114



and

hn(λj) =

{
0, 0 < j 6 n,

1, j > n or j = 0.

Using the Continuous Functional Calculus throughout the remainder of this proof

we have:

fn(a) = p(λ1, a) + . . . + p(λn, a)

and

fn(b) = p(λ1, b) + . . . + p(λn, b).

Notice further that, for each i ∈ N, ap(λi, a)−λip(λi, a) is quasinilpotent and normal,

from which it follows that ap(λi, a) = λip(λi, a). Similarly bp(λi, b) = λip(λi, b). For

each n ∈ N we can write

a = afn(a) + ahn(a)

and

b = bfn(b) + bhn(b).

But now, using Lemma 4.1, we see that afn(a) = bfn(b) for each n ∈ N. Finally,

from the fact that ahn(a) and bhn(b) are both normal, we have

‖a − b‖ = ‖ahn(a) − bhn(b)‖

6 ‖ahn(a)‖ + ‖bhn(b)‖ = r(ahn(a)) + r(bhn(b)) = 2 max{|λj | : j > n}

holds for all n ∈ N. Letting n → ∞ we obtain ‖a − b‖ = 0. �
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[7] C.Foiaş, F.-H.Vasilescu: On the spectral theory of commutators. J. Math. Anal. Appl.
31 (1970), 473–486.

[8] R.Harte: On rank one elements. Stud. Math. 117 (1995), 73–77.
[9] S.Mouton, H.Raubenheimer: More spectral theory in ordered Banach algebras. Posi-
tivity 1 (1997), 305–317.

[10] V.Müller: Spectral Theory of Linear Operators and Spectral Systems in Banach Alge-
bras. Operator Theory: Advances and Applications, Basel: Birkhäuser, 2003.

1115



[11] J.Puhl: The trace of finite and nuclear elements in Banach algebras. Czech. Math. J.
28 (1978), 656–676.

[12] H.Raubenheimer: On quasinilpotent equivalence in Banach algebras. Czech. Math. J.
60 (2010), 589–596.

[13] M.Razpet: The quasinilpotent equivalence in Banach algebras.. J. Math. Anal. Appl.
166 (1992), 378–385.

Authors’ address: R u d i B r i t s, H e i n r i c h R a u b e n h e im e r, Department of
Mathematics, University of Johannesburg, Aucklandpark Campus, Aucklandpark 6000,
South Africa, e-mail: rbrits@uj.ac.za, heinrichr@uj.ac.za.

1116


		webmaster@dml.cz
	2020-07-03T20:17:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




