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A New Variational Characterization Of Compact

Conformally Flat 4-Manifolds

Faen Wu, Xinnuan Zhao

Abstract. In this paper, we give a new variational characterization of cer-
tain 4-manifolds. More precisely, let R and Ric denote the scalar curvature
and Ricci curvature respectively of a Riemannian metric, we prove that if
(M4, g) is compact and locally conformally flat and g is the critical point
of the functional

F (g) =

∫
M4

(aR2 + b|Ric|2) dvg ,

where
(a, b) ∈ R2 \ L1 ∪ L2

L1 : 3a + b = 0 ; L2 : 6a− b + 1 = 0 ,

then (M4, g) is either scalar flat or a space form.

1 Introduction
Let (Mn, g) be an n-dimensional compact smooth manifold. Denote by M and
G the space of smooth Riemannian metric and the diffeomorphism group of M
respectively. We call a functional F : M→ R Riemannian if F is invariant under
the action of G, i. e. F (ϕ∗g) = F (g) for ϕ ∈ G and g ∈M.

By letting S2(M) denote the bundle of symmetric (0, 2) tensors on Mn, we say
that F has a gradient ∇F at g ∈M if for h ∈ S2(M)

d

dt
F (g + th)|t=0 =

∫
M

〈h,∇F 〉g dvg

In [6], Gursky and Viaclovsky studied the functional

F (g) =

∫
M3

σk(Cg) dvg
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where σk(Cg) is the k-th elementary symmetric function of the eigenvalues of the
Schonten tensor Cg = Ric− 1

2
R
n−1g. They proved that

Theorem 1. [6] Let M be a compact 3-manifold, then a metric g with F2(g) ≥ 0
is critical for F2|M1

if and only if g has constant sectional curvature,where M1 =
{g ∈M|Vol(g) = 1}

This gives a new variational characterization of three-dimensional space forms.
In [7], Hu and Li generalized the above result to the case n ≥ 5. There are
many deep on going results about the 4-manifolds. M. J. Gursky considered in [5]
4-manifolds with harmonic self-dual Weyl tensor and obtained a lower bound of
the L2 norm of the self-dual part of Weyl tensor. S.-Y. A. Chang, M. J. Gursky
and P. Yang obtained in [3] some sufficient geometric conditions for a 4-manifold
to have certain conformal class of metric and consequently to have finite funda-
mental group. C. LeBrun and B. Maskit [9] completely determined compact simply
connected and oriented 4-manifolds up to homomorphism which admit scalar flat,
anti-self-dual Riemannian metrics. There is a rich literature concerning results
related to the variation of curvature functional [1], [4], [10], [11], [12].

Early in 1938, before the higher dimensional Gauss-Bonnet formula were dis-
covered, C. Lanczos [8] studied the functional

φa,b,c(g) =

∫
M4

(
a|Rie|2 + b|Ric|2 + cR2

)
dvg

on 4-manifolds. He found that the functional φ1,−4,1 has a gradient which is iden-
tically zero. In fact this establishes that this integral is a differential invariant of
the manifold M . It is even a topological invariant, namely 32π2χ(M), where χ(M)
the Euler-Poincare characteristic of M , i. e.

32π2χ(M) =

∫
M4

(
|Rie|2 − 4|Ric|2 +R2

)
dvg (1)

Taking this Gauss-Bonnet formula into account, we naturally study the functional

F (g) =

∫
M4

(
aR2

g + b|Ricg|2
)

dvg (2)

We obtain a new variational characterization of 4-manifolds as follow

Theorem 2. Suppose that (M4, g) is compact and locally conformally flat. If g is
a critical point of the functional (2) with any pairs (a, b) in the real plane with two
fixed lines deleted, that is

(a, b) ∈ R2 \ L1 ∪ L2 ; L1 : 3a+ b = 0 ; L2 : 6a− b+ 1 = 0 ,

then (M4, g) is either scalar flat or a space form.
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2 Preliminaries
Recently, the first author [13] studied the variation formulas of a metric by the
moving frame method. He obtained the first and the second variation formulas
for the Riemannian curvature tensor, Ricci tensor and scalar curvature of a metric
in another formalism which should be equivalent to the classical ones. He also
obtained some interesting applications of these formulas. We believe that these
formulas are more convenient in the computations of calculus of variation, especially
in the computations where the second variation of a metric is involved. We follow
the notations as in [13]. Classical variational formulas of metric can be found in [2]
and [12].

Suppose that

g(t) =

n∑
i=1

θ2i (t)

is a variation of a given metric g. For the sake of simplicity, from now on we use
Einstein summation convention; i. e., the repeated indices imply summation. The
indices i, j, k, . . . are from 1 to n unless otherwise stated. Let θij(t) and Ωij(t) are
connection one-forms and curvature two-forms determined respectively by

dθi(t) = θij(t) ∧ θj(t)

Ωij(t) = dθij(t)− θik(t) ∧ θkj(t) = −1

2
Rijkl(t)θk(t) ∧ θl(t)

where d is the exterior differential operator on the manifold. These equations are
known as the structural equation of the Levi-Civita connection of the metric. Rijkl
are the components of the (0, 4) type Riemannian curvature tensor. Assume that

θi(t) = θi + ωit+ o(t) Rijkl(t) = Rijkl + rijklt+ o(t)

where θi = θi(t)|t=0 , ωi = dθi(t)
dt

∣∣∣
t=0

= aijθj , Rijkl = Rijkl(t)|t=0 , rijkl =

dRijkl(t)
dt

∣∣∣
t=0

.

By a crucial lemma proved in [13], there exists an isometry of g(t), such that
aij are symmetric. So we may always assume aij = aji without loss of generality.
With these preparation we have [13]

rijkl = −(aik,jl − ail,jk + ajl,ik − ajk,il +Rijkmaml +Rijmlamk) (3)

where aij,kl is defined by

aij,klθl = daij,k + alj,kθli + ail,kθlj + aij,lθlk

and aij,k is defined by

aij,kθk = daij + akjθki + aikθkj ,

θij = θij(t)|t=0
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aij,k and aij,kl are the first and the second covariant derivatives of aij with respect
to the initial metric g.

Defined the Ricci curvature

Rij(t) =

n∑
k=1

Rikjk(t) = Rij + rijt+ o(t)

and the Scalar curvature

R(t) =

n∑
i=1

Rii(t) = R+ rt+ o(t)

of g(t) respectively the above two formulas, then by making contraction from (3)
one obtain immediately

∂Rij(t)

∂t

∣∣∣
t=0

= rij = −∆aij − akk,ij + aik,kj + akj,ik −Rikakj −Rikjlakl (4)

∂R(t)

∂t

∣∣∣
t=0

= r = 2(aij,ij −∆aii − aijRij) (5)

where ∆aij denotes the Laplacian of aij with respect to the original metric g. For
more details see [13].

3 Proof of the theorem 2
By (4) and (5) we have

d

dt
F (t)

∣∣
t=0

=

∫
M4

{
2
(
aR(t)

dR(t)

dt
+ bRij

dRij(t)

dt

)
+ (aR2 + bR2

ij)amm

}
dvg
∣∣
t=0

=

∫
M4

{
2aR · 2(aij,ij −∆aii − aijRij)

+ 2bRij(−∆aij − akk,ij + aik,kj + akj,ik −Rimamj −Rikjlakl)
+ (aR2 + bR2

ij)amm
}

dvg

=

∫
M4

aij(∇F )ij dvg

where

(∇F )ij = 4aR,ij − 4a∆Rδij − 4aRRij − 2b∆Rij

− 2bRkl,klδij + 2bRik,kj + 2bRkj,ik − 2bRimRmj

− 2bRklRik,jl + (aR2 + bR2
kl)δij .

(6)

Since g is a critical point of the functional (2), we have

(∇F )ij = 0 . (7)

Taking trace of (7) and making use of the following identities which are obtained
from the second Bianchi identity and the Ricci identity respectively

2Rij,i = R,j ,
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2Rij,ij = ∆R,

Rij,kl −Rij,lk = RmjRmikl +RimRmjkl,

Rkj,ik =
1

2
R,ij +RikRkj +RklRiklj ,

then we have

4a∆R− 4 · 4a∆R− 4aR2 − 2b∆R− 4b∆R+ b∆R+ b∆R

− 2bR2
ij − 2bR2

ij + 4(aR2 + bR2
ij) = 0

or after simplifying we arrive at

(3a+ b)∆R = 0 .

By the assumptions of the theorem, 3a + b 6= 0. This gives ∆R = 0. Since M4 is
compact, R must be a constant. In this case, from (7) and (6) we have

− 4aRRij − 2b∆Rij + 2b(RinRnj +RklRiklj)

− 2bRimRmj + 2bRklRiklj + (aR2 + bR2
kl)δij = 0 . (8)

If (M4, g) is locally conformally flat, then

Rijkl =
1

2
(Rikδjl −Rilδjk + δikRjl − δilRjk)− 1

6
R(δikδjl − δilδjk) .

Substituting this expression into (8) we have(
4a+

2

3
b
)
REij + 2b∆Eij − 4bEikEkj + bE2

klδij = 0 (9)

where

Eij = Rij −
1

4
Rδij ,

is the traceless part of the Ricci tensor. If b 6= 0, then

∆Eij = 2EikEkj −
1

b

(
2a+

b

3

)
REij −

1

2
E2
klδij . (10)

Comparing the standard result in [7]

∆Eij = 2EikEkj −
1

3
REij −

1

2
E2
klδij

on a locally conformally flat 4-manifold. We have

−1

b

(
2a+

1

3

)
REij = −1

3
REij

or equivalently
(6a− b+ 1)REij = 0 .
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Again by the assumption of the theorem, 6a− b+ 1 6= 0, then

REij = 0 . (11)

So R = 0 or Eij = 0. In the first case, (M4, g) is scalar flat and in the second
case, considering g is also locally conformally flat we see that (M4, g) has constant
sectional curvature. If b = 0, then a 6= 0 by the assumption. From (9) we still
have REij = 0, and the same conclusion remains true. This completes the proof
of theorem 2.

Remark 1.

1. If 3a+ b = 0 and 6a− b+ 1 = 0, then (a, b) = (− 1
9 ,

1
3 ). It can be checked that

R2
ijkl − 4R2

ij +R2 = −6
(
−1

9
R2 +

1

3
R2
ij

)
that is, the integrand of our functional is a multiple of the integrand of the
Gauss-Bonnet formula. In this case, the variation is identically zero.

2. All points (a, b) considered in our functional fall into four regions. It would
be interesting to study further property of the functional.
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