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1. Introduction

The concept of fuzzy sets was introduced by Zadeh [13] in his classical paper.

Fuzzy sets have applications in many fields such as information [9] and control [10]. In

1985, Šostak [11] introduced a new form of topological structure. In 1992, Ramadan

[8] studied the concept of smooth fuzzy topological spaces. The concept of g̃-open

sets was discussed by Rajesh and Erdal Ekici [7]. The concept of fuzzy basically

disconnected spaces was introduced and studied in [12]. The notions ofm-structures,

m-spaces and m-continuity were introduced by Popa and Noiri [5], [6]. The concepts

of r-fuzzy Gδ sets and r-fuzzy Fσ sets were introduced in [3]. In this paper, the

concepts ofm∗r-fuzzy g̃-open Fσ sets and m∗-fuzzy basically disconnected spaces are

introduced in the sense of Šostak [11] and Ramadan [8]. Some interesting properties

and characterizations are studied. Tietze extension theorem for m∗-fuzzy basically

disconnected spaces is discussed as in [1].

Throughout this paper, let X be a nonempty set, I = [0, 1] and I0 = (0, 1]. For

〈 ∈ I, ζ(x) = 〈 for all x ∈ X . The characteristics function of λ ∈ IX is the function

1λ : X → IX defined by 1λ(x) = λ(x), x ∈ X , r ∈ I0.
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Definition 1.1 [11]. A function T : IX → I is called a smooth fuzzy topology

on X if it satisfies the following conditions:

(1) T (0̄) = T (1̄) = 1.

(2) T (µ1 ∧ µ2) > T (µ1) ∧ T (µ2) for any µ1, µ2 ∈ IX .

(3) T
(

∨

i∈Γ

µj

)

>
∧

j∈Γ

T (µj) for any {µj}j∈Γ ⊂ IX .

The pair (X,T ) is called a smooth fuzzy topological space.

R em a r k 1.1. Let (X,T ) be a smooth fuzzy topological space. Then, for each

r ∈ I0, Tr = {µ ∈ IX : T (µ) > r} is Chang’s fuzzy topology on X .

Definition 1.2 [2]. Let (X,T ) be a smooth fuzzy topological space. For each

λ ∈ IX , r ∈ I0, an operator CT : IX × I0 → IX is defined as follows: CT (λ, r) =
∧

{µ : µ > λ, T (1̄−µ) > r}. For each λ, µ ∈ IX and r, s ∈ I0, it satisfies the following

conditions:

(1) CT (0̄, r) = 0̄.

(2) λ 6 CT (λ, r).

(3) CT (λ, r) ∨ CT (µ, r) = CT (λ ∨ µ, r).

(4) CT (λ, r) 6 CT (λ, s), if r 6 s.

(5) CT (CT (λ, r), r) = CT (λ, r).

Proposition 1.1 [2]. Let (X,T ) be a smooth fuzzy topological space. For each

λ ∈ IX , r ∈ I0, an operator IT : IX × I0 → IX is defined as follows: IT (λ, r) =
∨

{µ : µ 6 λ, T (µ) > r}. For λ, µ ∈ IX and r, s ∈ I0, it satisfies the following

conditions:

(1) IT (1̄ − λ, r) = 1̄ − Cr(λ, r).

(2) IT (1̄, r) = 1̄.

(3) λ > IT (λ, r).

(4) IT (λ, r) ∧ IT (µ, r) = IT (λ ∧ µ, r).

(5) IT (λ, r) > IT (λ, s), if r 6 s.

(6) IT (IT (λ, r), r) = IT (λ, r).

Definition 1.3 [3]. Let (X,T ) be a smooth fuzzy topological space, r ∈ I0. For

any λ ∈ IX and r ∈ I0, λ is called

(1) an r-fuzzy Gδ set if λ =
∞
∧

i=1

λi where each λi is such that T (λi) > r;

(2) an r-fuzzy Fσ set if λ =
∞
∨

i=1

λi where each 1̄ − λi is such that T (1̄ − λi) > r.
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Definition 1.4 [8]. Let (X,T ) be a smooth fuzzy topological space. For λ ∈ IX

and r ∈ I0,

(1) λ is called r-fuzzy semi-closed (briefly, r-fsc) if λ > IT (CT (λ, r), r);

(2) λ is called r-fuzzy semi-open (briefly, r-fso) if λ 6 CT (IT (λ, r), r).

Definition 1.5 [8]. Let (X,T ) be a smooth fuzzy topological space. For λ ∈ IX

and r ∈ I0,

(1) SCT (λ, r) =
∧

{µ ∈ IX : µ > λ, µ is r-fuzzy semi-closed} is called the r-fuzzy

semi-closure of λ;

(2) SIT (λ, r) =
∨

{µ ∈ IX : µ 6 λ, µ is r-fuzzy semi-open} is called the r-fuzzy

semi-interior of λ.

Definition 1.6 [1]. Let (X,T ) be a smooth fuzzy topological space. For any

λ ∈ IX and r ∈ I0, λ is called

(1) r-fuzzy g-closed if CT (λ, r) 6 µ whenever λ 6 µ and µ is r-fuzzy semi-open.

The complement of an r-fuzzy g-closed set is said to be an r-fuzzy g-open set;

(2) r-fuzzy ∗g-closed if CT (λ, r) 6 µ whenever λ 6 µ and µ is r-fuzzy ĝ-open. The

complement of an r-fuzzy ∗g-closed set is said to be an r-fuzzy ∗g-open set;

(3) r-fuzzy #g-semiclosed (briefly r-f#gs-closed) if SCT (λ, r) 6 µ whenever λ 6 µ

and µ is r-fuzzy ∗g-open. The complement of an r-fuzzy #g-semiclosed set is

said to be an r-fuzzy #g-semiopen set (briefly r-#fgs-open set);

(4) r-fuzzy g̃-closed if CT (λ, r) 6 µ whenever λ 6 µ and µ is r-fuzzy #fgs-open.

The complement of an r-fuzzy g̃-closed set is said to be an r-fuzzy g̃-open set;

Definition 1.7 [5], [6]. A subfamily mX of the power set P(X) of a nonempty

set X is called a minimal structure (briefly, m-structure) on X if ϕ ∈ mX and

X ∈ mX . By (X,mX) we denote a non-empty subset X with a minimal structure

mX on X and call it an m-space. Each member of mX is said to be mX -open (or

briefly, m-open) and the complement of an mX -open set is said to be mX -closed (or

briefly, m-closed).

Notation 1.1. Let (X,T ) be a smooth fuzzy topological space, r ∈ I0.

(1) The family of r-fuzzy g̃ open sets in (X,T ) is denoted by g̃O(X,T ).

(2) The family of r-fuzzy Fσ sets in (X,T ) is denoted by Fσ(X,T ).
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2. m∗
-fuzzy basically disconnected spaces

In this section, the concepts of m∗r-fuzzy g̃-open Fσ sets and m∗-fuzzy basically

disconnected spaces are introduced. Some interesting properties and characteriza-

tions are studied.

Definition 2.1. Let X be a nonempty set and IX a collection of all fuzzy sets

in X . A subfamily mX of IX is called a minimal structure (briefly, m-structure) on

X if 0̄ ∈ mX and 1̄ ∈ mX .

Definition 2.2. Let (X,T ) be a smooth fuzzy topological space, r ∈ I0. Then

the collection of the families g̃O(X,T ) and Fσ(X,T ) which is finer than the smooth

fuzzy topology T on X is a minimal∗ structure (briefly, m∗-structure) on X , denoted

by m∗

X . A nonempty set X with an m
∗-structure m∗

X on X is denoted by (X,m∗

X)

(or briefly, (X,m∗)) and it is called an m∗-smooth fuzzy space. Each member of m∗

X

is said to be m∗r-fuzzy g̃-open Fσ and the complement of an m∗r-fuzzy g̃-open Fσ

set is said to be m∗r-fuzzy g̃-closed Gδ.

Definition 2.3. A minimal structure m∗

X on a nonempty set X is said to have

property B if the union of any family of m∗r-fuzzy g̃-open Fσ sets belonging to m∗

X

belongs to m∗

X , r ∈ I0.

Definition 2.4. Let (X,T ) be a smooth fuzzy topological space with an m∗-

structure m∗

X determined by T and let m
∗

X have property B. For any λ ∈ IX and

r ∈ I0, the m∗

Xr-fuzzy g̃Gδ-closure of λ and the m∗

Xr-fuzzy g̃Fσ interior of λ are

defined as follows:

(1) Cm∗(λ, r) =
∧

{µ : λ 6 µ, µ is m∗r-fuzzy g̃-closed Gδ};

(2) Im∗(λ, r) =
∨

{µ : λ > µ, µ is m∗r-fuzzy g̃-open Fσ}.

R em a r k 2.1. Let (X,T ) be a smooth fuzzy topological space, r ∈ I0. For any

λ ∈ IX , if m∗

X = T , then

(1) Cm∗(λ, r) = CT (λ, r);

(2) Im∗(λ, r) = IT (λ, r).

Notation 2.1. Let (X,T ) be a smooth fuzzy topological space with an m∗-

structure determined by T . For r ∈ I0, any λ ∈ IX which is both m∗r-fuzzy g̃-open

Fσ and m∗r-fuzzy g̃-closed Gδ is denoted by m∗r-fuzzy g̃-COGF.

Definition 2.5. Let (X,T ) be a smooth fuzzy topological space with an m∗-

structure m∗

X determined by T and let m
∗

X have property B. The m
∗-smooth fuzzy

space (X,m∗) is said to be m∗-fuzzy basically disconnected if the m∗r-fuzzy g̃Gδ-

closure of every m∗r-fuzzy g̃-open Fσ set is m∗r-fuzzy g̃-open Fσ , r ∈ I0.
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Proposition 2.1. For a smooth fuzzy topological space with an m∗-structure

on X determined by T where m∗

X has property B, the following conditions are

equivalent:

(a) (X,m∗) is an m∗-fuzzy basically disconnected space.

(b) For eachm∗r-fuzzy g̃-closedGδ set λ, Im∗(λ, r) ism∗r-fuzzy g̃-closed Gδ, r ∈ I0.

(c) For each m∗r-fuzzy g̃-open Fσ set λ,

Cm∗(λ, r) + Cm∗((1̄ − Cm∗(λ, r)), r) = 1̄, r ∈ I0.

(d) For every pair of m∗r-fuzzy g̃-open Fσ sets λ and µ with Cm∗(λ, r) + µ = 1̄, we

have Cm∗(λ, r) + Cm∗(µ, r) = 1̄, r ∈ I0.

P r o o f. (a) ⇒ (b). Let λ ∈ IX be any m∗r-fuzzy g̃-closed Gδ set. Then 1̄ − λ

is m∗r-fuzzy g̃-open Fσ. Now, Cm∗(1̄ − λ, r) = 1̄ − Im∗(λ, r). By (a), Cm∗(1̄ − λ, r)

is m∗r-fuzzy g̃-open Fσ, which implies that Im∗(λ, r) is m∗r-fuzzy g̃-closed Gδ.

(b) ⇒ (c). Let λ be any m∗r-fuzzy g̃-open Fσ set. Then

(2.1) Cm∗(λ, r) + Cm∗((1̄ − Cm∗(λ, r)), r) = Cm∗(λ, r) + Cm∗((Im∗(1̄ − λ, r)), r).

Since λ is m∗r-fuzzy g̃-open Fσ, 1̄ − λ is m∗r-fuzzy g̃-closed Gδ. Hence by (b),

Im∗(1̄ − λ, r) is m∗r-fuzzy g̃-closed Gδ. Therefore, by (2.1)

Cm∗(λ, r) + Cm∗((1̄ − Cm∗(λ, r)), r) = Cm∗(λ, r) + (Im∗(1̄ − λ, r))

= Cm∗(λ, r) + 1̄ − Cm∗(λ, r)

= 1̄.

Therefore, Cm∗(λ, r) + Cm∗((1̄ − Cm∗(λ, r)), r) = 1̄.

(c) ⇒ (d). Let λ and µ be m∗r-fuzzy g̃-open Fσ sets with

(2.2) Cm∗(λ, r) + µ = 1̄.

Then by (c) we have 1̄ = Cm∗(λ, r)+Cm∗ ((1̄−Cm∗(λ, r)), r) = Cm∗(λ, r)+Cm∗ (µ, r).

Therefore, Cm∗(λ, r) + Cm∗(µ, r) = 1̄.

(d) ⇒ (a). Let λ be an m∗r-fuzzy g̃-open Fσ set. Put µ = 1̄ − Cm∗(λ, r). Then

Cm∗(λ, r) + µ = 1̄. Therefore by (d), Cm∗(λ, r) + Cm∗(µ, r) = 1̄. This implies that

Cm∗(λ, r) is m∗r-fuzzy g̃-open Fσ and so (X,T ) is m∗-fuzzy basically disconnected.

�
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Proposition 2.2. Let (X,T ) be a smooth fuzzy topological space with an m∗-

structure m∗

X determined by T and let m
∗

X possess property B. Then (X,m∗) is

m∗-fuzzy basically disconnected if and only if for all m∗r-fuzzy g̃-open Fσ sets λ and

m∗r-fuzzy g̃-closed sets µ such that λ 6 µ, Cm∗(λ, r) 6 Im∗(µ, r), r ∈ I0.

P r o o f. Let λ be m∗r-fuzzy g̃-open Fσ and let µ be m∗r-fuzzy g̃-closed Gδ with

λ 6 µ. Then by (b) of Proposition 2.1, Im∗(µ, r) is m∗r-fuzzy g̃-closed Gδ. Also,

since λ is m∗r-fuzzy g̃-open Fσ, Cm∗(λ, r) 6 Im∗(µ, r).

Conversely, let µ be any m∗r-fuzzy g̃-closed Gδ set. Then Im∗(µ, r) ∈ IX is m∗r-

fuzzy g̃-open Fσ and Im∗(µ, r) 6 µ. Therefore by assumption, Cm∗((Im∗(µ, r), r)) 6

Im∗(µ, r). This implies that Im∗(µ, r) is m∗r-fuzzy g̃-closed Gδ. Hence by (b) of

Proposition 2.1, it follows that (X,m∗) is m∗-fuzzy basically disconnected. �

R em a r k 2.2. Let (X,m∗) be any m∗-fuzzy basically disconnected space. Let

{λi, 1̄ − µi/i ∈ N} be collection such that λ′is are m
∗r-fuzzy g̃-open Fσ and µ′

is are

m∗r-fuzzy g̃-closed Gδ, and let λ and µ be m∗r-fuzzy g̃-COGF sets. If λi 6 λ 6 µj

and λi 6 µ 6 µj for all i, j ∈ N, then there exists an m∗r-fuzzy g̃-COGF set γ such

that Cm∗(λi, r) 6 γ 6 Im∗(µj , r) for all i, j ∈ N, r ∈ I0.

P r o o f. By Proposition 2.2, Cm∗(λi, r) 6 Cm∗(λ, r) ∧ Im∗(µ, r) 6 Im∗(µj , r)

for all i, j ∈ N. Therefore, γ = Cm∗(λ, r) ∧ Im∗(µ, r) is an m∗r-fuzzy g̃-COGF set

satisfying the required conditions. �

Proposition 2.3. Let (X,m∗) be any m∗-fuzzy basically disconnected space.

Let {λl}l∈Q and {µl}l∈Q be monotone increasing collections of m
∗r-fuzzy g̃-open Fσ

sets and m∗r-fuzzy g̃-closed Gδ sets of (X,m
∗) and suppose that λq1

6 µq2
whenever

q1 < q2 (Q is the set of all rational numbers). Then there exists a monotone increasing

collection {γl}l∈Q of m
∗r-fuzzy g̃-COGF sets of (X,m∗) such that Cm∗(λq1

, r) 6 γq2

and γq1
6 Im∗(µq2

, r) whenever q1 < q2, r ∈ I0.

P r o o f. Let us arrange all rational numbers into a sequence {qn} (without

repetitions). For every n > 2, we shall define inductively a collection {γqi
/1 6

i 6 n} ⊂ IX such that

(Sn) Cm∗(λq, r) 6 γqi
if q < qi, γqi

6 Im∗(µq, r) if qi < q, for all i < n

By Proposition 2.2, the countable collections {Cm∗(λq , r) and {Im∗(µq, r)} satisfy

Cm∗(λq1
, r) 6 Im∗(µq2

, r) if q1 < q2. By Remark 2.2, there exists an m∗r-fuzzy

g̃-COGF set δ1 such that Cm∗(λq1
, r) 6 δ1 6 Im∗(µq2

, r). Setting γq1
= δ1, we get

(S2).

Define ψ =
∨

{γqi
: i < n, qi < qn} ∨ λqn

and ϕ =
∧

{γqj
: j < n, qj > qn} ∧ µqn

.

Then we have Cm∗(γqi
, r) 6 Cm∗(ψ, r) 6 Im∗(γqj

, r) and Cm∗(γqi
, r) 6 Im∗(ϕ, r) 6
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Im∗(γqj
, r) whenever qi < qn < qj (i, j < n), as well as λq 6 Cm∗(ψ, r) 6 µq and

λq 6 Im∗(ϕ, r) 6 µq′ whenever q < qn < q′. This shows that the countable collections

{γqi
: i < n, qi < qn} ∪ {λq : q < qn} and {γqj

: j < n, qj > qn} ∪ {µq : q > qn}

together with ψ and ϕ fulfil all the conditions of Remark 2.2. Hence, there exists an

m∗r-fuzzy g̃-COGF set δn such that Cm∗(δn, r) 6 µq if qn < q, λq 6 Im∗(δn, r) if

q < qn, Cm∗(γqi
, r) 6 Im∗(δn, r) if qi < qnCm∗(δn, r) 6 Im∗(γqi

, r) if qn < qj where

1 6 i, j 6 n− 1. Now, setting γqn
= δn we obtain the fuzzy sets γq1

, γq2
, γq3

, . . . , γqn

that satisfy (Sn+1). Therefore, the collection {γqi
: i = 1, 2, . . .} has the required

property. �

3. Properties and characterizations of m∗
-fuzzy basically

disconnected spaces

In this section, the concept ofm∗-fuzzy continuous functions is introduced. In this

regard, various properties and characterizations are discussed.

Definition 3.1. Let (X,T ) and (Y, S) be any two smooth fuzzy topological

spaces with the m∗-structures m∗

1 and m
∗

2 determined by T and S respectively, and

let both m∗

1 and m
∗

2 have property B. A function f : (X,m∗

1) → (Y,m∗

2) is called

m∗-fuzzy irresolute if f−1(λ) ∈ IX is m∗r-fuzzy g̃-closed Gδ, for every m∗r-fuzzy

closed g̃-Gδ set λ ∈ IY , r ∈ I0.

Definition 3.2. Let Let (X,T ) and (Y, S) be any two smooth fuzzy topological

spaces with the m∗-structures m∗

1 and m
∗

2 determined by T and S respectively, and

let both m∗

1 and m
∗

2 have property B. A function f : (X,m∗

1) → (Y,m∗

2) is called

m∗-fuzzy open if f(λ) ∈ IY is m∗r-fuzzy g̃-open Fσ, for every m∗r-fuzzy g̃-open Fσ

set λ ∈ IX , r ∈ I0.

Proposition 3.1. Let (X,T ) and (Y, S) be any two smooth fuzzy topological

spaces with the m∗-structures m∗

1 and m
∗

2 determined by T and S respectively, and

let both m∗

1 and m
∗

2 have property B. A function f : (X,m∗

1) → (Y,m∗

2) is m
∗-fuzzy

irresolute iff f(Cm∗(λ, r)) 6 Cm∗(f(λ), r), for every λ ∈ IX , r ∈ I0.

P r o o f. Suppose that f ism∗-fuzzy irresolute and λ ∈ IX . Then Cm∗(f(λ), r) ∈

IY is m∗r-fuzzy g̃-closed Gδ. By hypothesis, f−1(Cm∗(f(λ), r)) ∈ IX is m∗r-fuzzy

g̃-closed Gδ. Also, λ 6 f−1(f(λ)) 6 f−1(Cm∗(f(λ), r)). Hence by the definition of

the m∗r-fuzzy g̃Gδ closure, Cm∗(λ, r) 6 f−1(Cm∗(f(λ), r)). That is, f(Cm∗(λ, r)) 6

Cm∗(f(λ), r).

Conversely, suppose that λ ∈ IY is m∗r-fuzzy g̃-closed Gδ. Now by hypothesis,

f(Cm∗(f−1(λ), r)) 6 Cm∗(f(f−1(λ)), r). This implies Cm∗(f−1(λ), r) 6 f−1(λ). So
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f−1(λ) = Cm∗(f−1(λ), r). That is, f−1(λ) ∈ IX is m∗r-fuzzy g̃-closed Gδ and so f

is m∗-fuzzy irresolute. �

Proposition 3.2. Let Let (X,T ) and (Y, S) be any two smooth fuzzy topological

spaces with the m∗-structures m∗

1 and m
∗

2 determined by T and S respectively, and

let both m∗

1 and m
∗

2 have property B. Let f : (X,m∗

1) → (Y,m∗

2) be an m
∗-fuzzy

open surjective function. Then f−1(Cm∗(λ, r)) 6 Cm∗(f−1(λ), r) for every λ ∈ IY ,

r ∈ I0.

P r o o f. Let λ ∈ IY and let µ = f−1(1̄ − λ). Then Im∗(f−1(1̄ − λ), r) =

Im∗(µ, r) ∈ IX is m∗r-fuzzy g-open Fσ . Now, Im∗(µ, r) 6 µ. Hence, f(Im∗(µ, r)) 6

f(µ). That is, Im∗(f(Im∗(µ, r)), r) 6 Im∗(f(µ), r). Since f is m∗-fuzzy open,

f(Im∗(µ, r)) ∈ IY is m∗r-fuzzy g̃-open Fσ. Therefore, f(Im∗(µ, r)) 6 Im∗(f(µ), r))

= Im∗(1̄−λ, r). Hence, Im∗(f−1(1̄−λ), r) = Im∗(µ, r) 6 f−1(Im∗(1̄−λ), r). There-

fore, 1̄ − Im∗(f−1(1̄ − λ), r) = 1̄ − Im∗(µ, r) > 1̄ − f−1(Im∗(1̄ − λ), r). Hence,

f−1(1̄ − Im∗(1̄ − λ), r) 6 Cm∗((1̄ − f−1(1̄ − λ)), r). Therefore, f−1(Cm∗(λ, r)) 6

Cm∗(f−1(λ), r). �

Proposition 3.3. Let (X,m∗

1) be any m
∗-fuzzy basically disconnected space and

let (Y, S) be any smooth fuzzy topological space with an m∗-structure m∗

2 deter-

mined by S where m∗

2 has property B. Let f : (X,m∗

1) → (Y,m∗

2) be an m
∗-fuzzy

irresolute,m∗-fuzzy open and surjective function. Then (Y,m∗

2) ism
∗-fuzzy basically

disconnected.

P r o o f. Let λ ∈ IY be any m∗-fuzzy g̃-open Fσ set. Since f is m∗-fuzzy

irresolute, f−1(λ) ∈ IX is m∗r-fuzzy g̃-open Fσ. Therefore by an assumption on

(X,m∗

1), it follows that Cm∗(f−1(λ), r) ∈ IX is m∗r-fuzzy g̃-open Fσ. As f is m∗-

fuzzy open, f(Cm∗(f−1(λ), r)) ∈ IY is m∗r-fuzzy g̃-open Fσ. By Proposition 3.2,

f−1(Cm∗(λ, r)) 6 Cm∗(f−1(λ), r) and hence, f(f−1(Cm∗(λ, r))) = Cm∗(λ, r) 6

f(Cm∗(f−1(λ), r)) 6 Cm∗(f(f−1(λ), r)) = Cm∗(λ, r) by Proposition 3.1. Thus

Cm∗(λ, r) = f(Cm∗(f−1(λ), r)) and therefore, Cm∗(λ, r) ∈ IY is m∗r-fuzzy g̃-open

Fσ, proving that (Y,m∗

2) is m
∗-fuzzy basically disconnected. �

Definition 3.3. Let (X,T ) be a smooth fuzzy topological space with an m∗-

structure m∗

X determined by T and let m
∗

X possess property B. A function f : X →

R(I) is called lower (upper) m∗-fuzzy continuous if f−1(Rt)(f
−1(Lt)) is m∗r-fuzzy

g̃-open Fσ (m∗r-fuzzy g̃-open Fσ/m
∗r-fuzzy g̃-closed Gδ), for each t ∈ R, r ∈ I0.
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Proposition 3.4. Let (X,T ) be a smooth fuzzy topological space with an m∗-

structure m∗

X determined by T and let m
∗

X have property B. For λ ∈ IX and r ∈ I0,

let f : X → R(I) be such that

f(x)(t) =











1 if t < 0,

λ(x) if 0 6 t 6 1,

0 if t > 0

for all x ∈ X . Then f is lower (upper) m∗-fuzzy continuous iff λ is m∗r-fuzzy g̃-open

Fσ (m
∗r-fuzzy g̃-open Fσ/m

∗r-fuzzy g̃-closed Gδ), r ∈ I0.

P r o o f.

f−1(Rt) =











1 if t < 0,

λ if 0 6 t 6 1,

0 if t > 1

implies that f is lower m∗-fuzzy continuous iff λ is m∗r-fuzzy g̃-open Fσ.

f−1(Lt) =











1 if t < 0,

λ if 0 < t 6 1,

0 if t > 1

implies that f is upper m∗-fuzzy continuous iff λ is m∗r-fuzzy g̃-closed Gδ. �

Proposition 3.5. Let (X,T ) be a smooth fuzzy topological space with an m∗-

structure m∗

X determined by T and let m
∗

X have property B; let λ ∈ IX . Then 1λ is

lower (upper) m∗-fuzzy continuous iff λ is m∗r-fuzzy g̃-open Fσ (m
∗r-fuzzy g̃-open

Fσ/m
∗r-fuzzy g̃-closed Gδ), r ∈ I0.

P r o o f. The proof follows from Proposition 3.4. �

Definition 3.4. Let (X,T ) and (Y, S) be any two smooth fuzzy topological

spaces with the m∗-structures m∗

1 and m
∗

2 determined by T and S respectively and

let both m∗

1 and m
∗

2 have property B. A function f : (X,m∗

1) → (Y,m∗

2) is called

strongly m∗-fuzzy continuous if f−1(λ) ∈ IX is m∗r-fuzzy g̃-open Fσ/m
∗r-fuzzy

g̃-closed Gδ, for every m∗r-fuzzy g̃-open Fσ set λ ∈ IY , r ∈ I0.

Proposition 3.6. Let (X,T ) be a smooth fuzzy topological space with an m∗-

structure m∗

X determined by T and let m
∗

X possess property B. Then for r ∈ I0, the

following conditions are equivalent:

(a) (X,m∗) is an m∗-fuzzy basically disconnected space.

9



(b) If g, h : X → R(I) where g is lower m∗-fuzzy continuous, h is upper m∗-fuzzy

continuous, then there exists f ∈ CSm∗(X,m∗) such that g 6 f 6 h.

[CSm∗(X,m∗) = collection of all strongly m∗-fuzzy continuous functions on X

with values in R(I)].

(c) If 1̄ − λ, µ are m∗r-fuzzy g̃-open Fσ sets such that µ 6 λ, then there exists a

strongly m∗-fuzzy continuous f : X → IX such that µ 6 (1̄−L1)f 6 R0f 6 λ.

P r o o f. (a) ⇒ (b). Define Hk = Lkh and Gk = (1̄ − Rk)g, k ∈ Q. Thus we

have two monotone increasing families of m∗r-fuzzy g̃-open Fσ sets and m∗r-fuzzy g̃-

closed sets of (X,m∗). MoreoverHk 6 Gs if k < s. By Proposition 2.3, there exists a

monotone increasing family {Fk}k∈Q of m∗r-fuzzy g̃-COGF sets of (X,m∗) sets such

that Cm∗(Hk, r) 6 Fs and Fk 6 Im∗(Gs, r) whenever k < s. Letting Vt =
∧

k<t

(1̄−Fk)

for all t 6 R, we define a monotone decreasing family {Vt : t ∈ R} ⊂ IX . Moreover,

we have Cm∗(Vt, r) 6 Im∗(Vs, r) whenever s < t. We have
∨

t∈R

Vt =
∨

t∈R

∧

k<t

(1̄ − Fk) >
∨

t∈R

∧

k<t

(1̄ −Gk)

=
∨

t∈R

∧

k<t

g−1(Rk) = g−1
(

∨

t∈R

Rt

)

= 1̄.

Similarly,
∧

t∈R

Vt = 0.We now define a function f : X → R(I) possessing the required

properties. Let f(x)(t) = Vt(x) for all x ∈ X and t ∈ R. By the above discussion it

follow that f is well defined. To prove f is strongly m∗-fuzzy continuous, we observe

that
∨

s>t

Vs =
∨

s>t

Im∗(Vs, r) and

∧

s<t

Vs =
∧

s<t

Cm∗(Vs, r).

Then f−1(Rt) =
∨

s>t

Vs =
∨

s>t

Im∗(Vs, r) is m∗r-fuzzy g̃-COGF. And f−1(L′

t) =
∧

s<t

Vs =
∧

s<t

Cm∗(Vs, r) is m∗r-fuzzy g̃-COGF. Therefore, f is strongly m∗-fuzzy

continuous. To conclude the proof it remains to show that g 6 f 6 h. That is,

g−1(1̄ − Lt) 6 f−1(1̄ − Lt) 6 h−1(1̄ − Lt) and g−1(Rt) 6 f−1(Rt) 6 h−1(Rt) for

each t ∈ R. We have

g−1(1̄ − Lt) =
∧

s<t

g−1(1̄ − Ls) =
∧

s<t

∧

k<s

g−1(Rk)

=
∧

s<t

∧

k<s

(1̄ −Gk) 6
∧

s<t

∧

k<s

(1̄ − Fk)

=
∧

s<t

Vs = f−1(1̄ − Lt) and
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f−1(1̄ − Lt) =
∧

s<t

Vs =
∧

s<t

∧

k<s

(1̄ − Fk)

6
∧

s<t

∧

k<s

(1̄ −Hk) =
∧

s<t

∧

k<s

h−1(1̄ − Lk)

=
∧

s<t

h−1(1̄ − Ls) = h−1(1̄ − Lt).

Similarly, we obtain

g−1(Rt) =
∨

s>t

g−1(Rs) =
∨

s>t

∨

k>s

g−1(Rk)

=
∨

s>t

∨

k>s

(1̄ −Gk)) 6
∨

s>t

∧

k<s

(1̄ − Fk)

=
∨

s>t

Vs = f−1(Rt) and

f−1(Rt) =
∨

s>t

Vs =
∨

s>t

∧

k<s

(1̄ − Fk)

6
∨

s>t

∨

k>s

(1̄ −Hk) =
∨

s>t

∨

k>s

h−1(1̄ − Lk)

=
∨

s>t

h−1(Rs) = h−1(Rt).

Thus, (b) is proved.

(b) ⇒ (c). Suppose that λ is m∗r-fuzzy g̃-closed Gδ and µ is m∗r-fuzzy g̃-open

Fσ such that µ 6 λ. Then 1µ 6 1λ where 1µ, 1λ are lower and upper m∗-fuzzy

continuous functions, respectively. Hence by (b), there exists a strong m∗-fuzzy

continuous function f : X → R(I) such that 1µ 6 f 6 1λ. Clearly, f(x) ∈ IX

for all x ∈ X and µ = (1̄ − L1)1µ 6 (1̄ − L1)f 6 R0f 6 R01λ = λ. Therefore,

µ 6 (1̄ − L1)f 6 R0f 6 λ.

(c) ⇒ (a). (1̄ − L1)f and R0f are m∗r-fuzzy g̃-COGF sets. By Proposition 2.2,

(X,m∗) is an m∗-fuzzy basically disconnected space. �

4. Tietze extension theorem

In this section, Tietze Extension Theorem for m∗-fuzzy basically disconnected

spaces is studied.
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Proposition 4.1. Let (X,m∗) be an m∗-fuzzy basically disconnected space and

let A ⊂ X be such that 1A is m
∗r-fuzzy g̃-open Fσ. Let f : (A,m∗/A) → IX be

strong m∗-fuzzy continuous. Then f has a strong m∗-fuzzy continuous extension

over (X,m∗), r ∈ I0.

P r o o f. Let g, h : X → IX be such that g = f = h on A and g(x) = 0, h(x) = 1

if x 6∈ A. We now have

Rtg =

{

µt ∧ 1A if t 6 0,

1 if t < 0

where µt is m∗r-fuzzy g̃-open Fσ and is such that µt/A = Rtf and

Lth =

{

λt ∧ 1A if t 6 1,

1 if t > 1

where λt is m∗r-fuzzy g̃-COGF and is such that λt/A = Ltf . Thus, g is lower m∗-

fuzzy continuous and h is upperm∗-fuzzy continuous with g 6 h. By Proposition 3.6,

there is a strong m∗-fuzzy continuous function F : X → IX such that g 6 F 6 h.

Hence F ≡ f on A. �

A c k n ow l e d g em e n t. The authors would like to convey their sincere thanks
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