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NASH EQUILIBRIA IN A CLASS
OF MARKOV STOPPING GAMES

Rolando Cavazos-Cadena and Daniel Hernández-Hernández

This work concerns a class of discrete-time, zero-sum games with two players and Markov
transitions on a denumerable space. At each decision time player II can stop the system paying
a terminal reward to player I and, if the system is no halted, player I selects an action to
drive the system and receives a running reward from player II. Measuring the performance of a
pair of decision strategies by the total expected discounted reward, under standard continuity-
compactness conditions it is shown that this stopping game has a value function which is
characterized by an equilibrium equation, and such a result is used to establish the existence
of a Nash equilibrium. Also, the method of successive approximations is used to construct
approximate Nash equilibria for the game.

Keywords: zero-sum stopping game, equality of the upper and lower value functions, con-
tractive operator, hitting time, stationary strategy

Classification: 91A10, 91A15

1. INTRODUCTION

This note is concerned with a class of discrete time, zero-sum games evolving on a de-
numerable state space according to a (time invariant) Markovian transition mechanism.
There are two players in the game and, at each observation time t = 0, 1, 2, 3, . . ., they
consider the previous history as well as the current state to select their decisions: player
II can stop the game paying a terminal reward to player I, or can allow the system to
continue its evolution, and in this latter case player I chooses an action influencing the
system transition and entitling him to receive a running reward from player II. It is as-
sumed that the available actions for player I form a compact metric space at each state,
and that the running reward and the system transitions depend continuously on the
applied action. The performance of a pair of decision strategies is measured by the total
expected discounted reward of player I and, within this context, the main conclusions of
the paper are as follows: (a) It is shown that the upper and lower value functions of this
stopping game are the same, say V ∗, and (b) an equilibrium equation characterizing V ∗

is derived. Next, (c) using such an equation the existence of a Nash equilibrium for the
game is established and, finally (d) it is shown that a successive approximation scheme
can be used to determine strategies for both players which form an ‘approximate’ Nash
equilibrium in a sense to be formally specified below.
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The theory of games has interesting applications in diverse areas; see, for instance,
Altman and Schwartz [1], Atar and Budhiraja [2], and the recent book by Kolokoltsov
and Malafeyev [5], and it should be mentioned that the topic of Markov Games was
initiated in the pioneer papers by Shapley [12] and Zachrisson [17]. Also, stopping time
problems have been intensively studied, and a fairly complete account of the theory
can be found in Shiryaev [9] and Peskir and Shiryaev [7], whereas an application to
mathematical finance was presented in Peskir [6]. An intersection between game theory
and optimal stopping was presented in Dynkin [4], where games with two players were
studied and each player can stop the system, and in van der Wal [13, 14].

On the other hand, the field of (risk-neutral) controlled Markov chains has a well-
established theory (Puterman [8]), and good account of real successful applications can
be found, for instance, in White [15, 16], whereas recent applications to economic growth
problems can be found in Sladký [10, 11], where discounted and risk sensitive criteria
were studied. In this note, the fundamental ideas of optimal stopping and Markov
decision processes are combined to analyze the stopping game described above.

The organization of the subsequent material is as follows: In Section 2 the Markov
stopping game model is formally introduced, and the classes of strategies for both players,
the idea of a Nash equilibrium for the game, as well as the discounted criterion are briefly
discussed. Next, in Section 3 it is shown that the value function of the game is well-
defined and is characterized as the unique bounded solution of an equilibrium equation,
which is used in Section 4 to establish the existence of a Nash equilibrium. Finally, in
Section 5 the idea of ε-Nash equilibrium is introduced and it is shown that, for each
ε > 0, a successive approximation method can be used to construct ε-Nash equilibria for
the stopping game, and the exposition concludes with a brief discussion of an example
in Section 6 before the bibliography.

Notation. Given a topological space IK, the Banach space B(IK) consist of all con-
tinuous functions R : IK → IR whose supremum norm ‖R‖ is finite, where ‖R‖ :=
supk∈IK |R(k)|, whereas

IN := {0, 1, 2, 3, . . .} ∪ {∞}.

On the other hand, for numbers r0, r1, r2, . . . ,

−1∑
t=0

rt = 0,

and the indicator function of an event A is denoted by I[A]. Finally, without explicit
mention, all relations involving conditional expectations are valid with probability 1
with respect to the underlying probability measure.

2. THE MODEL

Throughout the remainder G = (S, A, {A(x)}x∈S , R, G, P ) stands for a zero-sum stop-
ping sequential game with two players I and II, where the state space S is a denumerable
set endowed with the discrete topology, and the action set A is a metric space. For each
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x ∈ S, A(x) ⊂ A is the nonempty set of admissible actions at x for player I, whereas
IK := {(x, a) | a ∈ A(x), x ∈ S} is the class of admissible pairs, which is considered as
a topological subspace of S × A. On the other hand, R ∈ B(IK) and G ∈ B(S) are the
running and terminal reward functions, respectively, whereas P = [px y(·)] is the con-
trolled transition law on S given IK, that is, px y(a) ≥ 0 and

∑
y∈S px y(a) = 1 for each

(x, a) ∈ IK. This model G is interpreted as follows: At each time t = 0, 1, 2, . . ., players I
and II observe the state of the system, say Xt = x ∈ S, and player II can decide to stop
the system at the expense of paying a terminal reward G(x) to player I, or else player
II can decide to let the system to continue its evolution. In this latter case, player I
uses the history of previously observed states and actions applied, as well as the current
state Xt = x, to select an action (control) At = a ∈ A(x) to drive the system. As a
consequence, player I gets a reward R(x, a) from player II and, regardless of the previ-
ous states and actions, the state of the system at time t + 1 will be Xt+1 = y ∈ S with
probability px y(a); this is the Markov property of the sequential decision process. From
this point onwards, the following condition is enforced even without explicit reference.

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.
(ii) For every x, y ∈ S, the mappings a 7→ R(x, a) and a 7→ px y(a) are continuous in
a ∈ A(x).

Decision Strategies. The space IHt of possible histories up to time t = 0, 1, 2, . . . is
defined by IH0 := S and IHt := IKt × S for t = 1, 2, 3, . . .; a generic element of IHt is
denoted by ht = (x0, a0, . . . , xi, ai, . . . , xt), where ai ∈ A(xi). A policy π = {πt}—
or decision strategy for player I—is a special sequence of stochastic kernels: For each
t = 0, 1, 2, . . . and ht ∈ IHt, πt(·|ht) is a probability measure on A concentrated on
A(xt), and for each Borel subset B ⊂ A, the mapping ht 7→ πt(B|ht), ht ∈ IHt, is Borel
measurable; when the system is driven according to π the control At applied at time
t belongs to B ⊂ A with probability πt(B|ht), where ht is the observed history of the
process up to time t. The class of all policies is denoted by P. Given the policy π and
the initial state X0 = x, a unique probability measure Pπ

x is uniquely determined in the
product space

IH :=
∞∏

t=0

IK

of all possible realizations of the state-action process {(Xt, At)} (Puterman [8]); the
corresponding expectation operator is denoted by Eπ

x . Next, define IF :=
∏

x∈S A(x)
and notice that IF is a compact metric space, which consists of all functions f : S → A
such that f(x) ∈ A(x) for each x ∈ S. A policy π is stationary if there exists a function
f ∈ IF such that the probability measure πt(·|ht) is always concentrated at f(xt), and
in this case π and f are naturally identified; with this convention, IF ⊂ P. On the other
hand, setting Ft := σ(X0, A0, . . . , Xt−1, At−1, Xt), the space T of strategies for player
II consists of all stopping times τ : IH → IN with respect to the filtration {Ft}, that is,
for each nonnegative integer t, the event [τ = t] belongs to Ft.

Discounted Value Functions and Nash Equilibria. Let β ∈ (0, 1) be a discount
factor which will be held fixed throughout the reminder. Given an initial state x ∈ S,
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the total expected discounted reward of player I corresponding to the pair (π, τ) ∈ P×T
is given by

Vβ(x;π, τ) := Eπ
x

[
τ−1∑
t=0

βtR(Xt, At) + βτG(Xτ )

]
(1)

where, by convention,

βτG(Xτ ) = 0 on the event [τ = ∞]. (2)

Notice that

|Vβ(x;π, τ)| ≤ Eπ
x

[ ∞∑
t=0

βt|R(Xt, At)|+ ‖G‖

]
≤ ‖R‖

1− β
+ ‖G‖ < ∞,

so that Vβ(x;π, τ) is always well-defined and satisfies

‖Vβ(·;π, τ)‖ ≤ ‖R‖
1− β

+ ‖G‖. (3)

When player II uses the strategy τ , the best expected total discounted reward of player
I is supπ∈P V (x;π, τ), and the (discounted upper-) value function of the game is

V ∗β (x) := inf
τ∈T

[
sup
π∈P

Vβ(x;π, τ)
]

, x ∈ S; (4)

combining the two last displays it follows that V ∗β ∈ B(S).

Remark 2.1. The discounted lower-value function of the game is specified by inter-
changing the order in which the supremum and infimum are taken in (4):

Vβ,∗(x) := sup
π∈P

[
inf
τ∈T

Vβ(x;π, τ)
]

, x ∈ S. (5)

Observing that the relation

sup
π∈P

Vβ(x;π, τ) ≥ Vβ(x;π, τ) ≥ inf
τ∈T

Vβ(x;π, τ)

is always valid, it follows from (4) and (5) that the inequality V ∗β (x) ≥ Vβ,∗(x) holds
for every state x. As it will be shown below, under Assumption 2.1 the value functions
V ∗β (·) and Vβ,∗(·) coincide.

Definition 2.1. A pair (π∗, τ∗) ∈ P × T is a Nash equilibrium if

Vβ(x;π, τ∗) ≤ Vβ(x;π∗, τ∗), x ∈ S, π ∈ P,

and
Vβ(x, π∗, τ) ≥ Vβ(x, π∗, τ∗), x ∈ S, τ ∈ T .
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Since the reward of player I is received from player II, it follows that when the actual
strategies π∗ and τ∗ used by the players form a Nash equlibrium, then if one player
keeps on using his strategy, the other one does not have any incentive to change her/his
behaviour.

The Problems. The main objectives of this note can be described as follows:

1. To establish an equilibrium equation characterizing the value function V ∗β (·);
2. To show that such an equation renders a Nash equilibrium (π∗, τ∗) for the game, and
3. To prove that, when the players follow the above strategies π∗ and τ∗, the expected
discounted reward obtained by player I coincides with the value function V ∗β (·), that is,

V ∗β (x) = Vβ(x;π∗, τ∗), x ∈ S.

4. To implement, starting from scratch, an algorithm allowing to obtain strategies π̂ and
τ̂ which form an approximate Nash equilibrium, in a sense to be precisely formulated
below.

3. EQUILIBRIUM EQUATION

In this section an equilibrium equation characterizing the value function V ∗β in (4) will
be established. To begin with, define the operator C : B(S) → B(S) as follows: For each
W ∈ B(S) and x ∈ S,

C[W ](x) := min

G(x), sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)W (y)

 . (6)

Notice now that C is monotone and β-subhomogeneous, that is, for W,W1 ∈ B(S),

C[W ] ≤ C[W1] if W ≤ W1, (7)

and
C[W + r] ≤ C[W ] + βr, if r ∈ [0,∞).

Observing that the relation W1 ≤ W2 + ‖W2 −W1‖ is always valid for W1,W2 ∈ B(S),
these properties immediately yield that C[W1] ≤ C[W2] + β‖W1 −W2‖; interchanging
he roles of W1 and W2, it follows that

‖C[W1]− C[W2]‖ ≤ β‖W1 −W2‖, W1,W2 ∈ B(S), (8)

that is, C is a contractive operator in the Banach space B(S), and then it has a unique
fixed point W ∗,

C[W ∗] = W ∗, W ∗ ∈ B(S). (9)

Moreover, such a fixed point W ∗ can be obtained as the uniform limit of successive
compositions of C. More explicitly, for each positive integer n and W ∈ B(S), ‖W ∗ −
Cn[W ]‖ ≤ βn‖W ∗ −W‖, and then

W ∗ = lim
n→∞

Cn[W ], W ∈ B(S). (10)
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Theorem 3.1. Suppose that Assumption 2.1 holds, and let the (upper and lower dis-
counted) value functions V ∗β (·) and Vβ,∗(·) be as in (4) and (5), respectively. In this case
the following assertions (i)–(iii) are valid, where the operator C is as in (6), and W ∗ is
the corresponding fixed point.

(i) V ∗β ≤ C[V ∗β ], and
(ii) Vβ,∗ ≥ C[Vβ,∗].
Consequently,
(iii) V ∗β = W ∗ = Vβ,∗, and then V ∗β is the unique solution in B(S) of the following
equilibrium equation:

V ∗β (x) = min

G(x), sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)V ∗β (y)

 , x ∈ S. (11)

P r o o f . (i) Let π be an arbitrary strategy for player I, and let τ ≡ 0. In this case,
Vβ(x;π, τ) = G(x), by (1), so that supπ∈P Vβ(x;π, τ) = G(x), and then (4) yields that

V ∗β (x) ≤ G(x), x ∈ S. (12)

Next, let ε > 0 be arbitrary. Using (4), for each y ∈ S select a stopping time τy : IH → IN
such that

sup
δ∈P

Vβ(y; δ, τy) ≤ V ∗β (y) + ε, (13)

and define the new stopping time τ̃ : IH → IN as follows: For h = (x0, a0, x1, a1, . . .) ∈ IH

τ̃(h) = 1 + τx1(x1, a1, x2, a2, . . .).

In words, when player II stops the system according to τ̃ , the system runs at least up
to time 1, and if X1 = y is observed, then the system is halted at time 1 + k, where k
is the value attained by τy as if the process had started again at time 1. Now, given
(x, a) ∈ IK, define the shifted strategy π(x,a) as follows: for each nonnegative integer t,
π

(x,a)
t (ht) = πt+1(x, a,ht). When player I chooses actions according to π(x,a), he prefixes

the observed history ht with the pair (x, a) and then selects actions according to the
original policy π as if the augmented history (x, a,ht) had been observed. With this
notation, an application of the Markov property yields that, for every x ∈ S,

Eπ
x

[
τ̃−1∑
t=0

βtR(Xt, At) + βτ̃G(Xτ̃ )

∣∣∣∣∣ A0 = a,X1 = y

]

= R(x, a) + βEπ(x,a)

y

[
τy−1∑
t=0

βtR(Xt, At) + βτyG(Xτy )

]
= R(x, a) + βVβ(y;π(x,a), τy)
≤ R(x, a) + β sup

δ∈P
Vβ(y; δ, τy)

≤ R(x, a) + β[V ∗β (y) + ε],
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where (13) was used to set the last inequality. Taking the expectation with respect to
X1 it follows that

Eπ
x

[
τ̃−1∑
t=0

βtR(Xt, At) + βτ̃G(Xτ̃ )

∣∣∣∣∣ A0 = a,

]
≤ R(x, a) + β

∑
y∈S

px y(a)V ∗β (y) + βε

≤ sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)V ∗β (y)

 + βε

and then

Vβ(x;π, τ̃) = Eπ
x

[
τ̃−1∑
t=0

βtR(Xt, At) + βτ̃G(Xτ̃ )

]

≤ sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)V ∗β (y)

 + βε.

Since π ∈ P and ε > 0 are arbitrary, it follows that

V ∗β (x) ≤ sup
π∈P

Vβ(x;π, τ̃) ≤ sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)V ∗β (y)

 ,

where the first inequality stems from (4). Combining this relation with (12) and the
specification of the operator C in (6), it follows that V ∗β ≤ C[V ∗β ].

(ii) Let ε > 0 be arbitrary and, using (5), for each y ∈ S select a strategy πy ∈ P such
that

inf
τ̃∈T

Vβ(y;πy, τ̃) ≥ Vβ,∗(y)− ε. (14)

Next, observe that Vβ,∗ is a bounded function (see (3) and (5)) so that, by Assumption
2.1, there exists a stationary strategy f ∈ IF such that

R(x, f(x)) + β
∑
y∈S

px y(f(x))Vβ,∗(y)

= sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)Vβ,∗(y)

 , x ∈ S. (15)

Now, this stationary strategy f and the strategies πy in (14) will be used to construct a
new policy πf ∈ P as follows: For each nonnegative integer t and ht = (x0, a0, . . . , xt) ∈ IHt,

πf
0 (h0) = f(x0), πf

1 (h1) = πx1
0 (x1)

πf
t (ht) = πx1

t−1(x1, a1, . . . , xt), t ≥ 2. (16)
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In words, when player I follows the strategy πf , actions are selected according to f at
time 0 and, if X1 = y is observed, from time 1 onwards actions are chosen according to πy

as if the process had started again. To continue, let τ : IH → IN be an arbitrary stopping
time and, recalling that the event [τ = 0] belongs to the σ-field F0 = σ(IH0) = σ(X0),
observe that exactly one of the following statements is valid for each x ∈ S:

[X0 = x] ⊂ [τ = 0], or [X0 = x] ∩ [τ = 0] = ∅.

With this in mind, for a given state x ∈ S, the discounted reward function Vβ(x;πf , τ)
will be analyzed. Consider the following two exhaustive cases (a) and (b):

(a) The inclusion [X0 = x] ⊂ [τ = 0] occurs: In this context, it follows that 1 =
Pπf

x [X0 = x] = Pπf

x [τ = 0] = 1, and then

Vβ(x;πf , τ) = G(x).

(b) The events [X0 = x] and [τ = 0] are disjoint: In this case Pπf

x [τ ≥ 1] = 1 and an
application of the Markov property using the specification of the policy πf in (16) yields
that

Vβ(x;πf , τ) = R(x, f(x)) + β
∑
y∈S

px y(f(x))Vβ(y;πy, τ̂),

where the stopping time τ̂ : IH → IN is given by τ̂(h) = τ(x, f(x),h) − 1, h ∈ IH.
Therefore,

Vβ(x;πf , τ) ≥ R(x, f(x)) + β
∑
y∈S

px y(f(x)) inf
τ∈T

Vβ(y;πy, τ)

≥ R(x, f(x)) + β
∑
y∈S

px y(f(x))Vβ,∗(y)− βε

= sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)Vβ,∗(y)

− βε,

where (14) and (15) were used in the two last steps.

Combining the conclusions obtained in the analysis of the above cases (a) and (b) with
the specification of the contractive operator C in (6), it follows that for every τ ∈ T and
x ∈ S

Vβ(x;πf , τ) ≥ C[Vβ,∗](x)− βε,

so that
Vβ,∗(x) ≥ inf

τ∈T
Vβ(x;πf , τ) ≥ C[Vβ,∗](x)− βε, x ∈ S;

see (5) for the first inequality. Since ε > 0 is arbitrary, it follows that Vβ,∗ ≥ C[Vβ,∗].

(iii) Via the monotonicity property of C in (7), the two previous parts yield that Vβ,∗ ≥
Cn[Vβ,∗] and Cn[V ∗β ] ≥ V ∗β for every positive integer n, and then (10) leads to Vβ,∗ ≥ W ∗

and W ∗ ≥ V ∗β ; since the value functions satisfy V ∗β ≥ Vβ,∗, it follows that

Vβ,∗ = W ∗ = V ∗β .

From this point, the specification of the operator C in (6) yields that the equilibrium
equation (11) is equivalent to (9), concluding the argument. �



Nash equilibria in Markov stopping games 1035

4. NASH EQULIBRIA

In this section strategies f∗ and τ∗ for players I and II will be specified using the value
function V ∗β , and it will be shown that the pair (f∗, τ∗) is a Nash equlibrium. To begin
with, let S∗ be the subset of states where the value function V ∗β and the terminal reward
G coincide, that is,

S∗ := {x ∈ S |G(x) = V ∗β (x)}, (17)

and let τ∗ be the first arrival time to S∗, that is,

τ∗(h) := min{t ≥ 0 |xt ∈ S∗}, h = (x0, a0, x1, a1, . . .) ∈ IH. (18)

Now, let f∗ ∈ IF be a the stationary strategy satisfying

R(x, f∗(x)) + β
∑
y∈S

px y(f∗(x))V ∗β (y)

= sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)V ∗β (y)

 , x ∈ S, (19)

whose existence is guaranteed by Assumption 2.1.

Theorem 4.1. The pair of strategies (f∗, τ∗) ∈ IF × T described above is a Nash
equilibrium.

The proof of this result relies in the following lemma, establishing that when players
I and II use the strategies f∗ and τ∗, respectively, the expected discounted reward of
player I coincides with the value function V ∗β .

Lemma 4.2. For each x ∈ S, the strategies (f∗, τ∗) in (18) and (19) satisfy

V ∗β (x) = Vβ(x; f∗, τ∗); (20)

see (1) and (4).

P r o o f . Suppose that x ∈ S∗, so that

G(x) = V ∗β (x),

by (17). On the other hand, observing τ∗ = 0 on the event[X0 = x], it follows that
1 = P f∗

x [X0 = x] = P f∗

x [τ∗ = 0], and then

Vβ(x, f∗, τ∗) = Ef∗

x

[
τ∗−1∑
t=0

βtR(Xt, At) + βτ∗G(Xτ∗)

]
= G(x),

establishing that (20) holds when x belongs to S∗. To verify the desired conclusion when
x lays outside of S∗, observe that (17)–(19) together with the equilibrium equation (11)
yield that
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V ∗β (x) = R(x, f∗(x)) + β
∑
y∈S

px y(f∗(x))V ∗β (y), x ∈ S \ S∗, (21)

that is,
V ∗β (x) = Ef∗

x

[
R(X0, A0) + βI[τ∗ ≥ 1]V ∗β (X1)

]
, x ∈ S \ S∗, (22)

where it was used that the inequality τ∗ ≥ 1 occurs P f∗

x -almost surely if the initial state
x does not belong to S∗, by (18). It will be shown that, for each positive integer n,

V ∗β (x) = Ef∗

x

[
n−1∑
t=0

βtR(Xt, At)I[τ∗ > t]

]
+Ef∗

x

[
βτ∗G(Xτ∗)I[τ∗ < n]

]
+Ef∗

x

[
βnI[τ∗ ≥ n]V ∗β (Xn)

]
, x ∈ S \ S∗. (23)

To establish this claim notice that, since P f∗

x [τ∗ ≥ 1] = 1 when x ∈ S \ S∗, this last
assertion reduces to (22) when n = 1. Proceeding by induction, assume now that (23)
holds for some positive integer n, let x ∈ S \ S∗ be arbitrary and notice that

Ef∗

x

[
βnI[τ∗ ≥ n]V ∗β (Xn)

]
= Ef∗

x

[
βnI[τ∗ = n]V ∗β (Xn)

]
+ Ef∗

x

[
βnI[τ∗ ≥ n + 1]V ∗β (Xn)

]
= Ef∗

x

[
βτ∗I[τ∗ = n]G(Xτ∗)

]
+ Ef∗

x

[
βnI[τ∗ ≥ n + 1]V ∗β (Xn)

]
(24)

where, observing that Xτ∗ ∈ S∗ when τ∗ is finite, the second equality is due to the fact
that G and V ∗β coincide on S∗. Next, notice that [τ∗ ≥ n + 1] = [τ∗ ≤ n]c ∈ Fn, and
then

Ef∗

x

[
βnI[τ∗ ≥ n + 1]V ∗β (Xn)

∣∣Fn

]
= βnI[τ∗ ≥ n + 1]V ∗β (Xn)

= βnI[τ∗ ≥ n + 1]

R(Xn, f(Xn)) + β
∑
y∈S

px y(f(Xn)V ∗β (y)


= βnR(Xn, f(Xn))I[τ∗ > n] + I[τ∗ ≥ n + 1]βn+1

∑
y∈S

px y(f(Xn))V ∗β (y)

= Ef∗

x

[
βnR(Xn, An)I[τ∗ > n] + βn+1I[τ∗ ≥ n + 1]V ∗β (Xn+1)

∣∣Fn

]
(25)

where, using that Xn ∈ S \ S∗ on the event [τ∗ ≥ n + 1], the second equality is due to
(21), and the Markov property was used in the last step. Therefore,

Ef∗

x

[
βnI[τ∗ ≥ n + 1]V ∗β (Xn)

]
= Ef∗

x

[
βnR(Xn, f(Xn))I[τ∗ > n] + βn+1I[τ∗ ≥ n + 1]V ∗β (Xn+1)

]
a relation that together with (24) yields that
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Ef∗

x

[
βnI[τ∗ ≥ n]V ∗β (Xn)

]
= Ef∗

x

[
βτ∗I[τ∗ = n]G(Xτ∗)

]
+ Ef∗

x [βnR(Xn, f(Xn))I[τ∗ > n]]

+Ef∗

x

[
βn+1I[τ∗ ≥ n + 1]V ∗β (Xn+1)

]
.

Combining this equality with the induction hypothesis, it follows that (23) holds with
n + 1 instead of n, completing the induction argument. To conclude, take the limit as
n →∞ in (23) to obtain, via the bounded convergence theorem, that for each x ∈ S \S∗

V ∗β (x) = Ef∗

x

[ ∞∑
t=0

βtR(Xt, At)I[τ∗ > t] + βτ∗G(Xτ∗)I[τ∗ < ∞]

]

= Ef∗

x

[
τ∗−1∑
t=0

βtR(Xt, At) + βτ∗G(Xτ∗)I[τ∗ < ∞]

]
= Vβ(x, ; f∗, τ∗);

see (1) and 2). This establishes that the equality (20) also holds when x ∈ S \ S∗. �

P r o o f o f T h e o r e m 4.1. Let (f∗, τ∗) ∈ IF× T be as in (17) and (19).

It will be shown that for each strategy π ∈ P and x ∈ S,

Vβ(x;π, τ∗) ≤ Vβ(x; f∗, τ∗). (26)

To achieve this goal, first notice that if x ∈ S∗ then the event [τ∗ = 0] has probability 1
with respect to Pπ

x and P f∗

x , and in this case both sides of (26) are equal to G(x), by (1).
To verify the above inequality when x does not belong to S∗, notice that the equilibrium
equation (11) and (17) together imply that, for each x ∈ S \ S∗ and a ∈ A(x),

V ∗β (x) ≥ R(x, a) + β
∑
y∈S

px y(a)V ∗β (y), (27)

and then, for every π ∈ P and x ∈ S \ S∗,

V ∗β (x) ≥ Eπ
x

[
R(X0, A0) + βV ∗β (X1)

]
= Eπ

x

[
R(X0, A0)I[τ∗ > 0] + βτ∗G(Xτ∗)I[τ∗ < 1] + I[τ∗ ≥ 1]βV ∗β (X1)

]
,

where the second equality is due to the relation Pπ
x [τ∗ ≥ 1] = 1. From this point,

combining the Markov property with (27), an induction argument along the lines used
in the proof of Lemma 4.2 allows to establish that for each positive integer n and π ∈ P,

V ∗β (x) ≥ Eπ
x

[
n−1∑
t=0

βtR(Xt, At)I[τ∗ > t]

]
+Eπ

x

[
βτ∗G(Xτ∗)I[τ∗ < n]

]
+ Eπ

x

[
I[τ∗ ≥ n]βnV ∗β (Xn)

]
, x ∈ S \ S∗;
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taking the limit as n goes to ∞, via the bounded convergence theorem, it follows from
(1) and (2) that, for each x ∈ S \ S∗

V ∗β (x) ≥ Eπ
x

[ ∞∑
t=0

βtR(Xt, At)I[τ∗ > t]

]
+ Eπ

x

[
βτ∗G(Xτ∗)I[τ∗ < ∞]

]
= Eπ

x

[
τ∗−1∑
t=0

βtR(Xt, At)

]
+ Eπ

x

[
βτ∗G(Xτ∗)I[τ∗ < ∞]

]
= Vβ(x, π, τ∗);

see (1) and (2). This fact and Lemma 4.2 together yield that (26) also holds when
x ∈ S \ S∗.

To complete the proof of the theorem it will be shown that

Vβ(x; f∗, τ) ≥ Vβ(x; f∗, τ∗), τ ∈ T , x ∈ S. (28)

To achieve this goal, consider the reduced model

Ĝ = (S, A, {Â(x)}, R, G, P )

obtained from G by shrinking the action sets A(x) to

Â(x) = {f∗(x)}, x ∈ S,

and restricting the domain of R(·) and each px y(·) to Â(x). For this new model, the
corresponding class P̂ of strategies for player I is the singleton {f∗}, so that the (upper-)
value function associated with Ĝ is given by

V̂ ∗β (x) = inf
τ̃∈T

Vβ(x; f∗, τ̃), x ∈ S, (29)

an expression that is obtained from (4) by replacing P by P̂ = {f∗}. By Theorem 3.1
applied to this reduced game Ĝ, the function V̂ ∗β is characterized as the unique solution
in B(S) of the equilibrium equation

V̂ ∗β (x) = min

G(x),

R(x, f∗(x)) + β
∑
y∈S

px y(f∗(x))V̂ ∗β (y)

 , x ∈ S.

Observe now that (11) and (19) together yield that the above equality is also valid if V̂ ∗β
is replaced by V ∗β , so that

V̂ ∗β (x) = V ∗β (x), x ∈ S.

Combining this equality with (29), it follows that, for each τ ∈ T and x ∈ S,
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Vβ(x; f∗, τ) ≥ inf
τ̃∈T

Vβ(x; f∗, τ̃)

= V̂ ∗β (x)
= V ∗β (x),

and then
Vβ(x; f∗, τ) ≥ Vβ(x; f∗, τ∗),

by Lemma 4.2. This establishes (28), a relation that together with (26) yields that the
pair (f∗, τ∗) is a Nash equilibrium; see Definition 2.1. �

5. APPROXIMATE EQUILIBRIA

The Nash equilibrium (f∗, τ∗) constructed above depends on the exact knowledge of
the value function V ∗β . In this section it will be shown that, using sufficiently close
approximations to V ∗β , it is possible to construct a pair of strategies which is ‘nearly’ a
Nash equilibrium, an idea that is formally introduced below.

Definition 5.1. Let ε > 0 be arbitrary, and let G be the game described in Section 2.
A pair (f̂ , τ̂) ∈ P × T is and ε-Nash equilibrium for G if

Vβ(x;π, τ̂) < Vβ(x; π̂, τ̂) + ε, x ∈ S, π ∈ P,

and
Vβ(x; π̂, τ) > Vβ(x; π̂, τ̂)− ε, x ∈ S, τ ∈ T .

Suppose that the players are willing to move from using their actual strategies only
if the change represents an improvement of at least ε with respect to the current per-
formance. In this case, when the strategies π̂ and τ̂ actually used by the players form
an ε-Nash equilibrium, if one player keeps on using his strategy, the other one will not
have sufficiently strong incentives to change his behavior. The construction of ε-Nash
equilibria is based on the following successive approximations scheme.

Definition 5.2. Let W ∈ B(S) be arbitrary but fixed.

(i) The sequence {Wn} ⊂ B(S) of successive approximations functions is defined as
follows:

W0 := W, and Wn = C[Wn−1], n = 1, 2, 3, . . .

(ii) For each positive integer n, set

S∗n := {x ∈ S |Wn+1 = G(x)},

and define the pair (f∗n, τ∗n) ∈ IF× T by

τ∗n(h) = min{t ≥ 0 |xt ∈ S∗n}, h = (x0, a0, x1, a1, . . .) ∈ IH,
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whereas f∗n ∈ IF is any policy satisfying

R(x, f∗n(x)) + β
∑
y∈S

px y(f∗n(x))Wn(y)

= sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)Wn(y)

 , x ∈ S; (30)

notice that the existence of such a policy f∗n is ensured by Assumption 2.1.

The main contribution of this section is the following result.

Theorem 5.3. Let ε > 0 be fixed and, with the notation in Definition 5.2, let the
positive integer n be such that

ε > 2
[
βn‖C[W0]−W0‖

1− β
+ βn‖C[W0]−W0‖

]
. (31)

In this case, the pair (f∗n, τ∗n) is an ε-Nash equilibrium for the stopping game G.

The proof of this theorem relies on the following auxiliary result.

Lemma 5.4. Let G be the stopping game described in Section 2, and consider the new
game

G̃ = (S, A, {A(x)}x∈S , R̃, G̃, P )

obtained from G by replacing the running and terminal rewards R and G by R̃ ∈ B(IK)
and G̃ ∈ B(S), respectively. For each (π, τ) ∈ P × T let

Ṽβ(x;π, τ) := Eπ
x

[
τ−1∑
t=0

βtR̃(Xt, At) + βτ G̃(Xτ )

]
(32)

be the total expected reward of player I at state x under the pair (π, τ) in this new
game. With this notation, the following assertions (i) and (ii) hold:

(i) For each pair (π, τ) ∈ P × T ,

|Ṽβ(x;π, τ)− Vβ(x;π, τ)| ≤ ‖R̃−R‖
1− β

+ ‖G̃−G‖, x ∈ S.

(ii) Let (f̃ , τ̃) be a Nash equilibrium for the game G̃, and suppose that the real number
ε satisfies that

ε > 2

[
‖R̃−R‖

1− β
+ ‖G̃−G‖

]
. (33)

In this case, the pair (f̃ , τ̃) is an ε-Nash equilibrium for the original game G.
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P r o o f . The first assertion follows combining (1) and (32). As for the second claim,
first notice that when ε satisfies (33), part (i) yields that the inequality

|Ṽβ(x;π, τ)− Vβ(x;π, τ)| < ε

2
(34)

is always valid, and let (f̃ , τ̃) be a Nash equilibrium for the game G̃, that is,

Ṽβ(x;π, τ̃) ≤ Ṽβ(x; π̃, τ̃), x ∈ S, π ∈ P,

and
Ṽβ(x; π̃, τ) ≥ Ṽβ(x; π̃, τ̃), x ∈ S, τ ∈ T .

Combining these two last relations with (34), it follows that

Vβ(x;π, τ̃) < Vβ(x; π̃, τ̃) + ε, x ∈ S, π ∈ P,

and
Vβ(x; π̃, τ) > Vβ(x; π̃, τ̃)− ε, x ∈ S, τ ∈ T ,

and then, by Definition 5.1, the pair (π̃, τ̃) is an ε-Nash equilibrium for the original game
G. �

P r o o f o f T h e o r e m 5.3. Keeping in mind the specifications of the operator C and
the sequence {Wn} as in (6) and Definition 5.2, respectively, notice that (8) yields that

‖Wn+1 −Wn‖ ≤ βn‖W1 −W0‖ = βn‖C[W0]−W0‖, (35)

whereas the equality Wn+1 = C[Wn] can be explicitly written as

Wn+1(x) = min

G(x), sup
a∈A(x)

R(x, a) + β
∑
y∈S

px y(a)Wn(y)

 , x ∈ S. (36)

Now, define the new reward functions Rn ∈ B(IK) and Gn ∈ B(S) by

Rn(x, a) := R(x, a)− [Wn+1(x)−Wn(x)], (x, a) ∈ IK,

Gn(x) := G(x)− [Wn+1(x)−Wn(x)], x ∈ S, (37)

and notice that (35) yields that

‖R−Rn‖ ≤ βn‖C[W0]−W0‖ and ‖G−Gn‖ ≤ βn‖C[W0]−W0‖,

so that the condition (31) yields that

ε > 2
[
‖R−Rn‖

1− β
+ ‖G−Gn‖

]
. (38)

Consider now the new stopping game Gn = (S, A, {A(x)}x∈S , Rn, Gn, P ), and let V ∗n β

be the value function corresponding to Gn. Observing that (39) and (37) together lead
to

Wn(x) = min

Gn(x), sup
a∈A(x)

Rn(x, a) + β
∑
y∈S

px y(a)Wn(y)

 , x ∈ S, (39)
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an application of Theorem 3.1(iii) to the game Gn yields that Wn = V ∗n β . Next, observe
that, (37) shows that the specification of the set S∗n in Definition 5.2 is equivalent to

S∗n = {x ∈ S |Gn(x) = V ∗n β(x)},

so that τ∗n in (5.2) is the first arrival time to the set where the value function and the
terminal reward of the game Gn coincide. On the other hand, (30) and (37) together
with the equality Wn = V ∗n β yield that, for each x ∈ S,

Rn(x, f∗n(x)) + β
∑
y∈S

px y(f∗n(x))V ∗n β(y) = sup
a∈A(x)

Rn(x, a) + β
∑
y∈S

px y(a)V ∗n β(y)

 ,

and then an application of Theorem 4.1 to the game Gn yields that the pair (τ∗n, f∗n) ∈
P × T is a Nash equilibrium for Gn. Combining this fact with (38), an application of
Lemma 5.4 with Gn instead of G̃ yields that the pair (τ∗n, f∗n) is an ε-Nash equilibrium
for the original stopping game G. �

6. AN EXAMPLE: APPROXIMATING A HEDGING PROBLEM

This section presents an example motivated by the optimal hedging problem in math-
ematical finance, which can be formulated as a Markov stopping game of the form
described in the previous sections. The analysis also points out some positive aspects of
this approach to approximate other kind of problems. The financial market is the same
as in Bielecki et al. [3], and is formulated as follows: Let Xt be a finite state Markov
chain with transition matrix Q = [Qx,y] representing external economic factors taking
values in S that are involved in the evolution of the relative prices Z of the risky asset
via the conditional probability distribution ν(x, y, dz), with compact support. Besides
the risky asset, there is a bank account paying a constant interest rate r. The initial
capital of the investor is 1, and his admissible actions belong to some compact set of IR,
whose elements represent the proportion of wealth invested in the risky asset. The rest
of the capital is invested in the bank account. An admissible strategy of the investor is
a sequence of stochastic kernels π = {πt} as described in Section 2, and the value of the
portfolio evolves according to

Vt+1 = Vt[er + πt(Zt+1 − er)].

Given a function h : S → IR, consider the following reward

log Vτ − h(Xτ ),

where τ is a stopping time adapted to the information received from the evolution of the
economic factors and the decisions of the investor. This kind of rewards are motivated
by the optimal hedging problem of American options in finance. Here player I is the
investor, with action space given by A, and player II is the owner of the American
option, with the right to exercise the option at any stopping time τ . In order to work
in a simple setting, the option was written in terms of Xt, but it can be expressed in
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terms of the price of the risky asset. Using the notation in the previous section, define
the upper value function of the game as

V ∗(x) = inf
τ∈T

[
sup
π∈P

Eπ
x [log Vτ − h(Xτ )]

]
, x ∈ S, (40)

where the following are enforced:

(a) For each a ∈ A, er + a(Z − er) > 0, and

(b) For each x, y ∈ S and a ∈ A, the integral
∫

log [er + a(z − er)] ν(x, y, dz) is finite.

Defining the reward function

R(x, a) =
∑
y∈S

Qx,y

∫
log [er + a(z − er)] ν(x, y, dz),

after some calculations involving conditional expectations along the lines in Bielecki et
al. [3], it is possible to write the functional in (40) as

Eπ
x [log Vτ − h(Xτ )] = Eπ

x

[
τ−1∑
t=0

R(Xt, At)− h(Xτ )

]
, x ∈ S,

an expression that, except for the absence of the discount factor, casts with (1). In fact,
for β near to 1, the results on the discounted criterion obtained in this note, can be seen
as an approximation to the above hedging problem.
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lesy 2009, pp. 296–300.
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