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Abstract. We establish two new norm convergence theorems for Henstock-Kurzweil inte-
grals. In particular, we provide a unified approach for extending several results of R. P. Boas
and P. Heywood from one-dimensional to multidimensional trigonometric series.
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1. INTRODUCTION

o0
A classical result of Boas [2] asserts that if > by is an absolutely convergent series
k=1
of real numbers, then the improper Riemann integral

e 1 oo
lim - b sin kt dt
5—>O+/6 t ; k

exists. Since then, many authors have presented different proofs and generalisations
of this result; see, for example, [3], [18], [28].

In 1991, Méricz [28] proved that if ) b; is an absolutely convergent double
(J,k)EN?
series of real numbers, then the improper Riemann integral

1 lim /
( ) (,6)—(0,0) [e,m]

(e,8)€(0,m)*

bj .k sin jssin kt

SR (s, )

x[6:7] (5, kyenz

exists. The proof of (1) depends on the following multiplicative property of the
two-dimensional improper Riemann integral: the function (z,y) — sinzsiny/zy is

1



a multiplier for this type of improper Riemann integral; see [28, p. 462, (3.20)] for de-
tails. Unfortunately, this crucial property does not hold for this kind of conditionally
convergent integrals (see Example 2.11 below).

Our approach is based on the generalized Riemann integral defined by Henstock [9]
and Kurzweil [13] nearly fifty years ago. This integral, which is now commonly
known as the Henstock-Kurzweil integral, is equivalent to the classical Perron integral
(cf. [31]). While this is a classical integral studied by various authors; consult, for
instance [4], [5], [7], [10], [12], [14], [15], [16], [17], [20], [21], [22], [25], [31], [32], [33],
[34], [35], applications to multiple Fourier series are largely unexplored.

In this paper we prove two new norm convergence theorems for the Henstock-
Kurzweil integral (see Theorems 3.1 and 6.3 below); in particular, we sharpen as-
sertion (1) and provide a unified approach for extending several improper Riemann
integrability theorems of Boas [2], [3], Heywood [11] and Médricz [28], [29].

The paper is organized as follows. In Section 2 we state a number of useful results
concerning the Henstock-Kurzweil integral, with proofs where necessary. In Section 3
we prove Theorems 3.1 and 3.2. In Section 4 we apply Theorems 3.1, 3.2 and 4.2
to sharpen several integrability theorems of Boas [3], Heywood [11] and Mdricz [28]
concerning the single or double Fourier series. The proof of Theorem 4.2 is given in
Section 5. In Section 6 we employ summation by parts and the generalized Dirich-
let test to prove another new convergence theorem for Henstock-Kurzweil integrals
(Theorem 6.3). In Section 7 we use various multiple summation by parts formulas
to generalize a result of Boas [2, Theorem 4]; see Theorems 7.1 and 7.4 for details.
Consequently, we deduce a necessary and sufficient condition for a multiple sine se-
ries to be Henstock-Kurzweil integrable on [—n, n]™ (Theorem 8.1). Finally, we use
a double sine series (Example 8.2) to show that Theorem 6.3 is, in some sense, sharp.

2. PRELIMINARIES

Let m > 1 be an integer and let R™ denote the m-dimensional Euclidean space
equipped with the maximum norm ||-||. Points (z1,...,2Zm), (¥1,---,Ym),... are
denoted by their corresponding bold letters x,y,... For € R™ and r > 0, set
B(z,r) :={y € R™: LK |z — yk| < r}. An interval in R™ is a set of the form

m
[w,v] := ][ [ui,v:], where u;,v; € R and u; < v; for ¢ = 1,...,m. Unless stated
i=1

otherwise, [a, b] := [] [a, b;] denotes a fixed interval and Z,,([a, b]) the family of all

=3

subintervals of [a, b].

A partial partition of [a,b] is a finite collection {(I1,t1),...,(Ip,tp)}, where
I,...,I, are nonoverlapping subintervals of [a,b] and ¢; € [; for i = 1,...,p. If
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d is a gauge (i.e. a positive function) on a set Z C [a,b], we say that a partial
partition {(I1,t1),...,(Ip,tp)} of [a,b] is d-fine whenever t; € Z and t; € I; C
B(t;,d(t;)) N[a,b]l fori=1,...,p.

Lemma 2.1 ([14, Lemma 6.2.6]). If§ is a gauge on [a, b, then there exists a d-fine
P
partial partition {(I1,t1),..., (I, tp)} of [a,b] with |J I; = [a, b].
=1

(2

Let p,,, denote the Lebesgue measure on R™.

Definition 2.2. A function f: [a,b] — R is said to be Henstock-Kurzweil in-
tegrable on [a, b] if there exists A € R with the following property: for each € > 0
there exists a gauge d on [a, b] such that

(2) Zf(ti)um(fi) —Al<e

P
for each o-fine partial partition {(I1,%1),...,(p,tp)} of [a,b] with |J I, = [a,b)].
i=1

Here the unique number A is called the Henstock-Kurzweil integral of f over [a, b],
and we write A as (HK) f[a p /(@) de.

Unless stated otherwise, all functions in this paper are real-valued. The collection
of all functions that are Henstock-Kurzweil integrable on [a, b] will be denoted by
HK][a,b]. The following properties are known for the Henstock-Kurzweil integral;
see [14] for the proofs, where the term “Kurzweil-Henstock integral” is used to de-
scribe this integral. The term “Generalized Riemann integral” is used to describe
this integral in [10].

Theorem 2.3.

(i) HK]a, b is a linear space.

(ii) If f € HK[a,b], then f € HK(J) for each J € Z,,(]a, b]).

(iii) If f € HK[a, b], then the interval function J — (HK) [, f(x) dx is additive on
Zn([a,b]). This interval function is known as the indefinite Henstock-Kurzweil
integral of f.

(iv) If f € HK[a, b], then for each € > 0 there exists n > 0 such that

<e

‘(HK) /J f(x)dz

whenever J € I, ([a, b]) with pm(J) <n.



(v) If f € L'[a,b], then f € HK][a, b] and

(@) dpm(®) = (HK) [ f(z)dz.
[a.b] [a.b)

(vi) If f,|f| € HK][a, b], then f € L'[a,b].

For the rest of this paper the space HK[a, b] will be equipped with the seminorm

| - [l tK[a,b], Where

3) T sup{\mK) [ f@)aals ez, (an}.

We have the following useful remark concerning || - ||k{a,b)-

Remark 2.4. |- |lgKia,b) is equivalent to the seminorm || - |lak|a,b), Where

(1) oy =sup{ (15 [ je)a): @€ fa.bl).

[a,x]

It is known that the space HK[a, b] is not complete; see, for example, [25]. Thus
it is necessary to obtain a simple characterisation of those additive interval functions
which are indefinite Henstock-Kurzweil integrals. Let F' be an interval function on
Zm(la,b]) and X an arbitrary subset of [a, b]. We set

Vi F(X) := inf sup > IFW),
(I,t)eP

where 0 is a gauge on X and P is a d-fine partial partition of [a,b] with {¢:
(I,t) e P} C X.

Theorem 2.5 ([6, Proposition 3.3]). Let F: Z,,([a,b]) — R. Then VukF is

a metric outer measure.

Let F' be given as in Theorem 2.5. We say that Vg F' is absolutely continuous
with respect to pim,, in symbol Vux F < i, if VakF(Z) = 0 whenever Z C [a, b]
and p,(Z) = 0. The next theorem gives a simple characterisation of indefinite

Henstock-Kurzweil integrals.

Theorem 2.6 ([15, Theorem 4.3]). Let F': Z,,([a, b]) — R be an additive interval
function. Then the following statements are equivalent:
(i) There exists f € HK[a, b] such that F is the indefinite Henstock-Kurzweil inte-
gral of f.
(if) VakF < tim.-



We are now ready to state and prove a useful Hake theorem for Henstock-Kurzweil
integrals.

Theorem 2.7. Let f: [a,b] — R, let F: T,,([a,b]) — R be an additive interval
function, and let X C [a,b] be a closed set such that Vux F(X) = 0. If for each
I € I,([a, b)) satisfying IN X =0, f € HK(I) and (HK) [, f(x)dx = F(I), then
f € HK[a, b] and F is the indefinite Henstock-Kurzweil integral of f.

Proof. In view of Theorem 2.6, it suffices to prove that VuxF < . Let
Z C la,b] be such that u,,(Z) = 0 and let Jy, Ja,... be nonoverlapping intervals
oo

such that [a,b] \ X = |J Jk. Then the assumption Vg F(X) = 0, Theorems 2.5
k=1
and 2.6 yield the desired result:

0< Vi F(Z) < Vax F(X N Z) + Y VaxF(Jy N Z) = 0.
k=1

The following theorem is a special case of Theorem 2.7.

Theorem 2.8. Let f: [a,b] — R and suppose that f € HK|c, d] for every [c,d] €
Im(la, b)) disjoint from {a}. Then f € HK]a,b] if and only if

limy (HK) [ p@yae
z€a,b] [,b]
exists. In either case,

lim (HK) f(t)dt = (HK) f(t)dt.
oC(ab] [.b] [a.b]

Following the proof of [17, Theorem 3.2], we obtain the following result.

Theorem 2.9. Let f € HKJa,b] and let v be a finite signed Borel measure on
[a,b) := [][a:, bi). Then the function x — f(x)v(|a,x)) belongs to HK]a, b],

i=1

(5) (HK) (@)v([a, z)) dz = /

[a,b] la,b)

o L it} o)
and

(6) ‘(HK) f@)v((a,z)) de| < | fllaxia.pvI([a; b))-

[a,b]




The next theorem is an easy consequence of Theorem 2.9.

Theorem 2.10. Let f € HK]a,b] and suppose that for each i € {1,...,m}
the function g;: [a;,b;] — R is non-negative and non-decreasing on |a;,b;]. Then

m
f & g; € HK[a, b] and there exists € € |a, b] such that
i=1

(HK ng dt—ng {HK [g’b]f(t)dt}.

ab]

The following simple example shows that higher-dimensional improper Riemann
integrals are not powerful enough for our applications; in particular, Theorem 2.9
fails to hold for such integrals.

Example 2.11. We define a function u: [0,7]*> — R by setting

sin 4x T
if (x,y) € |=,n| x (0,7,
A Sl OB P RO

0 otherwise.

Then the improper Riemann integral

lim / u(x,y)d(z,
€210 St (z,y) d(z,y)
(,6)€(0,x)2

exists. On the other hand, since the map x — sinz/x is continuous and strictly de-
creasing on [/2, 1), we have f /2 (sinxsindz/x)dz > 0. Consequently, the improper
Riemann integral

sin x sin y
—d

u(z, y) (z,y)

lim /
(,6)=(0,0) Je,x]x[6,7]
(e,8)€(0,m)*

does not exist.

3. A CONVERGENCE THEOREM FOR HENSTOCK-KURZWEIL INTEGRALS

Let Nog :=NU {0} and let Nj* := >< No. Given two m-tuples p, g € Ni*, we write

p < q if and only if p; < ¢; for i = 1 ,m. Moreover, for any multiple sequence
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{uk}renyy in a normed space (X, || - || ) we set

q1 dm
Z (e Z Z Uk (p7q€N6n)7

p<k<q k1=p1 km=pm

where an empty sum is taken to be zero. We write W/ = {1,....m}\ W (W C
{1,...,m}), and the symbol C will be used for proper inclusion.
We are now ready to state and prove the main result of this section.

Theorem 3.1. Let {Ck}keN()n be a multiple sequence of real numbers, let
{@ij}520 C L'as,bi] (i =1,...,m) and let {Cp,};2, be a sequence of real numbers.
If

(7) max } Z |cx| H ||50j,kj”HK[aJ,bJ]

rc{,...
c{1,....m keNm jEr”

< [T lleir

iel

L ai+(bi—as)/(n+1),0] < O (n €N),

then there exists ¢ € HK[a, b] such that

=0.
HK[a,b]

Y a@ein -

0<k<n i=1

(8) lim

min{ni,...,nm, }—o0

Proof. By virtue of (7) and the completeness of L'[a, b], there exists a function
¢: [a,b] — R such that

(9) @€ L'Yz,b] and - ©(t) dpim (t) = ®([x,b]) for every x € H(ai,bi),

where

m
o(0)i= 3~ e [ T[ s (t) dun(®) (1 € Zn(la. b))
keNm =1
the multiple series on the right being absolutely convergent.
We shall next prove that ¢ € HK[a, b] and ® is the indefinite Henstock-Kurzweil
integral of ¢. In view of assertion (9), Theorems 2.3 (v), 2.7, and 2.5, it suffices to
prove that

(10) VHK(I)(ZF,n) =0 (716 N, T' C {1,...,m}),



where

[a,b]\ (a,b] = U U 20 n;
neNTc{l,...,m}
{ax} if kel

m
ZF,n = H Zl",n,k and ZF,n,k =

b, —a
k=1 [ak"" -

1k,bk if keT.

n —+

Proofof (10). Letn € N andlet I' C {1,...,m}. Given € > 0 we use (7) to
select a positive integer K = K (', n,¢) such that

(11)  max > el TT lsms lagcga, o, T Il

T keNg jET! iel
ki >K

9
Liai+(bi—a;)/(n+1),b:] < 5

Using uniform continuity of the indefinite Henstock-Kurzweil integral (cf. Theo-
rem 2.3 (iv)), we choose n(I',n) > 0 such that

12 max max su g
(12) JET 0<k; <K [u,v]g[l(;‘,bj] 405 i

0<v—u<n(T,n)

€ -1 -
‘(1 ) 1 N PR
< 2( +0<k£(1?,(...,K) |ck| ( +i€11||%,n|L1[ i+ (bi—as)/( +1),b1])

Define a gauge or () on Zr , by letting or ,(x) := n(I',n) and select any or -
fine partial partition Pr,, = {(J1,t1), ..., (Jq,tq)} of [@,b] with {t1,...,tq} C Zpn.
We claim that

(13) dooeU)<e

(I,t)€Pr n

Clearly, the obvious equality card(F ,) = 1, (11), and (12) imply that

> jeU)<e.

(I,t)EPy,»,

On the other hand, suppose that I' C {1,...,m} is non-empty. In this case,

(14) oM< D el > Ser)Skr (1),

(I,t)ePr keNg (I,t)ePr
where Sk.w (I) := ] |fI @ik, dur| (W C{1,...,m}).
iew
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According to our choice of Pr ., fcard(r) ( IHLNT] I{) = 0 whenever (H I; :1:)
i€l = i=1

m
and (H I, y) are two distinct elements of Pr,,. Hence
i=1

> Ser() <[] ik,

(I,t)EPr ., iel

L' a;+(bi—ai)/(n+1),b;] (k € Nan)

and so

15 > Ser)Skr ()

(I,t)€Pr n

< T lesors lexiay o0 [T 1.k,

jer’ i€l

Liait(i—a)/(n+1),6:) (K €NG).

Combining (14), (15), (12), and (11) yields (13):

Y o)

(I,t)ePr,,

< S el [T llesr, lexiay o [ i,

keNg® je’ =
0<k; <K Vie{l,....,m}

m
+Z Z |ck| H 03, 1K a;,6;1 H |03,k

=1 keNg" Jjer’ iel
ki>K

Ltai+(bi—ai)/(n+1),bi]

L'a;+(bi—ai)/(n+1),b;] < E-

Since ¢ > 0 is arbitrary, (10) is proved. It is now clear that (7) implies (8). The
proof is complete. O

The next theorem, together with Theorem 3.1, will be used to prove Theorem 4.3.

Theorem 3.2. If the following conditions are satisfied:

(i) {cn}neny is a multiple sequence of non-negative numbers;
(if) for eachi € {1,...,m} the function h;: [a;,b;] — R is positive and decreasing
on (ai, bil, {@in}ito U {pinhi}nio C L'[ai,bi] and

b; z;
(16) inf min{/ Yinhidpr, min / Vin dul} = 0;
a; (€23

neNg :Ci,E[(L,;,b,‘,]

(iii) there exists ¢ € HK[a, b] such that

Y aQeik —v

o<k<n  i=1

lim

min{ny,...,ny, }—o0

HKJa,b]



(iv) ¢ @ h; € HK]a, b], then the multiple series
i=1

> CkH/ @ik, hi dp
keNg
converges.

Proof. In view of (i), (16), and (iv), it suffices to prove that

m

(17) sup CkH/ Gik;hi dpa < 4mHS¢’®hi

NeNT o< N i=1 i=1

HK|a,b]

Let N € N{* be arbitrary and let us write

W(\ k,y)= Hh /y sojkhd/nH/ Pk A
J

lel”
(keNg, y € (a,bl, D C{1,....m}).

We will first prove that

m
(18) dim [Ty > > aW@ky)
ye(ab] i=1 rc{1,..,m}0<k<N
= CkH/ ik b At
0<k<N
To prove (18) we consider two cases.
Case 1: T'={1,...,m}. A simple computation gives
Jim [ ] halyi) > aW(@ ky) = CkH/ @ik hi dpa .
ye(ab] i=1 0<k<N 0<k<N =1

Case 2: T' C {1,...,m}. In this case, we deduce from (ii) that

g}il?llz th(yz) Z CkW(kaay)

y€(a,b] i=1 0<k<N
= Jm, CkH/ %khdﬂln/ ®ik: hi dpa
y€(a,b] 0OKkLN  jel ier’

(for some 0; € [a;,y;] (i €T"))
=0.
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Next, it is easy to see that

(19) inf > W, ky) =0

keN‘ln
O rc{1,...,m}

because k € N, (ii), and (16) imply

Z W(kaay) - Z H/ Pi.k; dus H / Pk, dpg

rc{1,...,m} IC{l,...,m} j€r " ¥ ler’

(for some v; € [y;,b;] (j=1,...,m))

= H/ Soj,kj d‘Ll,l 2 0.
i=17%

Finally, since (i), (ii), (18), and (19) hold, it remains to prove that

m

sup Hh Yi) Z Ck Z W, k,y) <4™ go®hi
i=1

y&(a,b] keNZ  TC{1,..,m}

HK|a,b]

Let y € (a, b] be arbitrary. Clearly, it is enough to consider the following cases.

Case a: T'={1,...,m}. From (iii), (ii), and (iv) we get

m m

[Triw) > ckW(F,k,y)‘ <2me®hi

i=1 kenNm i=1

(20)

HKJa,b] .

Case §: T' = (). We use (iii), (ii), and Theorem 2.10 to obtain (20):

m

[Triwo > CkW(kaay)‘ = ‘( /[g a? ﬁ ‘

i=1 keNg Jj=1

(for some &; € [ai,ys] (i=1,...,m))
v @ hi

<]
i=1

HK[a,b].

Case v: T' C {1,...,m} is nonempty. Using (iii), (6), and (ii), we get (20), too.

The proof is complete.

O
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4. APPLICATIONS TO MULTIPLE FOURIER SERIES

A function f: R™ — R is said to be in L!(T™) if f is 2n-periodic in each variable,
and f € L'([-x, ™). The following theorem is a generalization of [28, Theorem 4]
and [11, Theorem 3] from single to multiple Fourier series.

m
Theorem 4.1. Let g € L*(T™) and assume that g(t) ~ > by [] sink;t;. If
keNm  i=1

m
S bw| [T k7" converges for some a € [0, 1]™, then there exists go € HK([0, 7]™)
keNm =1

such that
' sin k t;

lim Sup Z b H dt; — (HK) Jgo(t)dt| = 0.
min{ni,...,nm}—00 2c[0,z]” ‘l1<k<n [0.2]
Proof. Since p € [0, 1] implies

1 kt kt
sup sup { " sin dt‘} +sup sup 6P sin ‘ dt <
keN eefo,x) L kP tp keNse(0x]  Js

a simple application of Theorem 3.1 yields the theorem. The proof is complete. [

We now need the following result, which is a special case of Theorem 5.5.

Theorem 4.2. Let f € LY(T™), let
f(t) ~ Z Z Ck’F{H COS kiti}{ H sin kiti}
IC{1,...,m} keN™ i€l i€’
and let
snf(t) = Z Z CkI{H cosk:iti}{ H sinkiti} (neN™, teR™).
rC{1,...,m} 1<k<n i€l €T

Then
lim [snf — fllaK(—rmm) = 0.

min{ni,...,nm }—00

We are ready to state and prove a higher-dimensional analogue of [3, Theorem 4.4]

concerning sine series.

Theorem 4.3. Let 3 € (0,1)™ and let g € L*(T™) with

t)N Z bkﬁsinkiti.

keN™ i=1

12



If by, > 0 for every k € N™, then Y b [] kf"’_l converges if and only if for each
keNm™  i=1

a € [0,n)™ there exists go,8 € HK(H [evi, T[]) such that
i=1

Jop(t) = gt) | [(t: — )"

=

Il
-

7

m
for every t € [] (o, 7.
i=1

Proof. (=) Let a € [0, r) be given. Since p € (0,1) implies

{ 1 /1’ sin kt dt‘}+ 61)/71 ‘ sin kt ‘dt
sup sup — sup sup —_—
keN aclaq LFPH o (= )P keN se(0n—a]  Jato! (t— )P
0 .
sin(z + «
<sup/ ﬁdx + 1 < oo,
0>0|.Jo xP

a simple application of Theorem 3.1 yields the desired conclusion.
(<) For this part of the proof we assume that & = 0 and 3 € (0, 1]™. Since

1 ["si
inf be >0, inf / P >0 (pe(0,1)
0

keN™ neN np—l uP
and
xr
inf inf / sinntdt > 0,
zel0,x] neN Jj
the conclusion follows from Theorems 4.2 and 3.2. The proof is complete. (]

From the proofs of Theorems 4.1 and 4.3, we get the following result.

Theorem 4.4. Suppose that g € LY(T™) with g(t) ~ . b [[ sinkit;. If
keNm =1
b, > 0 for every k € N™, then Y. by converges if and only if there exists go €
keN’HL
HK([0, n]™) such that

for every t € (0, n]™.

Our next theorem resembles a result due to Hardy and Littlewood (cf. [8,
Lemma 19] or [23]).

13



Theorem 4.5. Let f € L*(T™) and let a,, = f[ - f@) H s(nt; /) dpm ()

0 for every k € N™, then Qg / H k; converges if and only

(n e N™). If ag, >
keNm
if there exists fo € HK([0, n]™) such that
1
fo(w) = 57— [.. f(#) dpm (t)
IT Hl[*ﬂﬂi@i]
i=1

m

for every x € (0, 7
According to Theorem 4.2,

[ wamw~ Y 2]
fi vew i
An appeal to Theorem 4.4 completes the proof. O

The following examples show that Theorem 3.1 is beyond the realm of Lebesgue

Proof.
smk;az:z

integration.
Example 4.6. Let gi(z) = 27! Z k=3/2sin(2kx) (x € (0,7]) and let g;(0) = 0.
Then g, € HK[0, ] \ L'[0, 7.
]

Proof. This follows from Theorem 3.1 and [3, p. 19].

Example 4.7. Let m = 2 and let

0o 0o s1n(2jx) sin(2ky) . 2

];1 1;::1 (j + If) T Y e
gg(a:,y) — tan 2 tan 9

0 if (2,y) € 0,7\ (0,

Then g> € HK([0, 7]*) \ L([0, n]?).

Proof. By Theorems 4.1 and 2.9, go € HK([0, ]?).
Theorems 1 and 2] to show that go ¢ L([0, 7]?). But this is obvious, since the double

series Y. 1/(j + k)¢ converges,
(G, k)EN?

It remains to apply [27,

14



and

oo o0

1 1
2 NG 7 S

(p+

(4,k)eN2 || p=j g=k (4,k)EN?

5. PROOF OF THEOREM 4.2

In 1912, W.H. Young [36] proved that Theorem 4.2 holds if m = 2. However,
there is a gap in his proof; the claim on [36, p. 156, lines 18-19] need not be correct.
More precisely, if f € L*(T?), the assertion

/ {/ fs,t) dug(s,t)} coskrd(z,y) =0
[—m.x]2 LJ[0,2]x[0,y]

need not be true for every k£ € N. In this section we correct the proof and strengthen
the result in other ways; see Theorem 5.5 for details.

Definition 5.1 ([26]). Let {ug}reny be a multiple sequence of real numbers.
We consider the (formal) multiple series

keNy k1=0  kn=0

(i) The multiple series (21) converges in Pringsheim’s sense to a real number s if
for each € > 0 there exists N(g) € Ny such that

Z U — S| <€
0<k<n
for every n € N satisfying min{n1,...,n,} > N(e).

(ii) The multiple series (21) converges regularly if for each & > 0 there exists N(e) €
N such that

5w

p<k<gqg

<e€

for every p, g € N satisfying g > p and ||p|| > N(e).

15



The next theorem gives a simple necessary and sufficient condition for a multiple
series to be regularly convergent.

Theorem 5.2 ([26, Theorem 1]). Let {uk}reny be a multiple sequence of real

numbers. The multiple series > wyg is regularly convergent if and only if
keND

(i) > wug converges in Pringsheim’s sense, and
kENm
(i) for each choice of the index j € {1,...,m} and for all fixed integral values of c;,

>

keNg®
kj=c;

the (m — 1)-multiple series

are regularly convergent.

The following theorem shows that Fubini’s theorem holds for regularly convergent
multiple series.

Corollary 5.3 ([7, Corollary 2.10]). Let {ug}keny be a multiple sequence of real
numbers. If the multiple series Y wy Is regularly convergent, then

keNg
o0 o0
S o= Y {{ 3 uk}}
kZENB” kd(l):o k”(m,) =0
for every permutation o of the set {1,...,m}.

We need the following lemma to prove Theorem 5.5.

Lemma 5.4. If f € L'([—=n,n™), then for each € > 0 there exists N € N such

that .
T sin ey (t; —
3 / Sﬂlz;iz%)dum(t) <
[T"TE]’” 7

p<k<q i= 1

max
—n,x]m

for every p,q € N™ satisfying q > p and r{lax pi = N.

m

Proof. Let x € [-x, ™ be given and let € > 0. Since f € L*([—m, 1J™) there
exists 1 € (0, $7) such that

g
/ |fl < —
1 Utz 2(4m)
k=1

where U(6) denotes the set [-n,—nt+n)U ([0 —n,0 + 1] N |-, 7)) U (t—n, 7.

16



Clearly, we can fix a positive integer N (independent of x) such that

sink@‘ - 5
k 2(1 + (4K)m_1||f||L1([7Tt,Tt]7”))

sup
0€(n,2n—n]

k=p

for every integers ¢ > p > N. Then, for every p,q € N satisfying ¢ > p and

max p; > N, we have
i=1,....,m

sin Ifl (ti — :L'l)
> /H o TT 2= a0

p<k<gq 1=1

m 4r)™~1  min sup
[ﬂ’m]m\il;[lU(m"))( ) =L g, 2n—n]

sin ki (9) ‘

<l .

ki=p;
n .
sin k6 ‘

A < 2n).

+ m )™ < e since sup su
HfHLl(/H U(zi))( ) ( negae[ogﬂ

i=1 k=1
As x € [—n, )™ is arbitrary, the lemma is proved. O
The following theorem is a refinement of W. H. Young’s theorem concerning double
Fourier series (cf. [36, p. 155-156]).

Theorem 5.5. Let f € L'(T™) and assume that

(22) fe~ >N ckI{Hcoskiti}{H sinkjtj}.

Ic{1,...,m} keN™ i€l jer’

Then the following assertions hold.

(i) For each e > 0 there exists N € N such that

> CkF{H/x cos kit; dti}{

p<k<q el ™ ™

max max
rc{l,...m} w€l—mam

H / sink:jtjdtj}‘ <e€

jer

for every p,q € N™ satisfying q > p and max  p; > N.
i=1,...,m
(if) Let

snf) = > > ck,F{Hcoskiti}{ 11 sinkitl} (n e N™, t € R™).

C{1,...,m} 1<ks<n iel ier’

Then
lim [snf — fllak(-rzm) = 0.

min{ni,...,nm }—00

17



(i) (Parseval’s formula) If v is a finite signed Borel measure on [—n, )™, then

@ [ gow(TTw ) du

i=1

Z Ck/ Hcoskiti H sinkﬂfju(lr_n[[—rc7 ti)> dpm (8);

keNm ©R™ Ger jerv i=1
the multiple series on the right being regularly convergent.

Proof. (i)LetT' C{l,...,m}, let € [—x,n|™ and define

sinaw if rel and a € R,
Yr(a) =

—cosa if reI’” and a € R.

Then, for any p, q € N satisfying q > p, we have

CkF{H/ cos k;t; dt; }{H/ sin k;t; dt; H
p<k<qg ierY T

Jer
sin k;x; —coskjz; + cosk;n
= c
> {5 =2
p<k<q i€l jer

m

;}K /m ilj[lw i) (Y k‘}i) Yi(kim)) dum(t)‘
> re{Ig= )

p<k<q

< 4™ max
rc{a,...,m} 96 ]

An appeal to Lemma 5.4 yields the desired conclusion.

(ii) Set F(x) :== [m rd f@)dpm(t) (x € R™). Since (22) implies

1

k2

(24 |
[—m,x]m—1

for every permutation o of {1,...,m}, we infer from the absolute continuity of F’
that F € C(T™). Let

Z Z Z g card(WUF Hsmk T; H cosk;x;

rc{i,...,m} wcr- kenNT iel JEW
ki>1VieTUW
r;=0Vjer’ nw’

f( )dul(tau))‘ dpm—1(to()s- - tom)) =0

18



be the multiple Fourier series of F'. In view of (i), it suffices to prove that if I' C
{1,...,m} and W CT”, then

(25) Z G mrd(WUr) Hsmk‘ T H cos k;x;

keNg® i€l JEW
ki >1VieTUW
kj=0Vjel’ nWw’

_ ch,F{HSin:ixi}{H<_%%) H cosk:ln}.

k
kenm ier i jew J lernwr

Let I' C {1,...,m} be given and let W C I"". We consider two cases.
Case 1: W #T". Following the proof of (i), we let

Yr(a) =

sinaw if r €T,
—cosa if rel”.

For each k € N{J" satisfying {i € {1,...,m}: k; #0} =T UW we have

A [T (-

JEW
:% Hsmk‘t H —cosk;t;) dum(t)
T (=™ i€l JEW
1 — (ki) + ¥l (Rt
= s I AR T ) d
[=m,n]™ i€TUW g lernw’
1 i (kit;
- e I T ) (by (22))
[=m.m]™ ieTUW L lernw’
1 1/); kiti > 2(—1)™ sinrltl
— [ o IT ST (S A
[=m]™ i€TUW o ernws Sr=1 !
- > =BT 2y
reN™ IT 7 ter'nwr

ri=k; Vi€ECUW ;o
ri=1Vjer’' nw’

Case 2: W =T". In this case we can follow the proof of case 1 to show that if
k € N™, then

Ar H(—l) :Ck,I/Hki.

jer’

19



Now, we deduce from the above cases, (i), Theorem 5.2, and Corollary 5.3 that
(25) holds:

Z om— card(WUF) HSlnk Ti H cos k; 3T

keNg® i€l JEW
ki>1VieTuW
k; =0V jeT/ NW’

= > Z N I witkin) T ()7

keNg i€ETUW ler’'nw’
ki>1VieTUW rﬁk VzEI;UWI i=1
k;j=0Vjer’'nw’ \r;=21Vjel'nW

: zck,p{nsm:m}{n<-%’zm> I =)

ken™ ier ¢ jew lerinws

’:13

Finally, since Theorem 2.9 and (i) imply that
Z ck/ {H cos kitl}{ H sin kiti}y<H[—n, tz)> dptrm (t)
keN™ i€l i€l i=1

is regularly convergent, (iii) follows from Theorems 5.3, 2.9, and (ii). The proof is
complete. O

We observe that the proof of Theorem 4.2 depends on regularly convergent mul-
tiple series. On the other hand, the proof of Theorem 4.5 relies on Theorems 3.1
and 3.2 involving absolutely convergent multiple series. In view of [8, Lemma 19],
[16, Theorem 4.5], Theorems 4.2, 4.5, 5.2, and the fact that Fubini’s theorem is valid
for the Henstock-Kurzweil integral, it is reasonable to believe that the following
conjecture is true for every positive integer m > 2.

Conjecture 5.6. Let f € L'(T™). Then the multiple series

/ f@) H cos kit; dpim (t)
keNm H k; /o™ i=1

converges regularly if and only if the multiple Perron integral

1
(P)/ m—{/n f(t) dt} de
O™ T @; ~ I I=memd
=1

exists.
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6. ANOTHER CONVERGENCE THEOREM FOR HENSTOCK-KURZWEIL INTEGRALS

The aim of this section is to establish a new convergence theorem (Theorem 6.3)
involving the Henstock-Kurzweil integral and regularly convergent multiple series.
We begin with the following important summation by parts theorem (cf. [19, Theo-
rem 2.2]).

Theorem 6.1. Let {cx}reny be a multiple sequence of real numbers such that

lim ¢, = 0 and ) |Aq. . my(ck)| converges. If {ug}reny is a multiple se-
fimf|—o0 keNg:

quence of real numbers and if n € Ni*, then

(26) Z Crlp = Z Z {A{l,...,m}(ck) Z uj}'

0<k<n rc{1,...,m} keNg" JeNT"
o<k <ng—1Vvliel o<y <k Vel
ki >nVIer’ 0<ii<ny Vier’

Theorem 6.1 leads us to the following generalized Dirichlet test; see [19, Theo-
rem 2.3] for details.

Theorem 6.2. Let {ck}ke;\%n be a multiple sequence of real numbers such that
lim ¢, =0. If {zx}reny is a multiple sequence in a Banach space (B, || - ||) and

linfl—o0

>

og<r

Z {|A{1,...,m}(ck)|}{ max

keNm Osr<k

converges, then the following assertions hold:

(i) > Aq,..my(ex) D_ x5 converges absolutely.
keND 0<j<k

(ii) For each € > 0 there exists N(g) € Ng such that

g Cklk

p<k<q

<e€

for every p,q € N satisfying ¢ > p and ||p|| > N ().
(iii) We have

lim = 0.

min{ni,...,nm }—00

Z Crlr — Z A{l,...,m}(ck) Z Lj

0<k<n 0<k<n 0<j<k
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In the next theorem, the set = cannot be empty and the limiting function f
need not be Lebesgue integrable on [a, b]; see Example 8.2 and [37, (1.9) Theorem,
Chapter V] for details.

Theorem 6.3. Let {p; ,}3°, C L'a;,b;] (i =1,...,m) and suppose that

z - < oo}
HK][a,.,b,]

is nonempty. If {cg}reny is a multiple sequence of real numbers and if

(1]

= {r e{1,...,m}: sup

neNg

(27) S Aroz(er)] [ lenm luxan

keNg ler’ne’

X max
0<q;<k;
jer 95 xFj

4;
§ @j,rj
Tj =0

Lia;+(b;—a; /(n+1),b;]

converges for every I' C {1,...,m} and n € N, then there exists f € HK|a, b] such
that

=0.
HK|a,b]

Z ck®¢i,ki - f

o<k<n  i=1

(28) lim

min{ni,...,nm }—00

Proof. We may assume that

Z Pr.k HHK[aT,bT] < 1}'

(29) E—{re{l,...,m}: sup
k=0

neNg

Using (27) with ' = {1,...,m} we see that

4;
: : SDj,Tj
rj=0

(0) > Apm Ck'Hoé’E;?é‘kj

keNT Lifaj+(bj—a;)/(n+1),b;]

converges for every n € N, where an empty product is taken to be one. Hence, by
Theorem 6.2, there exists a function f: [a,b] — R with the following properties:

(31) I C (a,b] and I € Z,,,([a,b]) imply f € L*(I), the multiple series

Z Ck / H @i k; () dpem () converges regularly and
keN'ln

/f ) dpim (t Z%/H%k ) dpin (8)-

keNg?
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We shall next prove that

Z Ck ® Pi, ks

p<k<q =1

(32) — 0 as max{[p[l, lqll} — oc.

HK[a,b]

Proof of (32). Let ko > 0 be given. Using (27) with I' = ), we select N € N
such that

(33) max Y [Az(er)] [T lnr luxpa.or

i=1,....m
keN{" le=r
ki=N

n
Z Prk
k=0

-1
HK][a, ,b,.]) .

Hence, for any p, g € N’ satisfying ¢ > p and ||p|| > N, we have (32):

m
Z Ck ® Vi k;

p<k<g =1

< 3 H > cx @) @ik, X e

R0
< —( 1 4+ max sup
8m re= neNy

HK|a,b]

renNg keNT JEE leE HK(a,b]
rj=0Yj€E  p;<k;<q; VjEE
p<n<q VIEE k=r VIEE'

(by triangle inequality)

(Z A [T |¢z,kl|HK[a,,,m)
HK[a,,b,]

n
< 8™ max sup g Or k
res neNg

k=0 k>p leg
(by Theorem 6.2 with m = card(E),
Fubini’s theorem and triangle inequality)
< Ko (by (33)).
The proof of (32) is complete. O

We shall next show that f € HKJ[a, b] and G is the indefinite Henstock-Kurzweil
integral of f, where the interval function G: Z,,([a,b]) — R is defined by

Glu)i= Y e[ [ oun i
=1 Wi

keNg

the multiple series on the right being regularly convergent (cf. (32)). In view of (31),
Theorem 2.7, and (32), it remains to prove that

(34) Vi G([a, b] \ (a,b]) =0,

m
where (a, b] := [] (ax, bx].
k=1
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Proofof (34). Since ViakG is an outer measure (cf. Theorem 2.5), it is enough
to prove that

(35) VakG(Zr,) =0
whenever n € N and I C {1,...,m}, where

[av b] \ (av b] = U U 20 n;

neNTc{l,...,m}

{ak} if k€ F/,

Iy = Zrnk and  Zr, = bi
kllll [ak +

P bk} if kel.

Let £ > 0 be given. From (27) we pick a positive integer K such that

36) Y IAroz(er)l [T ek lln.n) max Z%m
JjE

L 0<4;<k;
kENT ler Nz BSE

kg[0,K]™
-1
HK[a,.,b,.]) .

Employing the uniform continuity of the indefinite Henstock-Kurzweil integral
(cf. Theorem 2.3 (iv)), we select a n(I',n) > 0 such that

LY (Zr,n,j)

n

Z Pr.k

€
< B (1 + max sup
k=0

rez neNg

37 max ma su s
(37) el 0<h <K [u,U]g[Ia),',,bq‘,] ik, s

0<v—u<n(T',n)

E<1+ > lArus(en) [ Zsﬁlm

>1
0<k<N ler'j, = LY(Zrn,1)

[\

Define a gauge dr,, on Zr, by setting dr n(x) := n(I',n) and select any or -
fine partial partition Pr,, = {(J1,t1),. .., (Jg: tq)} of [@,b] with {¢1,...,t4} C Zpp.
Since all the integrals are real-valued, it suffices to prove that

(38)

> Z%H/%k dpa | <

(I,t)ePr , keNT
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ki
Proofof (38). Write T =TUZ and ®; 1, = >, ¢, (i =1,...,m). Direct
Ji=0
computations give

>y CkH/I @ik, dpn
i=1/1i

(I,t)ePr,, keNg

Z Z AT(Ck)(H/I,, %,k,;dul) (H/z ‘Pi?kidlll)‘

keNT (I,t)ePr,, = i€T

(by a card(T)-dimensional analogue of Theorem 6.2)

Z (H/vaid/“) <H/ ¢i,k7‘,d:u’1>
(1.t)ePr, vieT T ier /I
1 )01 )
L ieT V 1i

N

S |Ar(e)

0<k<K

+ Z |Ar(ck)| Z <

keNT (It)ePr,, vier i
kg0, K™

= R + R,

say. To complete the proof of (38), we have to establish the following claims.

Claim 1. If T' =0, then max{R1, Ry} < 3e.

Proof of Claim 1.  Since card(FPy,) = 1, (37) and (29) imply that Ry < ie.
Likewise, we infer from (36) and (29) that R, < je. O

Claim 2. If T' C {1,...,m} is nonempty, then max{Ry, Ry} < }e.
Proof of Claim 2. Our choice of Pr,, implies that jicarq(r) ( ITLNTI Ui) =0
ier ier
whenever (H I;, sc) and (H U;, y) are two distinct elements of Pr,. Combining
i=1 =1
this with (37) and (29), we get Ry < 3e:

Ri< Y |Ar(e)l [T lein

0<k< K ieT’

1
< T 125k laxanen [T 1®ek ez, < 3¢
JEEND leT

HK[a,:,b,;]

A similar reasoning shows that Ry < %z—:. The proof is complete. O
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Corollary 6.4. Suppose that S C {1,...,m} is nonempty and let {ck}reny be

a multiple sequence of real numbers such that ' lﬁ‘m ¢n, = 0. If the multiple series
ni|j—oo

Arus(ck)

i€l’Ns’

converges for every I' C {1,...,m},

keNg®
k;>0Viel’'ns’

then the following assertions hold:

(i) The multiple series

Z ck{H cos kzxz}{ H sinkixz‘}

keNm  ies ies’

converges regularly for all x € (0, 7|™.
(ii) Let

Z Ck{H coskimi}{ H sinkixi} if € (0,7™,

fs(x) == ¢ keNp  Cies i€s’
0 otherwise,

then fs € HK([0,n|™) and

m
) lim Z Ck ® ik, — [s =0.
min{ny,nmf=oollg S i HK([0,7]™)
Proof. Assertion (i) follows from Theorem 6.2. Since
" sin ka
sup sup < 27,
z€R neN —1 k
assertion (ii) follows from Theorem 6.3. O

Remark 6.5. Whenm = 2and S = {1, 2}, Corollary 6.4 refines [28, Theorem 1].
On the other hand, if m = 2 and S = {1}, Corollary 6.4 and Theorem 3.2 can be
used to refine [30, Theorem 2]. The details will appear elsewhere.
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7. A MULTIDIMENSIONAL ANALOGUE OF BOAS’ THEOREM
The aim of this section is to prove a useful multidimensional analogue of

Theorem 7.1 (cf. [2, Theorern 4]). Let {bx}3>, be a sequence of real numbers

such that hm b, = 0 and E |br, — br11| converges. Then Z by /k converges if and

only if lim > (b coskx)/k exists.

z—0% =]

We need the following lemmas.

Lemma 7.2. Let {cg}renm be a multiple sequence of real numbers such that

(39) oo =
and
Ar(ck)
40 Tk |
(a0 e oy 2o | T | <
N er

If je{l,...,m} and o; € N, then the (m — 1)-multiple series

m —1
> a| I
keN™ i=1
kj=aj v

is absolutely convergent.

Proof. Since

,’:13

> |Ck|<

keN™
kj=ay

) D 1Agy(en)] (l:[k>1

keN™

i
i kjZa; 1#]

1
J

‘H~|I

the lemma follows. O

From the proof of Lemma 7.2 we get

Lemma 7.3. Let {c}renm be a multiple sequence of real numbers such that (39)
and (40) hold. If j € {1,...,m}, then

27



For the rest of this paper, we write (a,b) := [](a;,b;). In view of Theorem 6.2,
i=1

the following theorem is a generalization of [18, Theorem 4.3].

Theorem 7.4. Let {ck}renm be a multiple sequence of real numbers such that

(39) and (40) hold. Suppose that {@; ,}7; C Cla;,b;] (i=1,...,m) and

() — 0 (s
_max {sup HSO@"”C[ai,b,-] + sup Sup‘@z,n( i) — win(ai)
i=1,..., neN a;<z;<b; neN n(xz _ ai)
n
+ sup sup Z(% — ;)i k(T:) } < o0.
z;€[a;,b;) n€EN —1

Then the following assertions hold.

() If @ € [a,b]\ {a}, then 5 (e ] & 11 ks

keN™

m
I1 @ik, (z:) converges regularly.
i=1

i=1
(ii) The function  — Y. (ck/ 11 k‘z) I1 ¥ix; (x;) is continuous on [a,b] \ {a}.

(iii) If

i > [
H’L 1 ’L

z€(a,b) keN™ i=1

m
) I1 ¥ix; (a;) converges regularly.

i=1

(iv) If kZN: (ck / H1 ki) ‘H1 @i k,; (a;) Is regularly convergent, then the function x —
Exm i i—
> (ck/ 11 kz) 11 ik, (x:) is continuous on [a, b]
kEN™ i=1 7 i=1

Proof. Without loss of generality we may suppose that

(41) max {Sup|90zn|0a,,b]+ sup Sup‘%" ;) — pin(a;)
=1,....m a;<z;<b; neN (x; — ai)
- 1
S
z;€la;,b;] nEN Z ! s ( v = 2

k=1
(i) Let = € [a,b] \ {a} and set
Ip:={ie{l,...,m}: z #a;}.
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If p,g € N™ and g > p, then it follows by summation by parts and (41) that

(42) Z H H Pik; xz

pt+1<k<q =1 H‘ 1

T 1
<) S a2
. 2k
reN™ keN™ j€El: lery,
r=1Vjels  pj+l<k; <q; V j€l
pl+1<n<qlW€F; kl=T1VlEr‘;

< Y Yo |Aelal
SO (@i —a) et et I 2k
i€y r;=1Vj€ln  p;+1<k; Vjiel, (€l

pi+1<n<q VIET, k=r VIEL,

It is now easy to check that (i) is a consequence of (42), (40), and Definition 5.1 (ii).

m m
(ii) We infer from (42) that the regularly convergent series Y (ck /11 ki) 11 @ik
keN™ i=1 iz

m
is uniformly convergent on each compact interval [][u;,v;] C [a,b] \ {a}. Hence
i=1
(ii) follows.
(iii) Let ®(x) := H ©ik; (x;). In view of (41), Lemma 7.2, and Theorem 5.2, it

suffices to prove that

i Ck Ck
43 fm > Tot@ - Y eptleto)| =
5¢ 1—[ (0,bi—as) 1<kS([1/61]505[1/6m]) keNm

i=1

m
To prove (43), we select any § € [] (0, min{1,b; — a;}) and a direct computation

=1
yields
d(a+4
<k<([1/z§z: H ki Zn Hz 1 )>
X 1J7~~~7L1/571LJ) keN
< ) —HS’“ -(®(a) — O(a + 6))‘
1<k<([1/61 ], [ 1/ ]) F 11517
+ Z o ®(a+0)| = Ss + Ts,
m Hi=1 ki
keNm\l;[l[L 11/68:]]
say.
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Using [18, Lemma 4.2] and (41), we get

m 1 1 m 1
< —_— _
5 <2 (157) 2 el
= ken™ =1
ki>1Vie{l,...mN\{j} 1#]
1<k <[1/65]
and hence Lemma 7.3 yields
(44) Ss — 0 as ||6]| — 0.

It remains to prove that T5 — 0 as ||| — 0. We write

m
ik (@i + 0
Ur(8) = DY || fa (k )
kcN™ i=1 '
ki>|1/6;] Viel
1<k;<[1/6;] ¥ jer’

and observe that

Ts< Y. Ur(d).

0ATC{1,...,m}

Therefore it is enough to prove that

(45) Ur(6) — 0 as ||8] — 0.

max
0ATC{1,...om}

Let I" C {1,...,m} be nonempty and write ¢ = max 1. Then the triangle inequality
1€
and (41) yield

3

(46)  Ur(8) < 3 L 3 ¢; Peaol8aF0) |

2 .
keN™ i=1 ? FEN™ Ja
k=1 7q Ja>11/84]
ki21vie{l,...m}3\{q} ji=kiVie{l,...m}\{q}
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In order to obtain an appropriate upper bound for the right-hand side of (46), we
let k; e N (i e {1,...,m}\ {q¢}) and get

Pa.5, (ag + )
(47) > oy TdaTa T N0l
JEN™ Ja
Jg>11/84]

ji=k: Vie{l,...m}\{q}

< > Ay (c)]
Ja>11/04]
di=kiVie{L,...m}\{q}

(by single summation by parts and triangle inequality)

i Paq,rq (aq + 5(1)

T'q
rq=[1/84]+1

4
< Aplei) =
2 PeelETTTEy
Ja>11/64]

gi=ki Vi€{1,...,m}\{q}
(by single summation by parts and (41))

<8 > 1A gy ()]
JeN™
da>11/84]
ji:kiVie{lr"'vm}\{q}
Combining (46), (47), and (40) yields (45). This completes the proof of (iii).
(iv) In view of (43) and Fubini’s theorem for regularly convergent multiple series
(ct. Corollary 5.3), it suffices to prove that if S C {1,...,m} is nonempty and if

n; € (0,b; — a;) for every i € S, then

(48) Z C’“l:ll%kT(az) _ Z CkH ik (Zz + ;) H Soj’k];.(aj)

keN™ keNm €8 g jes’ J
lgklg[l/mj VieS
k;j>1Vjes’
=o(maxmn;).
(iES )

A modification of the proof of (43) yields (44), since (39), (40), and (41) imply

1 3iks (@
max Z Hr_lAF< Z ckHsakT()>‘

P#ICS
7T reN™ eI’ keN™ jeS’
ri=21ViesS ki=r;ViesS
ri=1V jes’ k;>1V jes’
AF C
< max E ‘ (T) < o0
0#TCS T
rc jelv
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and

©ik; (a;) Ag(cx)
> lell 75— X
, _ k; IT %
kENHL jesl keNTU R S/
ki=n; Vi€S kizn;Vies J€

k;j>1Vjes’

— 0 as maxn; — 00.
€S

The proof is complete. O

Using Theorem 7.4 with [a,b] = [0,n™, cx = br and ¥, x(z) = coskz (k € N,
i=1,...,m), we deduce the following m-dimensional analogue of Theorem 7.1.

Theorem 7.5. Let {bg}renm be a multiple sequence of real numbers such that

(49) oo = O

and

50 max ‘A b ki| < oo.
(50) A0 C{1,...,m} k;N:m vt / zle_ll'

Then the following assertions hold.
m m
(i) If ¢ € [0,7]™\ {0}, then > (bk/ II k‘z) cos k;x; converges regularly.
keN™ i=1 7 i=1

m m
(ii) The function  — Y. (bk/ II k‘z) I1 cosk;x; is continuous on [0, ™ \ {0}.
keNm i=1 /=1

m m m
(i) If lim > (bk/ I k‘z) I] cosk;x; exists, then > (bk/ I k‘z) is regularly
i=1 7 i=1

20 ym kEN™ i=1 keN™
convergent.
m
(iv) If > b/ ][ k: is regularly convergent, then the function
keNm =1

T — Z (bk/ﬁki> ﬁcoskixi
i=1 i=1

is continuous on [0, |™.

The next example shows that Theorem 7.4 is a proper generalization of [18, The-
orem 4.3].

&)
Example 7.6. Let ¢, = Y (—1)*711/(k(In(k + 1))?) for n = 1,2,.... Clearly,
k=n

oo

. c
nlln;ocn =0, ;Ock — Cpt1] + %) < 0
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and

51 lim ﬂ cos je cos kd
,8)— k
((g a))e((() r); GRen:

exists.
o0
On the other hand, since > |cx — cpt1|In(k + 1) = oo, [18, Theorem 4.3] cannot
k=1

be used to deduce (51).

8. A HENSTOCK-KURZWEIL INTEGRABILITY THEOREM
FOR MULTIPLE SINE SERIES

The next result is a generalization of [18, Theorem 5.2]; in particular, we give
a negative answer to an open problem of Mdricz (cf. [29, Remark 1 (ii)]).

Theorem 8.1. Let {bg}renm be a multiple sequence of real numbers such that

[Inf|—oco
and
Ar(br)
(53) max Z T L
0#TC{L,..om} =37, zg ki

Then the following assertions hold.

m
(1) > bk [] sink;t; converges regularly for every t € [0, 7)™.
keEN™ =1

m
(ii) If = € [0,m)™ \ {0}, then the function t — >  bg [] sink;t; is Henstock-
keNm =1

m
Kurzweil integrable on [] [z;, | and
i=1

(54) (HK) / > kasmkt dt= Y ka / ) sin k;t; dt;.
ZTq

Il genm  i=1 keN™
m
(iii) The function t — > by [] sink;t; is Henstock-Kurzweil integrable on [0, 7™
kEN™ =1

if and only if Y (bk /11 k;z> is regularly convergent. In either case,
keNm™ i=1

(55) (HK /[On]m{ > kasmk:t -y kasmkt}dt—>0

1<ksn i=1 keN™ i=1

as min{ny,...,nm,} — oo.
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Proof. (i) Ift e [0,n™ and [] sint; = 0, then the result is obvious. On the
i=1
other hand, if t € [0, )™ and [] sint; # 0, then the result follows from Theorem 6.2.
i=1
(if) Using Theorem 6.3 with [a,b] = [][zi, 7] (x € [0,m)™ \ {0}) and ¢; x(t) =
i=1
sinkt (k €N, i=1,...,m), we get the result.
m
(iii) We infer from (54) and Theorem 2.8 that the function t — > by [] sinkit;

keN™ =1
belongs to HK([0, n]™) if and only if
(56) Z bk H/ sin k?iti dti
ace[o r]’” keN™
exists, which is easily seen to be equivalent to the assertion
(57) :11_% { Z Z H N (H cosk; n) (H cos k‘le)}
ze[0,7]™ “I'C{1,...,m} keN™ = el
exists. Hence assertion (57) holds if and only if

(58) mhi% Z H cos k;x;

meuxﬂﬂlkeww»llt 1 1i 1

exists, since Theorem 7.5 (ii), (52), and (53) imply that
lim { Z Z (H Cos kﬂ[) ( H cos k:ia:i> }
wéﬁfﬁ"‘ AT C{1,.. Jn}kervIIz 1 ki i€l i€l

exists. It is now clear that the first assertion of statement (iii) follows from parts (iii)
and (iv) of Theorem 7.5.
Finally, Theorem 2.8, (54), and Theorem 7.5 yield (55):

(HK) / Z b ﬁ sin k;t; dt
[0,7]™

keN™ i=1
= lim (HK)/m > kasmkt dt
=0 Lol geim i1

“ o [ Sy e ([Lesse) ([Tt

0
z€[0,n]™ \I'C{1,...,m} keN™ i€l i€l

= Z ka/ sin k;t; dt;.

keNm
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The following example shows that Theorem 6.3 is, in some sense, sharp.

Example 8.2 (cf. [1]). Let m =2andlet bj, =1/(In(j + k +2))? ((j, k) € N?).
Then

1 1
> {IA{l,z}(bj,k)l + 2 1bik = bjrnl + bk — bj,k+1|} < oo.
(4,k)eEN? J

According to parts (i) and (ii) of Theorem 8.1, the double trigonometric se-
ries Y. bjrsinjrsinky converges regularly for every (z,y) € [—m, n]?, and
(4,k)EN?
the function (x,y) — Y, bjrsinjzsinky is Henstock-Kurzweil integrable on
(4,k)EN?
every interval [a1,b1] X [a2,b2] C [0,72 \ {(0,0)}. On the other hand, since

Z E bjr/jk = oo, we infer from part (iii) of Theorem 8.1 that the function
j=1k=
(z,y) — > bjksinjxsinky cannot be Henstock-Kurzweil integrable on [0, 1)2.

(4,k)EN?

However, this does not contradict Theorem 6.3 because sup sup
neN z€[0,x]

Z Iy s1nktdt’ =
k=1
0.

The following corollary refines [18, Theorem 5.2].

Corollary 8.3. Let {bx}renm be a multiple sequence of real numbers such that
lim b, =0 and Z |A{1} m}(be)|(In(||k] +1))™~! converges. Then the multi-

lImfl—o0

ple series > (bk / H k;z) converges regularly if and only if the improper Lebesgue
i=1

keN‘ln
integral
(59) ;ii% / Z kaska x; dptm ()
ac[0,n]™ ,: Sisn] penm  i=1
exists.

Proof. For each € [0,n)™ \ {0}, we apply Theorem 6.2 with ¢, = by,

N = e ) . — o . = si
B0-1) = (£*(ITlwi ), ||L1<inl[w])),xk Tl @ik, and @i4(t) = sinki

=1
(keN,i=1,...,m), to conclude that the function t — > by [] sink;t; belongs
kEN™  i=1
to Ll(H [z, Tc]) and
(60) / Z kasmk ity dpin (8) = ) ka / sin k;t; dt;.
[ [70:7] genm i=1 keNm =1
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Since our assumptions and Theorem 6.2 imply that (52) and (53) hold, the corol-
lary follows from Theorems 8.1 and 2.8. O

Let xx denote the characteristic function of a set X C R. The following example
shows that Theorem 8.1 is a proper generalization of Corollary 8.3.

Example 8.4 (cf. 24, Example 2.6]). Let m =1, let b = 0 and let

oo

ni/n2 X{27: reN}(
b= Y (-1 MRS (e N\ (1)),
j=k

Using Theorem 8.1 with m = 2, we see that the function

(z,y) — Z b;by sin jx sin ky
(4,k)EN?

is Henstock-Kurzweil integrable on [0, 7]?. In view of Corollary 8.3, it remains to

o0

check that ) bysinkz is not a Fourier-Lebesgue series. But this assertion follows
k=1

from [24, Example 2.6].
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