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Sharp constants for Moser-type inequalities

concerning embeddings into Zygmund spaces

Robert Černý

Abstract. Let n ≥ 2 and Ω ⊂ R
n be a bounded set. We give a Moser-type inequa-

lity for an embedding of the Orlicz-Sobolev space W0L
Φ(Ω), where the Young

function Φ behaves like tn logα(t), α < n−1, for t large, into the Zygmund space

Z
n−1−α

n
0

(Ω). We also study the same problem for the embedding of the gene-

ralized Lorentz-Sobolev space Wm
0

L
n
m

,q logα L(Ω), m < n, q ∈ (1,∞], α < 1

q′
,

embedded into the Zygmund space Z

1
q′

−α

0
(Ω).

Keywords: Orlicz-Sobolev spaces, Lorentz-Sobolev spaces, Trudinger embedding,
Moser-Trudinger inequality, best constants

Classification: 46E35, 46E30, 26D910

1. Introduction

Throughout this note, Ω is an open bounded set in R
n, n ≥ 2, ωn−1 is the

surface of the unit sphere in R
n and q′ = q

q−1 (with the standard convention that

1′ = ∞ and ∞′ = 1).

If W
1,p
0 (Ω) denotes the usual completition of C∞

0 (Ω) in W 1,p(Ω), then the
Sobolev Embedding Theorem states that

W
1,p
0 (Ω) ⊂ L

np
n−p (Ω) if 1 ≤ p < n,

W
1,p
0 (Ω) ⊂ L∞(Ω) if n < p.

In the borderline case p = n we have from above

W
1,n
0 (Ω) ⊂ Lq(Ω) for every q ∈ [1,∞),

but there can be constructed examples showing that for the space W
1,n
0 (Ω) we

generally cannot take the limit of the exponent in the Sobolev Embedding Theo-
rem, i.e.

W
1,n
0 (Ω) 6⊂ L∞(Ω).

The author was supported by the grant GAČR P201/12/0291.
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The lack of optimal target space for the Sobolev embedding of W 1,n
0 (Ω) among

the Lebesgue spaces inspired Trudinger [29] to show that

W
1,n
0 (Ω) ⊂ LΦ(Ω),

where LΦ(Ω) is the Orlicz space corresponding to the Young function Φ(t) =

exp(tn
′

)− 1 (the same results were independently obtained by Yudovich [30] and

Pohozhaev [27]). In particular, for any K ≥ 0 and u ∈ W
1,n
0 (Ω) we have

(1.1)

∫

Ω

exp(K|u|n
′

) < ∞ .

Even though the integrals in (1.1) are always finite, they are not bounded by the

same constant even if we consider the functions u from the unit ball in W
1,n
0 (Ω)

only (by the unit ball in W
1,n
0 (Ω) we mean the set {u ∈ W

1,n
0 (Ω) : ‖∇u‖Ln(Ω) ≤

1}). This phenomenon is described by the Moser-Trudinger inequality [25]
(1.2)

sup
u∈W

1,n
0 (Ω),‖∇u‖Ln(Ω)≤1

∫

Ω

exp(K|u|n
′

)







≤ C(n,K, |Ω|) when K ≤ nω
1

n−1

n−1

= ∞ when K > nω
1

n−1

n−1 .

In the last two decades, the Moser-Trudinger inequality became a crucial tool
when proving the existence and regularity of nontrivial weak solutions to elliptic
partial differential equations with the nonlinearity having the critical growth (see
for example the pioneering works [3] and [4] by Adimurthi). Further applications
required several versions and generalizations of the Moser-Trudinger inequality
such as a version for unbounded domains (see [1]), a version without boundary
conditions (see [14]), the Concentration-Compactness Alternative (see [10] and
[23]) and others. There are also Moser-type inequalities for higher order Sobolev

spaces (see [2]), versions with the spaceW 1,n
0 (Ω) replaced by Orlicz-Sobolev spaces

(see [12], [13] and [22]), versions for the Lorentz-Sobolev spaces (see [5], [7] and
[11]) and a version with the target exponential space understood as a Zygmund
space (see [8]).

The aim of this note is to use several auxiliary estimates from [9], [11] and [22]
to find the sharp constants concerning the Moser-type inequalities corresponding
to embeddings into Zygmund spaces with the underlying Sobolev-type spaces
being either Orlicz-Sobolev spaces with the borderline Sobolev-type embedding,
or weighted Lorentz-Sobolev spaces with the borderline Sobolev-type embedding.

Zygmund space Z
η
0 (Ω). The Zygmund space Z

η
0 (Ω), η > 0, consists of all

measurable functions satisfying

lim
t→0

u∗(t)

(1 + log( |Ω|
t
))η

= 0,
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which is equivalent to

∫

Ω

exp(λ|u|
1
η ) < ∞ for every λ > 0.

Here u∗ denotes the non-decreasing rearrangement of u defined as

u∗(t) = inf
{

s > 0 : |{x ∈ Ω : |u(x)| > s}| ≤ t
}

for t > 0.

The space Z
η
0 (Ω) is often equipped with the quasinorm

(1.3) ‖u‖Zη
0 (Ω) = sup

t∈(0,|Ω|)

u∗(t)

(1 + log( |Ω|
t
))η

.

This quantity is equivalent to an actual norm obtained by replacing u∗(t) with

u∗∗(t) = 1
t

∫ t

0
u∗(s) ds.

Orlicz-Sobolev case. A function Φ : [0,∞) 7→ [0,∞) is a Young function if Φ

is increasing, convex, Φ(0) = 0 and limt→∞
Φ(t)
t

= ∞.

We denote by LΦ(Ω) the Orlicz space corresponding to a Young function Φ on
a set Ω. This space is equipped with the Luxemburg norm

(1.4) ‖u‖LΦ(Ω) = inf
{

λ > 0 :

∫

Ω

Φ
( |u|

λ

)

≤ 1
}

.

For an introduction to Orlicz spaces see e.g. [28].
We define the Orlicz-Sobolev space WLΦ(Ω) as the set

WLΦ(Ω) := {u : u, |∇u| ∈ LΦ(Ω)}

equipped with the norm

‖u‖WLΦ(Ω) := ‖u‖LΦ(Ω) + ‖∇u‖LΦ(Ω).

We put W0L
Φ(Ω) for the closure of C∞

0 (Ω) in WLΦ(Ω). In the sequel, we are
interested in the spaces with borderline Sobolev-type embedding. These are the
spaces W0L

Φ(Ω) with the Young function Φ satisfying

(1.5) lim
t→∞

Φ(t)

tn logα(t)
= 1, α < n− 1.

Since Ω is bounded, all Young functions Φ satisfying condition (1.5) (with n and
α fixed) give the same Orlicz-Sobolev space.
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Next, let us define the constants related to our Moser-type inequality

(1.6)
γ =

n

n− 1− α
> 0, B = 1−

α

n− 1
=

n

(n− 1)γ
> 0

and Kn,α = B
1
B nω

γ
n

n−1 .

By the results from [26], Orlicz-Sobolev spaces with Φ satisfying (1.5) can be
identified as the Lorentz-Sobolev spaces for which we have the embedding results
from [15]–[19]. In particular, the space W0L

Φ(Ω) with Φ satisfying (1.5) is em-
bedded into an Orlicz space with the Young function that behaves like exp(tγ)
for large t. Moreover in the limiting case α = n− 1 we have the embedding into
a double exponential space and for α > n−1 we have the embedding into L∞(Ω).
For further information we refer the reader to [13], [15], [16], [17], [18], [19], [20],
[21] and [26].

The following theorem summarizes known versions of Moser-type inequality for
embedding into single exponential spaces (see [9], [15] and [22]). For an informa-
tion concerning the Moser-type inequalities for the spaces embedded into double
and other multiple exponential spaces see [12].

Theorem 1.1. Let n ≥ 2, α < n−1 and K ≥ 0. Suppose that Ω ⊂ R
n is an open

bounded set. Let Φ be a Young function satisfying (1.5).
(i) If u ∈ W0L

Φ(Ω), then

∫

Ω

exp
(

K|u(x)|γ
)

< ∞ .

(ii) If K 6= Kn,α, then

sup
u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)
≤1

∫

Ω

exp
(

K|u|γ
)

{

≤ C(n, α,Φ, |Ω|,K) when K < Kn,α

= ∞ when K > Kn,α.

(iii) Suppose that K = Kn,α, there are a ∈ (0,min{1, 1
γ
}) and t0 ≥ exp(1) such

that Φ satisfies

(1.7) Φ(t) ≥ tn logα(t)
(

1 + log−a(t)
)

for t ∈ [t0,∞).

Then

sup
u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)≤1

∫

Ω

exp
(

K|u(x)|γ
)

≤ C(n, α,Φ, |Ω|).

(iv) Suppose that K = Kn,α, there are t0 ≥ exp(1), a ∈ (0,min{1, B}) and C > 0
such that

(1.8) Φ(t) ≤

{

Ctn for t ∈ [0, t0]

tn logα(t)
(

1− log−a(t)
)

for t ∈ [t0,∞).
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Then

sup
u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)≤1

∫

Ω

exp
(

K|u(x)|γ
)

dx = ∞ .

Notice that even though all Young functions Φ satisfying condition (1.5) (with
n and α fixed) give the same Orlicz-Sobolev space and the same Trudinger-type
embedding, the validity of the Moser-type inequality in the case K = Kn,α de-
pends on the choice of Φ.

Now, we turn our attention to the embedding into Zygmund spaces. Since we
are going to give a careful analysis of the Moser-type inequalities with respect to
the behavior of the Young function Φ for large arguments, it is natural to consider
the formula (1.3) with the supremum taken over (0, δ) with some small δ ∈ (0, |Ω|)
dependent on the choice of Φ.

Theorem 1.2. Let n ≥ 2, α < n−1 and K ≥ 0. Suppose that Ω ⊂ R
n is an open

bounded set. Let Φ be a Young function satisfying (1.5).

(i) For every K > K
− 1

γ
n,α , there is δ ∈ (0, |Ω|) such that

sup
t∈(0,δ),u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)
≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

< K .

(ii) For every δ ∈ (0, |Ω|) we have

sup
t∈(0,δ),u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)
≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≥ K
− 1

γ
n,α .

(iii) If Φ satisfies (1.7), then there is δ ∈ (0, |Ω|) such that

sup
u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

< K
− 1

γ
n,α for every t ∈ (0, δ)

and

sup
t∈(0,δ),u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)
≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

= K
− 1

γ
n,α .

(iv) If Φ satisfies (1.8), then for every δ ∈ (0, |Ω|) we have

sup
t∈(0,δ),u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

> K
− 1

γ
n,α .

Lorentz-Sobolev case. There also exist Moser-type inequalities for the genera-
lized Lorentz-Sobolev spaces of the logarithmic-type embedded into exponential
(and multiple exponential) spaces. By the generalized Lorentz spaces we mean
the weighted Lorentz spaces introduced in [24].
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Let w : (0,∞) 7→ (0,∞) be an integrable function. The space Lp,q;w(Ω) is
the set of all measurable functions such that the following quantity is finite

‖u‖Lp,q;w(Ω) :=
∣

∣

∣

∣

∣

∣
u∗(t)t

1
p
− 1

q w(t)
∣

∣

∣

∣

∣

∣

Lq(Ω)
=























(

∫ |Ω|

0
(u∗(t)t

1
p
− 1

q w(t))q dt
)

1
q

if q ∈ [1,∞)

supt∈(0,|Ω|) u
∗(t)t

1
pw(t)

if q = ∞ .

Notice that our definition is a bit different from Lorentz’s original definition

(Lorentz considers q finite only and he has w
1
q instead of our w). Our version is

chosen so that our definition was compatible with the notation in [15]-[19] (these
papers provide us with Trudinger-type embedding for the generalized Lorentz-
Sobolev spaces we are interested in).

We use the symbol ∇mu, m ∈ N, to denote the m-th order gradient of u ∈
C∞

0 (Ω), that is,

∇mu =

{

∆
m
2 u if m is even

∇∆
m−1

2 if m is odd,

where ∇ is the usual gradient operator and ∆ is the Laplacian. By |∇mu| we de-
note the usual Euclidean length of the vector∇mu. For general u ∈ Wm

0 Lp,q;w(Ω),
the m-th order gradient ∇mu is considered in the distributional sense.

Let m,n ∈ N, 1 ≤ m < n, q ∈ (1,∞] and α < 1
q′
. Furthermore, we suppose

that w : (0,∞) 7→ (0,∞) is a continuous function satisfying

(1.9) lim
t→0+

w(t)

logα(1
t
)
= 1.

We define

(1.10) D = 1− αq′ > 0,

(1.11)
1

γ
=

1

q′
− α =

D

q′
> 0,

βn,m =















π
n
2 2mΓ(m

2 )

ω
n−m

n
n Γ(n−m

2 )

if m is even

π
n
2 2mΓ(m+1

2 )

ω
n−m

n
n Γ(n−m+1

2 )

if m is odd,

where ωn = ωn−1

n
is the volume of the unit ball in R

n. Further we set

(1.12) Kn,m,q,α = βγ
n,mD

1
D .

The space Wm
0 L

n
m

,q;w(Ω)) of the Sobolev-type is continuously embedded into the
Orlicz space with the Young function that behaves like exp(tγ) for large t. In the
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limiting case α = 1
q′

we have the embedding into a double exponential space and

so on. We refer the reader to [16], [17], [18], [19], [20] and [26].
Now, let us recall the Moser-type inequality for embedding into exponential

Orlicz spaces obtained in [11].

Theorem 1.3. Let m,n ∈ N, 1 ≤ m < n, q ∈ (1,∞], α < 1
q′

and let Ω ⊂ R
n be

a bounded domain. Suppose that the weight w satisfies (1.9).
(i) If K < Kn,m,q,α, then

sup
u∈Wm

0 L
n
m

,q;w(Ω),‖∇mu‖
L

n
m

,q;w
(Ω)

≤1

∫

Ω

exp(K|u|γ) < ∞ .

(ii) If K > Kn,m,q,α, then

sup
u∈Wm

0 L
n
m

,q;w(Ω),‖∇mu‖
L

n
m

,q;w
(Ω)

≤1

∫

Ω

exp(K|u|γ) = ∞ .

(iii) Suppose that K = Kn,m,q,α and there are t0 > 0 and µ ∈ (0,min{ 1
γ
, 1
q′
})

such that

(1.13) w(t) ≥ logα
(1

t

)(

1 + log−µ
(1

t

))

for t ∈ (0, t0).

Then

sup
u∈Wm

0 L
n
m

,q;w(Ω),‖∇mu‖
L

n
m

,q;w
(Ω)

≤1

∫

Ω

exp(K|u|γ) < ∞ .

(iv) Suppose that K = Kn,m,q,α, m = 1, q ∈ [n,∞) and there are t0 > 0 and

µ ∈ (0,min{D, 1}) such that the weight w satisfies

(1.14) w(t) ≤ logα
(1

t

)(

1− log−µ
(1

t

))

for t ∈ (0, t0).

Then

sup
u∈W 1

0 Ln,q;w(Ω),‖∇u‖Ln,q;w(Ω)≤1

∫

Ω

exp(K|u|γ) = ∞ .

The restrictive assumptions m = 1 and q ∈ [n,∞) in Theorem 1.3(iv) come
from [11] where these assumptions were used to avoid some technical difficulties
when constructing a version of Moser’s sequence.

Now, we turn our attention to the second result of this paper which is a version
of the previous result with the Orlicz target space replaced by a Zygmund space.
Our result is a generalization of the results from [6] and [8].
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Theorem 1.4. Let m,n ∈ N, 1 ≤ m < n, q ∈ (1,∞], α < 1
q′

and let Ω ⊂ R
n be

a bounded open set. Suppose that the weight w satisfies (1.9).

(i) If K > K
− 1

γ
n,m,q,α, then there is δ ∈ (0, |Ω|) such that

sup
t∈(0,δ),u∈Wm

0 L
n
m

,q;w(Ω),‖∇mu‖
L

n
m

,q;w
(Ω)

≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

< K .

(ii) For every δ ∈ (0, |Ω|) we have

sup
t∈(0,δ),u∈Wm

0 L
n
m

,q;w(Ω),‖∇mu‖
L

n
m

,q;w
(Ω)

≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≥ K
− 1

γ
n,m,q,α .

(iii) If w satisfies (1.13), then there is δ ∈ (0, |Ω|) such that

sup
u∈Wm

0 L
n
m

,q;w(Ω),‖∇mu‖
L

n
m

,q;w
(Ω)

≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

< K
− 1

γ
n,m,q,α for every t ∈ (0, δ)

and

sup
t∈(0,δ),u∈Wm

0 L
n
m

,q;w(Ω),‖∇mu‖
L

n
m

,q;w
(Ω)

≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

= K
− 1

γ
n,m,q,α .

(iv) If m = 1, q ∈ [n,∞) and w satisfies (1.14), then for every δ ∈ (0, |Ω|) we

have

sup
t∈(0,δ),u∈W 1

0 Ln,q;w(Ω),‖∇u‖Ln,q;w(Ω)≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

> K
− 1

γ

n,1,q,α .

2. Preliminaries

By B(x0, R) we denote an open Euclidean ball in R
n centered at x0 ∈ R

n with
the radius R > 0. For the set A ⊂ R

n, |A| stands for the Lebesgue measure of A.
By C we denote a generic positive constant. This constant may vary from

expression to expression as usual.
In the rest of this section we recall some estimates and constructions from

papers [9], [11] and [22] concerning the embeddings into exponential Orlicz spaces.
These partial results are the main steps of our proofs (in fact, these estimates and
constructions were also the most difficult parts of the proofs in papers [9], [11]
and [22]).

Let us note that in the positive results, we can use the density of smooth
functions and the equimeasurability of a function and its nonnegative radially
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symmetric rearrangement to pass to a.e. differentiable radially symmetric func-
tions. Recall that the non-increasing radially symmetric rearrangement satisfies

(2.1) u⋆(x) = u∗
(ωn−1

n
|x|n

)

for x ∈ Ω⋆ ,

where Ω⋆ is a ball B(0, R) such that |B(0, R)| = |Ω|.
We would like to warn the reader that in papers [9], [11] and [22], there are

considered the integrands exp(K|u|γ), exp((K|u|)γ) and exp(( |u|
K
)γ), respectively.

Therefore several constants from these papers had to be modified so that the cited
results from these papers were compatible with our notation (in this paper, we
always consider the integrand exp(K|u|γ)).

Orlicz-Sobolev case. In the proof of [22, Theorem 1.1] it was shown that if the
assumptions of Theorem 1.2(i) are satisfied, u is a nonnegative radially symmetric
function from the unit ball in W0L

Φ(Ω) and g : [0,∞) 7→ [0,∞) is such that
u(x) = g(|x|), then for every ε > 0 we can find y0 > 0 such that

g(y) ≤ (1 + ε)
1

ω
1
n

n−1B
n−1
n

log
1
γ

(1

y

)

for every y ∈ (0, y0).

Hence by (1.6) and (2.1) we have t0 > 0 such that

(2.2)

u∗(t) ≤ (1 + ε)
1

ω
1
n

n−1B
n−1
n

log
1
γ

( 1

( n
ωn−1

t)
1
n

)

= (1 + ε)K
− 1

γ
n,α log

1
γ

( 1
n

ωn−1
t

)

≤ (1 + 2ε)K
− 1

γ
n,α log

1
γ

(1

t

)

for every t ∈ (0, t0).

Similarly, under assumptions of Theorem 1.2(iii), the proof of [22, Theorem 4.2]
gives us a1 ∈ (a,min{1, 1

γ
}) and y0 > 0 such that

g(y) ≤
1

ω
1
n

n−1B
n−1
n

log
1
γ

(1

y

)(

1− log−a1

(1

y

))

for every y ∈ (0, y0)

and thus we also have t0 > 0 and a2 ∈ (a1,min{1, 1
γ
}) such that

(2.3)

u∗(t) ≤
1

ω
1
n

n−1B
n−1
n

log
1
γ

( 1

( n
ωn−1

t)
1
n

)(

1− log−a1

( 1

( n
ωn−1

t)
1
n

))

≤ K
− 1

γ
n,α log

1
γ

(1

t

)(

1− log−a2

(1

t

))

for every t ∈ (0, t0).
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The sharpness of our results is verified by constructing the following versions of
Moser’s sequence. First, let x0 ∈ R

n, R > 0 and A > Kn,α. We define

(2.4)

wk(x) = gk(|x− x0|) , where

gk(y) =



















0 for y ∈ [R,∞)

(− 2
R
y + 2)A− 1

γ nB logB(2)k
1
γ
−B for y ∈ [R2 , R]

A− 1
γ nB logB(R

y
)k

1
γ
−B for y ∈ [Re−

k
n , R2 ]

A− 1
γ k

1
γ for y ∈ [0, Re−

k
n ] .

To obtain the sequence used in the borderline case (the case from Theorem 1.2(iv)),
we set
(2.5)
w̃k(x) = g̃k(|x− x0|) , where

g̃k(y) =



































0 for y ∈ [R,∞)

(− 2
R
y + 2)K

− 1
γ

n,αn
B logB(2)k

1
γ
−B

(

1 + log(k)
k

)
1
γ

for y ∈ [R2 , R]

K
− 1

γ
n,αn

B logB(R
y
)k

1
γ
−B

(

1 + log(k)
k

)
1
γ

for y ∈ [Re−
k
n , R2 ]

K
− 1

γ
n,αk

1
γ

(

1 + log(k)
k

)
1
γ

for y ∈ [0, Re−
k
n ] .

By the proof of [22, Theorem 1.2] we know that if the assumptions of Theo-
rem 1.2(ii) are satisfied, then the members of the first sequence belong to the unit
ball in W0L

Φ(Ω) for k large enough. From the proof of [9, Example 5.1] we have
that if the assumptions of Theorem 1.2(iv) are satisfied, then the members of the
second sequence belong to the unit ball in W0L

Φ(Ω) for k large enough.

Lorentz-Sobolev case. In the proof of [11, Theorem 1.4] it was shown that
if the assumptions of Theorem 1.4(i) are satisfied and u ∈ Wm

0 L
n
m

,q;w(Ω) with
‖∇mu‖

L
n
m

,q;w(Ω)
≤ 1, then for given ε > 0 there is t0 > 0 such that

(2.6) u∗(t) ≤ (1 + ε)K
− 1

γ
n,m,q,α log

1
γ

(1

t

)

for every t ∈ (0, t0).

Under assumptions of Theorem 1.4(iii), the proof of [11, Proposition 5.1] gives us
µ1 ∈ (µ,min{ 1

γ
, 1
q′
}) and t0 > 0 such that

(2.7) u∗(t) ≤ K
− 1

γ
n,m,q,α log

1
γ

(1

t

)(

1− log−µ1

(1

t

))

for every t ∈ (0, t0).

The sharpness of the results in paper [11] was obtained by constructing similar
sequences as in (2.4) and (2.5) (with different multiplicative constants and with
some smoothing). By the proof of [11, Theorem 1.4(ii)] we have that under
assumptions of Theorem 1.4(ii), for given x0 ∈ R

n, R > 0 and A > Kn,m,q,α

there is a sequence of smooth functions from the unit ball in Wm
0 L

n
m

,q;w(Ω) and
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supported on B(x0, R) satisfying

(2.8) wk(x) = A− 1
γ k

1
γ for x ∈ B(x0, Re−

k
n ) and k sufficiently large.

Furthermore, by the proof of [11, Proposition 5.2], under assumptions of The-
orem 1.4(iv), for given x0 ∈ R

n and R > 0, there are smooth functions from
the unit ball in W 1

0L
n,q;w(Ω) and supported on B(x0, R) satisfying

(2.9)

w̃k(x) = K
− 1

γ

n,1,q,αk
1
γ

(

1+
log(k)

k

)
1
γ

for x ∈ B(x0, Re−
k
n ) and k sufficiently large.

3. Proofs of Theorem 1.2 and Theorem 1.4

Proof of Theorem 1.2(i): Fix K > K
− 1

γ
n,α . We can find ε > 0 so small that

K > (1 + 4ε)K
− 1

γ
n,α . Let t0 > 0 be such that (2.2) holds on (0, t0) with this ε. If

δ ∈ (0, t0) is sufficiently small, then we obtain from (2.2) for every u ∈ W0L
Φ(Ω)

such that ‖∇u‖LΦ(Ω) ≤ 1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≤
(1 + 2ε)K

− 1
γ

n,α log
1
γ (1

t
)

log
1
γ ( |Ω|

t
)

≤ (1+3ε)K
− 1

γ
n,α <

1 + 3ε

1 + 4ε
K for t ∈ (0, δ)

and the result follows. �

Proof of Theorem 1.2(ii): Fix K < K
− 1

γ
n,α , A ∈ (Kn,α,K

−γ), δ ∈ (0, |Ω|) and
B(x0, R) ⊂ Ω. Now, the sequence given by (2.4) satisfies

w∗
k

(ωn−1

n
Rne−k

)

= A− 1
γ k

1
γ for every k ∈ N.

If k0 ∈ N is sufficiently large, then ωn−1

n
Rne−k < δ and ‖∇wk‖LΦ(Ω) ≤ 1 for every

k > k0. Therefore we have

sup
t∈(0,δ),u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≥ sup
k>k0

w∗
k(

ωn−1

n
Rne−k)

(1 + log( |Ω|
ωn−1

n
Rne−k

))
1
γ

≥ sup
k>k0

A− 1
γ k

1
γ

(k + C)
1
γ

> K.

Since K < K
− 1

γ
n,α was arbitrary, the assertion follows. �

Proof of Theorem 1.2(iii): Let us prove the first assertion. If u ∈ W0L
Φ(Ω),

‖∇u‖LΦ(Ω) ≤ 1, and δ is sufficiently small, then we can use (2.3) and a2 < 1 to
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obtain

(3.1)

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≤
K

− 1
γ

n,α log
1
γ (1

t
)(1 − log−a2(1

t
))

log
1
γ ( |Ω|

t
)

≤
K

− 1
γ

n,α (1 − log−a2(1
t
))

(1− | log(|Ω|)|

log( 1
t
)
)

1
γ

≤
K

− 1
γ

n,α (1− log−a2(1
t
))

(1− C log−1(1
t
))

< K
− 1

γ
n,α for every t ∈ (0, δ)

and the first assertion follows. The second assertion plainly follows from the first
one and from Theorem 1.2(ii). �

Proof of Theorem 1.2(iv): Fix δ ∈ (0, |Ω|) and B(x0, R) ⊂ Ω. The sequence
given by (2.5) satisfies

w̃∗
k

(ωn−1

n
Rne−k

)

= K
− 1

γ
n,αk

1
γ

(

1 +
log(k)

k

)
1
γ

for every k ∈ N .

If k0 ∈ N is sufficiently large, then ωn−1

n
Rne−k < δ and ‖∇w̃k‖LΦ(Ω) ≤ 1 for every

k > k0. Therefore

sup
t∈(0,δ),u∈W0LΦ(Ω),‖∇u‖

LΦ(Ω)≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≥ sup
k>k0

w̃∗
k(

ωn−1

n
Rne−k)

(1 + log( |Ω|
ωn−1

n
Rne−k

))
1
γ

≥ sup
k>k0

K
− 1

γ
n,αk

1
γ (1 + log(k)

k
)

1
γ

(k + C)
1
γ

= sup
k>k0

K
− 1

γ
n,α (k + log(k))

1
γ

(k + C)
1
γ

> K
− 1

γ
n,α .

�

Proof of Theorem 1.4(i): Fix K > K
− 1

γ
n,m,q,α. Let ε > 0 be so small that K >

(1 + 3ε)K
− 1

γ
n,m,q,α. Let t0 > 0 be such that (2.6) holds on (0, t0) with this ε. If δ ∈

(0, t0) is sufficiently small, then we obtain from (2.6) for every u ∈ Wm
0 L

n
m

,q;w(Ω)
with ‖∇mu‖

L
n
m

,q;w(Ω)
≤ 1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≤
(1 + ε)K

− 1
γ

n,m,q,α log
1
γ (1

t
)

log
1
γ ( |Ω|

t
)

≤ (1 + 2ε)K
− 1

γ
m,n,q,α <

1 + 2ε

1 + 3ε
K for t ∈ (0, δ)

and the result follows. �

Proof of Theorem 1.4(ii): Fix K < K
− 1

γ
n,m,q,α, δ ∈ (0, |Ω|) and

A ∈ (Kn,m,q,α,K
−γ). Let {wk} be the sequence from (2.8). If k0 ∈ N is large
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enough, then ωn−1

n
Rne−k < δ and ‖∇mwk‖L

n
m

,q;w(Ω)
≤ 1 for every k > k0. There-

fore

sup
t∈(0,δ),u∈Wm

0 L
n
m

,q;w(Ω),‖∇mu‖
L

n
m

,q;w
(Ω)

≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≥ sup
k>k0

w∗
k(

ωn−1

n
Rne−k)

(1 + log( |Ω|
ωn−1

n
Rne−k

))
1
γ

≥ sup
k>k0

A− 1
γ k

1
γ

(k + C)
1
γ

> K.

Since K < K
− 1

γ
n,m,q,α was arbitrary, the assertion follows. �

Proof of Theorem 1.4(iii): Let us prove the first assertion. If the function u

satisfies u ∈ Wm
0 L

n
m

,q;w(Ω), ‖∇mu‖
L

n
m

,q;w(Ω)
≤ 1 and δ is sufficiently small, then

we can use (2.7) and µ1 < 1 to obtain

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≤
K

− 1
γ

n,m,q,α log
1
γ (1

t
)(1− log−µ1(1

t
))

log
1
γ ( |Ω|

t
)

≤
K

− 1
γ

n,m,q,α(1− log−µ1(1
t
))

(1− | log(|Ω|)|

log( 1
t
)
)

1
γ

≤
K

− 1
γ

n,m,q,α(1− log−µ1(1
t
))

(1− C log−1(1
t
))

< K
− 1

γ
n,m,q,α for t ∈ (0, δ)

and the first assertion follows. The second assertion plainly follows from the first
one and from Theorem 1.4(ii). �

Proof of Theorem 1.4(iv): Let {w̃k} be the sequence from (2.9). If k0 ∈ N

is large enough, then ωn−1

n
Rne−k < δ and ‖∇w̃k‖Ln,q;w(Ω) ≤ 1 for every k > k0.

Therefore

sup
t∈(0,δ),u∈W 1

0 Ln,q;w(Ω),‖∇u‖Ln,q;w(Ω)≤1

u∗(t)

(1 + log( |Ω|
t
))

1
γ

≥ sup
k>k0

w̃∗
k(

ωn−1

n
Rne−k)

(1 + log( |Ω|
ωn−1

n
Rne−k

))
1
γ

≥ sup
k>k0

K
− 1

γ

n,1,q,αk
1
γ (1 + log(k)

k
)

1
γ

(k + C)
1
γ

≥ sup
k>k0

K
− 1

γ

n,1,q,α(k + log(k))
1
γ

(k + C)
1
γ

> K
− 1

γ

n,1,q,α .

�
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