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Abstract. By applying the Leggett-Williams fixed point theorem in a suitably constructed
cone, we obtain the existence of at least three unbounded positive solutions for a boundary
value problem on the half line. Our result improves and complements some of the work in
the literature.
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1. INTRODUCTION

Recently there has been increasing interest in the existence of positive solutions of
boundary value problems (BVP) for differential equations on the half lines, see the
references [1-7], [9-30]. Fixed point theorems have been useful in establishing the
existence of positive solutions. To apply a fixed point theorem, one needs to define
a Banach space, a cone, and a completely continuous operator.

Liu [19] applied the fixed point theorem of cone expansion and compression of
norm type to establish the existence of single and multiple positive solutions of the

boundary value problem

" (t) + f(t,x(t)) =0, te(0,00),

x(0) =0,
tlim ' (t) = 200 = 0.

! Supported by the Guangdong Higher Education Foundation for High-level talents and
the Natural Science Foundation of Guangdong Province (No. S2011010001900)
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Motivated by [19], in this paper we consider the following non-homogeneous
boundary value problem for the differential equation on the half line whose bound-
ary conditions are of integral form:

le(t)p(a" ()] + f(t,2(t)) =0, € (0,00),
(1.1) 2(0) =[5~ g(s)z(s) ds +a,

Jim = (o(t))a' (t) = b,
Note that here we do not have the boundary condition z’'(c0) = 0 as in [9], [11],
[14], [15], [17], [23], but tlirglo 0~ 1(o(t))x'(t) = b contains z’(co) = 0 and tlirglo () =
Zoo = 0 as special cases. In (1.1) it is assumed that a,b > 0, g: [0,00) — [0,00) is
continuous with [;° g(s)ds < 1, f: (0,00) x [0,00) — [0,00), g: (0,00) — (0,00)
is continuous (f and o may be singular at ¢t = 0), and ¢(z) = |z[P~22 with p > 1,
whose inverse is denoted by ¢! with ¢~!(z) = |#|7" 2z, where 1/p+1/q = 1.

We say z: [0,00) — (0,00) is a positive solution of (1.1) if z € C[0,00),
[op(z')] € L' (0,00) and z satisfies (1.1).

The aim of this paper is to establish existence results for at least three unbounded
positive solutions of (1.1) by applying the Leggett-Williams fixed point theorem. In
our derivation, the cone needed has to be very technically constructed — this is so
since the boundary value problem involves the nonlinear operator [o¢(z’)]" and the
possible solutions are not concave if 9o # 1, hence the cone cannot be constructed
by using the concavity of x or even the Green function. Our result improves and
complements the work of [1-7], [9-30]. The paper is organized as follows. Section 2
contains some preliminary lemmas and the Leggett-Williams fixed point theorem.
The main result is given in Section 3. Finally, in Section 4 we present an example
to illustrate the result obtained.

2. PRELIMINARY RESULTS

In this section, we present some background definitions and some preliminary
lemmas.

Definition 2.1. A function f: (0,00) x R — R is called an S-Carathéodory
function if

(i) for each u € R, ¢ — f(¢,u) is measurable on (0, c0);
(ii) for a.e. t € (0,00), u — f(t,u) is continuous on R;
(iii) for each r > 0, there exists B, € L'(0, c0) satisfying B,.(t) > 0, t € (0,00), and
J5° Br(s)ds < oo such that |u| < r implies

|f(t, (1 +t)u)| < B, (t), ae. t € (0,00).
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Let X be a real Banach space. A nonempty convex closed subset P of X is called a
conein X if (i) az € Pforallxz € Pand a > 0; (ii) x € X and —z € X imply « = 0.
A map ¢: P — [0,00) is a nonnegative continuous concave (convez) functional map
provided v is nonnegative, continuous and satisfies

Yix+ (1 —t)y) = (L) tp(x) + (1 —t)Y(y) forall z,y € P, t €]0,1].

An operator T: X — X is completely continuous if it is continuous and maps
bounded sets into relatively compact sets.

Let ¢ be a nonnegative functional on a cone P of a real Banach space X. We
define the sets

P.={yeP: |yl <r},
P(;a,b) ={y € P: a<(y), |ly| <b}.

Theorem 2.1 [8] (Leggett-Williams Fixed-Point Theorem). Let A< B< D < C
be positive numbers, T: Pc — P¢ a completely continuous operator, and 1 a
nonnegative continuous concave functional on P such that ¥ (y) < ||y|| for ally € Pc.

Suppose that

(E1) {y € P(¢; B, D): ¢(y) > B} # 0 and ¢(Ty) > B for y € P(¢; B, D);
(E2) || Ty| < A for y € P with ||y|| < A;
(E3) ¥(Ty) > B for y € P(y; B,C) with | Ty|| > D.

Then T has at least three fixed points y1, y2 and ys such that ||y1]| < 4, ¥(y2) > B
and |lys|]| > A with ¢¥(y3) < B.

For easy referencing, we list the conditions needed as follows:

(A1) o and g satisfy

/ ( ds<oo/ _1 ds
/Ooog(t)/o ¢*1<Q(S))dsdt<oo

lim Ot ot (%)ap_l( :o flu,1) du) ds = 00

t—o0 o(s

and there exists the limit

1+7(t i 1
m + 7 ), where 7 = 7(t) = / ot (—) ds.
t—oo 141 0 o(s)
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(A2) f: (0,00) x [0,00) — [0,00) is an S-Carathéodory function with f(¢,0) # 0 on
each sub-interval of [0, c0).
(A3) There exist real numbers v < 0 < # and 03 > o1 > 0 such that

f,cx) = c*f(t,x) for ¢ > o9, sufficiently large ¢ and sufficiently small x

and
f(t,c) = Pf(t,1) for 0 < ¢ < o1 and sufficiently large t.

Choose k (> 1) large enough such that

1/k
/0 wil(ﬁ) dS:T(%) < L.

Let

I L | [ 1+t }
=— | ——=)ds| inf .
H= 11k /0 v (9(8)) t€[0,00) 1 4 f(f e~ 1(1/0(s)) ds

Noting that sup Hl'—jr(tt) < 00, it is clear that
t€[0,00)
1/k 1 1+1/k 1
0<p< — 901(—)ds[ 1/k+ / }<—<1.
L+ Jo o(s) L+ [y "o 1 (1/0(s)) ds k
Let the Banach space
0 . o . :L'(t)
(2.1) X = {x € C”[0,00): there exists the limit thm 1——1—13}
be equipped with the norm
t
(2.2) |lz|| = sup [=(0) for x € X.
te[0,00) 1+ 1

Define the cone P in X by
x(t) = 0 on [0,00)
x(t) is non-decreasing on [0, c0),

ooz
min > BT
te[t/kk] 1+ ¢ te[0,00) 1+¢

Define the functional ¢»: P — R by

(2.3) P=(zeX:

oyt
2.4 - LA P.
(2.4) Y(y) L T VE

182



It is easy to see that ¢ is a nonnegative continuous concave functional on P such
that ¥ (y) < ||y|| for all y € P.
Now, to study (1.1), for € X we consider the boundary value problem

le@) ey (1)) + f(t,x(t)) =0, T € (0,00),
(2.5) y(0) = fooo g9(s)y(s)ds + a,
Jim o~ (e(t))y' (1) = b.

Lemma 2.1. Suppose that (Al) and (A2) hold and y is a solution of (2.5) for
x € X. Then y can be expressed as

0= s [ o0 [ (e i [ fm st an) asar

Proof. Since z € X and f is an S-Carathéodory function, we get

| sty as <.

Because y is a solution of BVP (2.5), we get

y(t) = o) (ﬁsﬂ(b) v | N f(uw(U))dU) >0

Integrating gives

26 v -y0+ [ w-l(ﬁs@(m@ /”f(u,x(u»du)ds, 1> 0.

The boundary conditions in (2.5) imply that

w0 =90) [srdst o0 [0 (o0t [ sy an) asaro

It follows that

_ fooo g(t) fot o (o(s)"te(b) + o(s) 7! fSoo f(u,z(u))du) dsdt + a
1— fooo g(s)ds '

Substituting (2.7) into (2.6) completes the proof. O

(2.7)  y(0)
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Lemma 2.2. Suppose that (Al) and (A2) hold and y is a solution of (2.5) for
x € X. Then y'(t) > 0 and y(¢t) > 0 for all t € [0,00), and y(t) is concave with

respect to T on [0, 00), where
¢ 1
-1
T = © ( ) ds
/0 o(s)

Proof. First, we shall prove that y’ is positive on [0, 00). Since y is a solution
of (2.5), (A2) implies that [o(t)¢(y' ()] < 0 for all ¢ € [0,00). Then

p(b) — o(t)e(y'(t)) <0, t€0,00).

Since b > 0, we have o(t)p(y'(t)) = 0. Thus ¢'(¢) > 0 for all ¢ € [0, c0).
Next, we shall prove that y(t) > 0 for ¢ € [0, 00). Since y'(t) > 0 for all ¢t € [0, ),
it suffices to show that y(0) > 0. The boundary conditions in (2.5) imply that

y(0) = / " g(s)y(s) ds +a > y(0) / () ds.

Since [ g(s)ds < 1, we get y(0) > 0. Hence, y(t) > 0 for t € [0, 00).
Finally, we shall prove that y is concave with respect to 7 on [0,00). From (A1)
we have [~ ¢7!(1/0(s)) ds = o0. So 7 € C([0,00),[0,00)) and

@ =" (o) >0
Thus

(2.8) %_%dl_% *1(L>.

a —drat  ar? \o@)

It follows that
% _dy 1

dr — dt p=1(1/0())

0o (2) - o(2)

e0e(§)) = (B e

Py [ot)p(dy/dt)])’
dr?2  ¢/(dy/dr)dr/dt’
Since [o(t)e(y' (1)) <0, ¢'(y) > 0 (y > 0) and dr/dt > 0, we obtain d?y/dr? < 0.

Hence, y(t) is concave with respect to 7 on [0, 00). The proof is complete. O

2 0.

Moreover, since

we get

So
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Define the nonlinear operator T: P — X by

(2.9)
(T2)(t) = T/oog(t) /Otga_l<$<p(b)+ﬁ/:of(u,x(u))du) dsdt
+/0t<pl($go(b) + ﬁs)/ff(u,x(u))du) ds + W

Lemma 2.3. Suppose that (Al) and (A2) hold. Then the following assertions
hold:

(i) For x € P, Tx satisfies

[o(e((T2) ()] + f(t2(8)) =0, t € (0, 0)
(2.10) (T2)(0) = J5° 9(s)(T)(s) ds +a,
Jim o (o(t)(T2)' (6) = b

(ii) Tx € P for each x € P;
(iii) « is a positive solution of BVP (1.1) if and only if  is a solution of the operator
equation x = Tx in P.

Proof. The proofs of (i) and (iii) follow from the definition of T" and are
omitted.

To show (ii), we note from (i) that Tz is a solution of (2.5). Then, Lemma 2.2
implies that (Tx)(t) > 0 and (Tx)'(t) > 0 for all ¢t € [0,00), and (T'z)(t) is concave
with respect to 7 = fot o1 (1/9(5)) ds. To complete the proof of TP C P, it suffices
to prove that for x € P we have Tx € X and

A1 S ¢ 45115

2.11 min Z :
(2.11) tell/kk] 1+t Mte[O,IZo) L+t

First, we shall show that Tx € X for x € P. To begin, we shall prove that

(TR _
t—oo 1+ 7(t)

(2.12)

Note from (2.10) that tlim 0 Yo(t))(Tx)'(t) = b. We consider two cases: b = 0 and
—00

b #0.
Suppose that b = 0. Then, for any £ > 0, there exists H > 0 such that

o7 eW)(T2) ()] < 5. t> H.
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It follows that

(T2) ()] _ (T2)(H)| + [y |(T)(s)| ds
L+7(t) 1+ 7(t)
(T)(H)| & [ue " (1/p(s)) ds
1+ 7(t) 1+ 7(t)
|(T)(H)|
1+ 7(t)

+

2
3
-, t>H
2)

Since lim 7(¢) = oo, we can choose H' > H large enough so that

t—o0

(T2)(1)] _
Tt S22t

which implies that
im (Tz)(t) =0=hb.
t—oo 1 + T(t)

Suppose that b # 0. Since tlim (0™ (o)) (Tz) (t) — b) = 0, it follows that

t 1 /
lim o~ (o(t)) [(Tx)(t) — b “H—=)ds| =0.
i o~ )| e b o7 (o5) o
By a similar argument as above, we get

(T)(t) = b [y =1 (1/0ls)) ds

li =0.
Py 1+7(t)
It follows that
(T)(t)
t—oo 1+ 7(t)

Hence, (2.12) is proved.

Now, knowing from (A1) that sup (14 7(¢))/(1+1) < oo leads to
te(0,00)

(Tz)(t) _ 1+7() (Tx)®) .
vt 14t 1+00) is bounded on [0, 00).

Thus Tx € X.
Next, we shall prove (2.11). We consider two cases. First, suppose (T'z)(t)/(1 + t)
achieves its maximum at ¢ € [0, 00). Noting that

)= [ o (o) as
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and the inverse function of 7 = 7(t) is denoted by ¢t = t(7), one sees that for

te[1/k, K,

(T2)(t) _ (T2)(1/k)

1+t = 14k

(Tz)(t(r(1/k)))
1+ k&

1—7(1/k)+7(0) T(1/k) T(1/k)
(Tz)(t( o) 1=r( /(@) T T4r(a) |

@)

1+k

Noting that 7(1/k) < 1 and (Tx)(t) is concave with respect to 7, we find for ¢ €

[1/k, k],
(@x)(t) _ TR0 (i) + g (T ()
1+t = 1+k
1 7(1/k)
2;;;T;;GﬂT@@ﬁwD)
I LA | 1
-5 ) e 1<@)ds e 0@
1 Uk 1 1+o0 (Tx)(o)
T 14k Jo 7 (@)dsl—fﬂ'(a) 1+o
M a2y L4t (T)(0)
g 1+k/0 v <Q(S))ds{t€1[&£o)1+fgga1(1/9(5))ds l+o
— 0 sup PO

p )
tel0,00) 1t

Next, suppose (T'z)(t)/(1 +t) achieves its supremum at co. Choose ¢’ € [0, 00).

Similarly to the above discussion, we get for ¢ € [1/k, k] that

(Tx)@t) _  (Tz)(o’)
1+t 77 140

Let 0’ — oo, we get for t € [1/k, k] that

T
@D o T,
1+t telomo) L+t

It follows that (2.11) holds. Hence Tz € P. The proof is complete.
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Lemma 2.4 [18]. Let V = {z € X: |zf| <1} (1 > 0). If {z(t)/(1 +¢): z € V}
is equicontinuous on any compact interval of [0,00) and equiconvergent at infinity,
then V is relatively compact on X.

Note that {z(t)/(1+t): € V} is said to be equiconvergent at infinity if and
only if for all € > 0 there exists N = N(g) > 0 such that for all x € V' we have

z(t)  z(t2)

1+t 1+12

}<E, ti,to > N.

Lemma 2.5. T: P — P is completely continuous.

Proof. It is easy to verify that T: P — P is well defined. We shall prove that
T is continuous and maps bounded sets into relatively compact sets.

Let x, — o as n — oo in P, then there exists ro such that sup ||z, || < ro. Set
n=0

Bry(t) = sup f(t,(1+t)u).
Jul€[0,ro]

Then we have
[ 1) = Flsantsias <2 [ Bu(s)as
Therefore, by the Lebesgue dominated convergence theorem, we obtain
/OO flu,zp(u)) du — /OO f(u, z9(u)) du uniformly as n — oo.
t t
So for any ¢ > 0, there exists N > 0 such that

<e, n>N, te]0,00).

‘ /too F (1, 2 () dus - /too fu,z0(u)) du

One sees that, for all n,

o(b) + /OO fu, 2, (uw)) du < (b) + /OOO By, (u)du = 7.

Since ¢!

is uniformly continuous on [—r, r|, we get that there exists 6 > 0 such that
lo~ (w) — ¢ (v)] = 0 aswu,v € [~r,7] and u — v.

Then there exists N > 0 such that
o (w0 + [ st an) <o (w04 [ S| <o

uniformly as n > N.
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Thus, we get for ¢t € [0,00) and n > N that

‘ [(Tzn) — (Tﬂ?o)](t)‘
1+t

e 0 (e 5 [ )
o (550 + o / f(u,z0(w) du)} dsdt

tr [ (e o5 [ s a)

o (et + o [ Hwantw)an) |as

e ds/fg(t)/ot g0+ o [ e a)

o (o) + == [ Fwo(w)) du
0 o ),

0<

dsdt

s e (e o [ et a)

o (50 + o [ Fwauyan)as
1-1m1—f01 ds/mg(t)/ot*fl ﬁ)

| [ s du= [ () du]dsar
e sfl(g(ls)) /:Of(u,xn(u))du—/:of(u,xo(u))du s

g 70 [ Gy

+¢e sup L/tapl(i)ds}a
te[0,00) 1+¢ o(s) .

Tz, — Txol| — 0

It follows that

uniformly as n — oo. So T is continuous.
Let © be any bounded subset of P. First, we shall prove that TC) is bounded.
Since €2 is bounded, there exists r > 0 such that ||z|| < r for all x € Q. Denote

Br(t) = sup f(t7 (1 + t)u)
|u|€[0,r]
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Obviously, we have

o< IO

1+¢
1 (L L u,z(u)) du | ds
=1+t1 r e i g(t)/oso (Q(S) O+ [ fwatw)au) asa
1 1 a
1—|—t sa <@ flu,z(u ))du>ds+1+t1 fo 5 ds

<1+t1 fol / / _1 %)dsdtgp w(b / B,( du)
1+t/ )dsgpl( / B,( udu)+1 fo
< #/ g(t)/0 sf1<g( ))dsdw 1<s0(b)+/oooBr( )dU>

+ sup fo o (Lels) < / B, ( du) —ooa
t€[0,00) 1+t 1—[i g(s)ds

< 00.

So T2 is bounded.
Next, for any N € (0,00) and t1,t5 € [0, N] one has

T T T — (Tz)
Lot (Loits)) | La)lta) = Ta)lty)) | L [1(T2)(t2)
1+t 1+t 1+t L+t 1”2
1 ta ]_ ].
< Tz) (s)ds| + |—— — ‘
1+ ~/t1( )() 1+t 14 ts

y W/{)wg(t)/otwl((i)) <<p(b)+/:o f(u,x(u))du))dsdt
; / o () (v [ sty an)as

| 1\ “
T+t 14+tl1— jo s)ds

Ttl/w < /fux du)ds
1‘1“/‘0_1“‘/ / (G (e w/f iu) ) asa

) (s [ sturtanan)a

+\ \ <
1+t 1+t2 1— [, g(s)ds

1—|—t1 1+t2
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!
S 14t

/: ! (ﬁ) ds|o~! (@(b) + /OOo B (u) dU)
+1‘1_%j§oj 0 /01t sfl(ﬁ dsdtwl(sﬁ(b)Jr/ooo BT(U)dU>

‘1+t1 1+t2‘/ _1 S‘P_l(sﬂ(b)-F/OooBr(u)du)

a
‘1+t1 1+t2}1—f0 s)ds

— 0 uniformly as t; — to

forallz € Q. So {(Tz)(t)/(1+1t): x € Q} is equicontinuous on any compact interval
of [0, 00).

Finally, we shall prove that {(Tz)(t)/(1 +t): = € Q} is equiconvergent at infinity.
One sees that for any € > 0 there exists /N1 . > 0 such that

/:0 fu, z(u)) du — /t:O Flu, 2(u)) du
- /:o flu,z(u) du < (b) + /Ooo B, (s)ds = r,

we have by the assumption on ¢ that

‘gpl<<p(b)+/:o f(u,x(u))du)—apl(ap(b)—f—/tzoo f(u,x(u))du)‘ <e, t1,ta > Ny

It follows that

< g, t17t2>N17€.

Since

(2.13) ot (ap(b) + / f(u, z(w)) du) — ¢ uniformly as t — oo,
t
where c is a constant. We claim that

fo e (o(s)tp(b) + p(s) 7t [° fu, x(u)) du) ds

(2.14)
1+ 7(t)

— ¢ uniformly as t — co.
In fact, for any n > 0, from (2.13) there exists M > 0 such that

‘sol (ga(b) + /too f(u,a:(u))du) e

<n, t>M, ze.
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Therefore,

Jo 2 (ols) (b)) + ()1 [ f(u, x(w)) du)ds
1+ 7(t)
foga L(1/0(s)) [t (0(®) + [° flu,z(u) du) — ] ds — ¢
1+7(t)

—C

3 nfg e 1(1/0(s))ds +c
= 1+ 7(t)

<n-+ t>M, ze.

1+ 7(t)’

Since lim 7(t) = oo, there exists My > M such that

t—o0

Jy e (o(s) " o(b) + o(s) ™" [ f(u, x(u)) du) ds

—c| <2n, t>Mp, xe
1+7(t) o= L

So (2.14) holds.

Now, since sup (1+7(¢))/(1+1) < oo, we get
t€[0,00)

L4 7(t) Jy o~ (05) " (b) + 0(5) ™1 [ f(u, 2(u)) du) ds

1+¢ 1+7(0) — ¢ uniformly as t — oo,

where ¢’ is a constant. It follows that

Jo @7 (o) Lo(b) + ()71 [° f(u, 2(u)) du) ds

(2.15) — ¢ uniformly as t — oo.

141
Note that
(Tz)(tr)  (Txz)(t2)
L+t 1+t
1it1 [1—f01 Tds /qu(t)/twl(%)so / f(u, z(u ))du) dsdt

e (et g [ St an) s ??ﬁv——{
1it2[1—j01 ds/g(t)/otw <L)¢ / f(u, x( ))du>dsdt
+/Otz</? ( /fux >ds+1—f0 }
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:1Jit11—fo°ig(s)ds/owg(t)/ot (Qs)w +—/ flu,z(u )dsdt

S —fooolg(s) ds /OOZ(t)/o . <$ ) Ts)/ f(u’x(u))du> ddt

1 a 1 a
1—|—t11—fooog(s)ds 1+t21—f0 s)ds

et [ e e
_ 1it2/02‘p1<$¢ bH@/S f(u,x(u))du) ds.

In view of (2.15), it is easy to see that there exists N, > 0 such that

‘(Tfﬂ)(tl) _ (T'z)(t2)
1+ 1+t2

+

‘<E, t1,to > N., = € Q.

So {(Tz)(t)/(1+t): x € Q} is equiconvergent at infinity. By Lemma 2.4 we obtain
that {(Tz)(t)/(1+1t): @ € Q} is pre-compact. Hence, T: P — P is completely
continuous. (]

3. UNBOUNDED SOLUTIONS OF BVP (1.1)

In this section we shall establish the existence of at least three unbounded positive
solutions of BVP (1.1).

Choose k > 1 sufficiently large such that 7(1/k) < 1. For positive numbers ey, es,
and C, let Po = {x € P: ||z|| < C} and M, M, L be defined by

(3.1)

(1 — fooo g(s) dS)C — -1
M=C o |
{w<fo fo 2 1(@) dsdt + (1— [;% g(s)ds) sup 1+_T(t)> o )]

te[0,00) 1t
(3.2)
M, = { < (1 _ fOOO g(s) ds)el —a > - w(b)} -1
I a0 0y )+ (1= [ a10))_sup T
and

ke (1 +k)2ea(1— [ g(s)ds) — - -
69 L=l e )]
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Theorem 3.1. Suppose that (A1), (A2) and (A3) hold and there exist constants
e1, es and C such that

O0<er<pu(l+klea<(l+klea<C, LC>Mu(l+k)es >0

(C1) f(t,(1 +t)x) < C/M(1+1t)? fort € [0,00) and z € [0,C];
(C2) f(t,(1+t)z) <er/Mi(1+1t)? fort € [0,00) and = € [0, e1];
(C3) f(t,(1 + t)x) > p(l+k)ex/L(1+1)? for t € [1/k,k] and = € [u(1 + k)ea,
(1 + K)es]
Then, BVP (1.1) has at least three unbounded positive solutions x1, xo and x3
satisfying
1 (1) - Ta(t)
— 1
o T i, T 0 b
and
t t
z3() > eq, z3(t) < u(l+k)es.

min
te[0,00) 1 T 1 te[l/k,k] 1+t

Proof. We will apply Theorem 2.1 with 7', P and 1 defined in (2.9), (2.3) and
(2.4), respectively. To recap, a fixed point of T is a solution of (1.1) (Lemma 2.3),
T: P — P is completely continuous (Lemma 2.5), and ¢ is a nonnegative contin-
uous concave functional on the cone P with ¥(y) < ||y|| for all y € P. Further,
corresponding to Theorem 2.1, we choose

D=(1+k)es, B=u(l+k)es, A=es.

Then 0 < A < B < D < C. We divide the remainder of the proof into four steps.

Step 1. We shall prove that T(Pc) C Pc. Let o € Pc, then |z|| < C, so

x(t)
1+1¢

0< <C, tel0,00).

It follows from (C1) that

x(t)) C
1+t/ = M(1+4t)?

Fta) = £ (60 +1) t € [0,00).
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Then,

Tzx)(t
7o) = sup T2
tefo,00) 1+t

1 1

= sup =
te[0,00) L +t1— [ g(s)ds

ey ot (e + o5 | flwatw)an) asa
e e (G g [ S @) s g 30 7

W /000 g(t) /Ot ot (ﬁ) dsdt ! (ga(b) + /000 fu,z(w)) du)

Y ATy ey

s

N

a
=
1— fo g(s)ds

Sama 0 Gt (0 [ )
1+7(t) 4 > C a
* o S (?0+ [ Srrar®) *5 ~ T e)ds
- 1— fooolg(s) ds /OOO 9(t) /Ot sDil(ﬁ) dsdt 8071(@@) + %)

1+7(t) _4 C a
+ aBLKA ) b — ) —
ooy 1+t 7 (so() M) 1— [ g(s)ds

:C’

where the last equality follows from the definition of M in (3.1). Hence, Tx € Pc.
This shows that T'(Pc) C Pc.

Step 2. We shall show that (E1) of Theorem 2.1 holds, i.e.,

{y € P(¢; B,D): ¥(y) > B}
={y € P(Y; u(1 + k)ea, (1 + k)ez): (y) > p(1 +k)ea} # 0

and Y(Ty) > B = p(1 + k)eg for y € P(y; (1 + k)ea, (1 + k)ea).
To prove that {y € P(¢; u(1+k)es, (1+k)e2): ¥(y) > u(1+k)ea} # 0, we choose

A > 0 and let )
A=K XNt —1/k)", te[0,1/k],
Yo(t) =
A, t>1/k.
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It is easy to see that

min = —
teli/k,k] 1+t 14k

and
yo(t) kX
sup .
tE[O OO) ]. + t ]. + If

Since pk < 1, we get r[Ill}gk yo(t)/(1+1t) = pu sup yo(t)/(1+1t). It is easy to see
te

k] te[0,00)

that yo € {y € P(y; B,D): ¢(y) > B} if A € (u(1 + k)?e2, (1 + k)?/k)ez).

Next, let y € P(¢; u(1+k)es, (1+k)ez), then ¢ (y) > u(l4+k)ez and ||y|| < (1+k)es

So
y(t)

t
min  —= > u(l +k)es,  sup y(t)

> —= < (1+ke
te[l/kk] 1 +1 teo,00) L1 ( Jez

Hence,

u(1+ k)es < f’(—j)t < (1+k)es, te[1/k,k].

It follows from (C3) that

) = 1 (1. 0+ 020 ) = SEER ek,

We find

(Ty)(t) 1 ( y)(b

Ty) = mi LI
VTy) =, min S TvE

1

[ Gy [ s g

- o Lga(b)+ RO f(u y(u ))du) ds +
1/k

a

ey

WV

1+k|

-+

1+k|
:B,

\

—
-+

ol

— = —
~ ~ ~
> > >

\6\

-
—~

[

2|~

SN—
~_ ~—

o,

»

\6\

-
/‘\/—\,—\

w(k —1)es a
o)+ 1= )+1_f0wg(s)ds]

-l ds/wgu)/b—l(@@ [ ) au) asa

(14 ke a
o(b) + ~/1/k L1+ u)22 dU) + _1 — fooo g(s)ds

where the last equality follows from the definition of L in (3.3). This completes the

proof of step 2.
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Step 3. We shall prove that (E2) of Theorem 2.1 holds, i.e., | Ty| < A for y € P
with ||y|| < A. Let y € P with |ly|| < A = ey, then

t
sup & < eq.
te[0,00) 1 +1

It follows from (C2) that

) = £ (1.0 + 058 < gt ve o.0o)
We find
_ TIy)®)
1Tyl = T

e [1_%“—”))(1 [ | = (590 + o5 | rwpw)an) asa

N 1;“ ¢<% (b) + ﬁ/wfm,y(u))du) ds+ s _fooo“g(s)ds}

o A / t w‘l((—)dsdw oo+ [ st an)
" %/ et (o [atestpan) ¢ i
SRy reT / / () 057 (o0 | s )
+ sup 3 :

t€[0,00) 1+t SO (4'0() o Mi(1+wu 1—f0 g(s)ds
t
-1
2
o (

o
1 > 1
REND w00 [ (G
),

~

)
—) dsd(t) !
1+7(¢
+ sup ——

t€[0,00) 1+1¢
= €1,

(b0 +53) T @

where the last equality follows from the definition of M; in (3.2). Thus, ||Ty| < e1
for y € P with |ly|| < e;. This completes the proof of step 3.

Step 4. We shall show that (E3) of Theorem 2.1 holds, i.e., ¥(Ty) > B for
y € P(y; B,C) with |[Ty| > D. Let y € P(y); B,C) = P(¢; u(1 + k)ea, C) with
ITy|| > D = (1 + k)es, then
y(t)

Ty)(t
sup (Ty)(®) > (1+4+k)ea and |y||= sup —=<C
tefo,0) LH1 tef0,00) L+ 1
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Noting that Ty € P, we get

Ty — T o T

= min > > u(l+k)es = B.
te[l/kk] 1+t MtE[OEO) 1+4+1¢ a Je2

This completes the proof of step 4.

We have shown that all the conditions of Theorem 2.1 are satisfied. Hence, by
Theorem 2.1 the operator T has three fixed points z1, z2 and x3 € P such that

HJ?lH < A, 1&(332) > B, H$3H > A with w($3) < B,

i.e., x1, ro and x3 satisfy

x1(¢) . wa(t)
3.4 L e, 2 s (1 +k
(34) relomey THE 7 aeliji T+ ¢ pL+ ez
and
t t
(3.5) z3(t) 20 1 4 ke,

S > eq, min
tefoeey L+t T teli/kag L+t
Hence, BVP (1.1) has at least three positive solutions 1, z2 and z3 satisfying (3.4)
and (3.5).

Finally, we shall show that the solutions x;, i = 1,2,3 are unbounded. If x;,
i € {1,2,3} is bounded, then in view of (A3) there exists r > 0 such that
(3.6) 0<a;%(t) <r, t€[0,00).

Moreover, by the assumption on ¢ we have

1
3.7 — = (27 (t) — ¢ 1 (0) < M,z (t).
(37) ) (1)~ 7' (0) < M,
We claim that there exists o9 > 0 such that x;(0¢) > sup «;(t)/(1+t). In fact,
t€[0,00)
if ;(t) < sup z;(s)/(1+ s) for all ¢t € [0,00), we get

s€[0,00)

< Tilt) _ SUPsefo.00) zi(s)/(L +s)
S+t 1+t '

Taking limit then gives
zi(t) _
im —= =
t—oo 14 ¢
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Hence, there exists og > 0 such that

8

it i
w80 _ 5i(o0).
te0,00) L+t 1400

It follows that

~—

€T (t
3.8 z;(0g) = sup
(3.8) (00) I

and our claim is justified.

Now, choose ¢ > 0 sufficiently large such that c||z;| > o2 and 1 < o1. By virtue
of (3.8), the condition c||z;|| > o2 leads to cz;(0g) > o2. Since x; is nondecreasing,
we have
(3.9) cxi(u) = o9, u = oy.

Using (A3) and (3.9), we get for sufficiently large ¢ > oy,
)= e [t [0 (et + = [ st an) dsar

' 1—[5 g(s)ds Jo 0 o(s) o(s) Js o

¢

a

(L L - w,z;(u))du | ds + ————
/o“" @<s)“"“’”@<s)/s flus il ”d)d T e

Thus,

(3.10) #@(ﬂ) > w—l(ca—ﬁ)/; w—l(i)gp—l( "t 1)du) ds.
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Applying (3.6) and (3.7) to (3.10), we find

(3.11) p=e/ap > gl M, >

> (e )/U: w1($)¢1</:0 f(u,l)dU> ds.

Let t — oo in (3.11), it follows from (A1) that r~(=®)/®M, > oo, a contradiction.
Hence, z1, 22 and x3 are unbounded. The proof is complete. O

4. AN EXAMPLE

To illustrate the usefulness of our main result, we present an example that our re-
sult can readily apply, whereas the known results in the literature are not applicable.

Example 4.1. Consider the boundary value problem

[/ OF] + f(t.2() =0, te€(0,00),
(4.1) z(0) =3 [y e *x(s)ds + 2,
tli>nolo 2 (t) =1,

where
t 1

x
and fj is defined by

13, z € [0, 10],
13+ (o 10)2 (o0 (1009600° — 1) + (51 x 10 — 2)° 1) 13
100 — 10 ’
x € [10,100],
= ¢ 19(1009600° — 1 51 x 1014 —2)3 —1
fo(z) 99 ( )+2( ) , @ €[100,102 x 10*],
10110096003 — 1 51 x 104 —2)3 — 1
59 ( ) +2( ) + 1 —102 x 104,
x> 102 x 1014

Corresponding to BVP (1.1), we have a = 2, b = 1, ¢(z) = 23, o(t) = 1 and
g(t) = 27", Then, ¢~ () = 2% and T(t) = t.
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Choose k = 100, e; = 10, ez = 10000 and C = 102 x 10'*. One finds

1M . 1+t 1
F=1%% ), 7 (@) ds ol )7 +T(t) ~ 10100’

_ (1- fooo ds)C' —a _ -
M= C[“"(fo N+ (- 5,79 ds) (i waa) )

_ 102 x 10

~ (51 x 1014 —2)3 — 1’

B (1—[;"g(s)ds)er —a B -t
M=y (fo DAt (17 9() &3] s (1+7(0)/0 ) 0]

5

-t

(1+k) ea(1 —fo (s)ds) — o
L= k—1 €9 - b
R (v T e M)
9900 1
~ 101 10096005 — 1

Thus, we have
D = (1+k)ez =1010000, B = u(l+ k)ex =100, A=e; =10,

and
O<er<p(l+klea<(l+k)ea<C, LC>Mpu(l+k)ex >0.
On the other hand, one sees that

t

f(ta CJ)) = 1039(1 + t) (]_ + t)QfO( )
t 1 ¢
f(t,c) = 1039(1 +t)3 + (1 _|_t)2f0(1 —l—t)7
[t (1 +t)z) = 039(1t+t) + (1—it)2f0(x)’
t
TN = g +t)2f0(1+t)
B ¢ 1 5x512x10'8
T 10%9(1 4 )3 T aroe 2 '

It is easy to check that conditions (A1)—(A3) and (C1)—(C3) are satisfied. Indeed,

we have
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(Al) ¢ and g satisfy

/ ( o(s) ds<oo / _1 ds
Fe e
i [ ) ([ san)a=co

1 t
sup L() =1 < o0;
tefo,00) 1+t
(A2) f: (0,00) x [0,00) — [0,00) is an S-Carathéodory function with f(¢,0) # 0 on
each sub-interval of [0, c0);

and

(A3) since f(¢,x) is increasing in z, there exist real numbers a < 0 < 3 and o9 >
o1 > 0 such that

flt,cx) = c*f(t,x) for ¢ > o9, sufficiently large ¢ and sufficiently small x,

and
ft,e) > P f(t,1) for 0 < ¢ < oy and sufficiently large t;
(C1) f(t,(1+t)x) < (1+¢)72((51x10*—2)3—1) for t € (0,00) and = € [0, 102x 104];
(C2) f(t,(1+t)z) <26(1+1t)~2 for t € (0,00) and x € [0, 10];
(C3) f(t,(1 + t)x) > (1 +t)~2 - 18(1009600° — 1) for ¢ € [0.01,100] and = €

[100, 1010000].

Hence, it follows from Theorem 3.1 that BVP (4.1) has at least three unbounded
positive solutions x1, x5 and x3 such that

z1(t) xo(t)
S min
te[0,00) L T t€]0.01,100) 1 + ¢
and . t
S z3(t) > 10, mi z3() < 100.
te[0,00) L+ [0.01,100] 1 + ¢

Remark 4.1. We note that Example 4.1 cannot be covered by the theorems in
[5], [10], [14], [15], [17-21], [23-26], [29] since the nonlinear operator [z']*> appears in
(4.1), the first boundary condition in (4.1) is of integral type and both the conditions
in (4.1) are non-homogeneous boundary conditions while 2/(c0) = 0 is contained in
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[5], [10], [14], [15], [17], [18], [20], [21], [23-26], [29], (0) = 0 and 2'(c0) = Zee = 0
in [19]. Further, it is evident from Example 4.1 that
(i) in (4.1),if f(t,z) = g(t)+ (1 + )2 fo(x) and g(t) is nonnegative and sufficiently
small, then there is a large number of functions fy that satisfy the conditions
of Theorem 3.1;
(ii) the conditions of Theorem 3.1 are easy to check;
(iii) provided the differential equation in (4.1) is replaced by

S OF] + 5a) =0, te©,00),

in this case g(t) = 1/t is singular at ¢ = 0. The existence result can be estab-
lished similarly.

Acknowledgment. The authors would like to thank the referees for their sug-
gestions which helped to improve the paper.
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