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Abstract. In this paper we present results on changing and unchanging of the domination
number with respect to the nondegenerate property P , denoted by γP (G), when a graph
G is modified by deleting a vertex or deleting edges. A graph G is (γP (G), k)P -critical if
γP (G − S) < γP (G) for any set S ( V (G) with |S| = k. Properties of (γP , k)P -critical
graphs are studied. The plus bondage number with respect to the property P , denoted
b+
P
(G), is the cardinality of the smallest set of edges U ⊆ E(G) such that γP(G − U) >

γP (G). Some known results for ordinary domination and bondage numbers are extended
to γP (G) and b+

P
(G). Conjectures concerning b+

P
(G) are posed.
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1. Introduction

All graphs considered in this article are finite, undirected, without loops or multiple

edges. For the graph theory terminology not presented here, we follow Haynes et al.

[10]. We denote the vertex set and the edge set of a graph G by V (G) and E(G),

respectively. The subgraph induced by S ⊆ V (G) is denoted by 〈S, G〉. For a vertex

x of G, N(x, G) denotes the set of all neighbors of x in G, N [x, G] = N(x, G) ∪ {x}

and the degree of x is deg(x, G) = |N(x, G)|. The maximum and minimum degrees

of vertices in the graph G are denoted by ∆(G) and δ(G), respectively.

Let G denote the set of all mutually nonisomorphic graphs. A graph property is

any nonempty subset of G. We say that a graph G has the property P whenever

there exists a graph H ∈ P which is isomorphic to G. For example, we list some

graph properties:

⊲ I = {H ∈ G : H is totally disconnected};
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⊲ F = {H ∈ G : H is a forest};

⊲ UK = {H ∈ G : each component of H is complete}.

A graph property P is called: (a) hereditary (induced-hereditary), if from the fact

that a graph G has property P , it follows that all subgraphs (induced subgraphs) of

G also belong to P ; (b) nondegenerate if I ⊆ P , and (c) additive if it is closed under

taking disjoint unions of graphs. Note that: (i) I and F are nondegenerate, additive

and hereditary properties, and (ii) UK is nondegenerate, additive, induced-hereditary

and is not hereditary.

A dominating set for a graphG is a set of verticesD ⊆ V (G) such that every vertex

of G is either in D or is adjacent to an element of D. The domination number γ(G)

of a graph G is the minimum cardinality of a dominating set of G. A dominating set

D is called an efficient dominating set if the distance between any two vertices in D

is at least three. Not all graphs have efficient dominating sets; however, if a graph G

has an efficient dominating set, then the cardinality of any efficient dominating set

equals the domination number of G [2].

Any set S ⊆ V (G) such that the subgraph 〈S, G〉 possesses the property P is

called a P-set. The domination number with respect to the property P , denoted

by γP(G), is the smallest cardinality of a dominating P-set of G. Observe that if

I ⊆ P2 ⊆ P1 ⊆ G then [8] γ(G) = γG(G) 6 γP1
(G) 6 γP2

(G) 6 γI(G) = i(G),

where i(G) is the independent domination number of G. The concept of domination

with respect to any property P was introduced by Goddard et al. [8]. Michalak [11]

has considered this parameter when the property is additive and induced-hereditary.

It is often of interest to know how the value of a graph parameter is affected when

a small change is made in a graph. In this connection, in [14], the present author

began an investigation on effects on γP when a graph is modified by deleting a vertex

or by adding an edge. We continue this work here and present results on changing

γP(G) when an edge or a vertex is removed from G.

2. Definitions and known results

Let G be a graph and let P ⊆ G be nondegenerate. Any minimum dominating

P-set of G is called a γP(G)-set. Let G be a graph and v ∈ V (G). A vertex v of the

graph G is said to be

(a) [6] γP -good, if v belongs to some γP(G)-set;

(b) [6] γP -bad, if v belongs to no γP(G)-set;

(c) [18] γP -fixed if v belongs to every γP(G)-set;

(d) [18] γP -free if v belongs to some γP(G)-set but not to all γP(G)-sets.

We also need the following sets:
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GP(G) = {x ∈ V (G) : x is γP -good};

BP(G) = {x ∈ V (G) : x is γP -bad};

FiP(G) = {x ∈ V (G) : x is γP -fixed};

FrP(G) = {x ∈ V (G) : x is γP -free};

Fr−
P

(G) = {x ∈ FrP(G) : γP(G − x) = γP(G) − 1};

Fr0P(G) = {x ∈ FrP(G) : γP(G − x) = γP(G)};

Fi
p
P
(G) = {x ∈ FiP(G) : γP(G − x) = γP(G) + p}, p is integer;

V0
P(G) = {x ∈ V (G) : γP(G − x) = γP(G)};

V−

P
(G) = {x ∈ V (G) : γP(G − x) < γP(G)};

V+

P
(G) = {x ∈ V (G) : γP(G − x) > γP(G)}.

Clearly {GP(G),BP (G)} and {V−

P
(G),V0

P (G),V+

P
(G)} are partitions of V (G),

and {FiP(G),FrP(G)} is a partition of GP(G). Moreover:

Observation 2.1 ([14]). Let G be a graph of order n > 2 and let H ⊆ G be

nondegenerate and closed under the union with K1. Then

(1) {Fr
−

H(G),Fr
0

H(G)} is a partition of FrH(G);

(2) {Fi
−1

H (G),Fi
0

H(G), . . . ,Fi
n−2

H (G)} is a partition of FiH(G);

(3) {Fi
−1

H (G),Fr
−

H(G)} is a partition of V−

H
(G);

(4) {Fi
0

H(G),Fr
0

H(G),BH(G)} is a partition of V0
H(G);

(5) {Fi
1

H(G),Fi
2

H(G), . . . ,Fi
n−2

H (G)} is a partition of V+

H
(G).

For each nondegenerate property P ⊆ G we define the following classes of graphsG:

(CV kRP) γP(G − S) < γP(G) for any set S ( V (G) with |S| = k,

(C+ERP) γP(G − e) > γP(G) for all e ∈ E(G)

For convenience we omit the subscript G. For a survey on results concerning the

classes CV 1R and C+ER see for instance [10, Chapter 5], [19] and the bibliography

in [10]. We define a graph G to be (γP (G), k)P -critical if G is in CV kRP . The

(γ(G), k)-critical graphs provided k > 2 are introduced by Brigham et al [5]. Further

results on these graphs can be found in [12], [13].

Lemma 2.2 ([14]). Let G be a graph of order at least two, v ∈ V −

H
(G) and let

H ⊆ G be nondegenerate and closed under the union with K1. Then N(v, G) ⊆

BH(G − v) − FiH(G). If M is a γH(G − v)-set then M ∪ {v} is a γH(G)-set.

Lemma 2.3 ([14]). Let x and y be two different and nonadjacent vertices in

a graph G. Let H ⊆ G be hereditary and closed under the union with K1. If

γH(G + xy) < γH(G) then γH(G + xy) = γH(G) − 1. Moreover, γH(G + xy) =

γH(G) − 1 if and only if at least one of the following conditions holds:

(i) x ∈ V
−

H
(G) and y is a γH-good vertex of G − x;

(ii) x is a γH-good vertex of G − y and y ∈ V
−

H
(G).

77



Lemma 2.4 ([14]). Let H ⊆ G be nondegenerate and closed under the union

with K1 and let x be a γ0
H-fixed vertex of a graph G. Then N(x, G) ⊆ BH(G− x)∩

(V0
H(G) ∪ Fi

1

H(G)) and for each y ∈ N(x, G), γH(G − {x, y}) = γH(G).

One measure of stability of the domination number with respect to the property

P under edge removal is the bondage number [17]. For every graph G with at least

one edge and every nondegenerate property P , the plus bondage number with respect

to the property P , denoted b+

P
(G), is the cardinality of the smallest set of edges

U ⊆ E(G) such that γP(G − U) > γP(G). Since γP(G − E(G)) = |V (G)| > γP(G)

for every graph G with at least one edge and every nondegenerate property P , it

follows that b+

P
(G) always exists. Note that bG(G) = b+

G
(G) = b(G)—the ordinary

bondage number. The bondage number of graphs belonging to CV 1R is examined

for instance in [9], [20], [21], [16]. The next result shows that the class CV 1RP plays

an important role in the study of the plus bondage number with respect to P .

Lemma 2.5 ([17]). Let G be a graph and let H ⊆ G be nondegenerate and

induced-hereditary. If b+

H
(G) > ∆(G) then G is in CV 1RH.

3. Edge removal

An edge e of a graph G is γ+

P
-ER-critical if γP(G − e) > γP(G). We begin with

necessary and sufficient conditions for an edge of a graph to be γ+

P
-ER-critical.

Theorem 3.1 ([15] when H = G). Let x1 and x2 be adjacent vertices in a graph

G and let G12 = G − x1x2. Let H ⊆ G be hereditary and closed under the union

with K1. Then x1x2 is γ+

P
-ER-critical if and only if one of the following conditions

holds:

(R1) xi ∈ BH(G), xj ∈ Fi
q
H

(G), xi ∈ V −

H
(G12) and xj ∈ Fi

q−1

H
(G12) where {i, j} =

{1, 2} and q > 1;

(R2) xi ∈ BH(G), xj ∈ Fi
1

H(G), xi ∈ V −

H
(G12) and xj ∈ Fr

0

H(G12) ∩ GH(G − xi)

where {i, j} = {1, 2};

(R3) xi ∈ BH(G), xj ∈ Fi
0

H(G), xi ∈ V −

H
(G12) ∩ BH(G − xj) and xj ∈ V −

H
(G12) ∩

GH(G − xi) where {i, j} = {1, 2};

(R4) x1, x2 ∈ Fr
0

H(G), x1 ∈ V −

H
(G12)∩GH(G−x2) and x2 ∈ V −

H
(G12)∩GH(G−x1).

P r o o f. Sufficiency: Let (R1) hold and let M be a γH(G12 − xi)-set. By

Lemma 2.2 (applied to G12), M ∪ {xi} is a γH(G12)-set. Since xj ∈ FiH(G12),

xj ∈ GH(G − xi). Now, if one of (R1)–(R4) is satisfied then the result immediately

follows by Lemma 2.3 (applied to G12).
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Necessity: Let γH(G) < γH(G12). By Lemma 2.3 it follows that γH(G) =

γH(G12) − 1 and without loss of generality we may assume that x1 ∈ V
−

H
(G12).

Note that no γH(G)-set contains both x1 and x2. Indeed, if M is a γH(G)-set with

x1, x2 ∈ M then since H is hereditary, M is a dominating H-set of G12—a contra-

diction.

(a) Let x2 ∈ Fi
q−1

H
(G12), q > 1. We have γH(G−x2) = γH(G12−x2) = γH(G12)+

q − 1 = γH(G) + q. Then x2 ∈ Fi
q
H

(G), which implies x1 ∈ BH(G).

(b) Let x2 ∈ Fr
0

H(G12)∩GH(G− x1). In this case γH(G− x2) = γH(G12 − x2) =

γH(G12) = γH(G) + 1. Hence x2 ∈ Fi
1

H(G), which implies x1 ∈ BH(G).

(c) Let without loss of generality x1 ∈ BH(G−x2) and x2 ∈ V
−

H
(G12)∩GH(G−x1).

Since γH(G−x2) = γH(G12−x2) = γH(G12)−1 = γH(G) it follows that x2 ∈ V
0
H(G).

Assume there is a γH(G)-set M with x2 6∈ M . Then M is a dominating H-set of

G − x2 with |M | = γH(G) = γH(G − x2). Hence M is a γH(G − x2)-set. Since

x1 ∈ BH(G − x2) we have x1, x2 6∈ M . But then M is a dominating H-set of G12

with |M | < γH(G12)—a contradiction. Since x2 ∈ V
0
H(G), x2 ∈ Fi

0

H(G). Thus

x1 ∈ BH(G).

(d) Let M1 be a γH(G − x2)-set with x1 ∈ M1 and M2 a γH(G − x1)-set with

x2 ∈ M2. Then M1 and M2 are dominating H-sets of G and |Mi| = γH(G − xi) =

γH(G12 − xi) = γH(G12) − 1 = γH(G) for i = 1, 2. Hence M1 and M2 are γH(G)-

sets and x1, x2 ∈ Fi
0

H(G) ∪ Fr
0

H(G). Since x1 6∈ M2 and x2 6∈ M1, it follows that

x1, x2 ∈ Fr
0

H(G).

There are no other possibilities because of Lemma 2.3. �

Recall that a vertex cover of a graph G is a set of vertices such that each edge of

G is incident to at least one vertex of the set.

Corollary 3.2. Let H ⊆ G be hereditary and closed under the union with K1.

Let a graph G have at least one edge.

(i) If v ∈ V
−

H
(G) then for every edge e ∈ E(G) incident to v, γH(G − e) 6 γH(G).

(ii) If V−

H
(G) is a vertex cover then for every edge e ∈ E(G), γH(G − e) 6 γH(G).

Now, we give a characterization of the class C+ERP .

Theorem 3.3 ([22] and [3] when H = G; [1] when H = I). Let H ⊆ G be nonde-

generate and hereditary.The graph G is in C+ERH if and only if G has at least one

edge and is a disjoint union of stars.

P r o o f. Sufficiency: Let G be a disjoint union of stars T1, T2, . . . , Tk and let

ti be a central vertex of Ti, i = 1, . . . , k. Clearly {t1, t2, . . . , tk} is a γH(G)-set.

For every edge e of G, the graph G − e has exactly k + 1 components and hence

γH(G − e) > k + 1 > γH(G).
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Necessity: Let for every two adjacent vertices x and y, γH(G− xy) > γH(G). Let

S be a γH(G)-set. If |S∩{x, y}| 6= 1 then since H is hereditary, S is a dominating H-

set of G−xy. This implies γH(G−xy) 6 γH(G)—a contradiction. Thus both S and

V (G)−S are independent. Assume there are u, v ∈ S with a common neighbor, sayw.

Then S is a dominating H-set of G−uw, which leads to γH(G−uw) 6 γH(G)—again

a contradiction. Thus G is a union of stars. �

4. Vertex removal

In this section we investigate some basic properties of (γP(G), k)P -critical graphs.

Observation 4.1. Let H ⊆ G be nondegenerate and let G be a graph with

γH(G) > 2.

(i) G is in CV kRH for all k for which |V (G)| − γH(G) + 1 6 k 6 |V (G)| − 1.

(ii) If G is in CV kRH then k 6∈ {s : s = deg(x, G) for some x ∈ V (G)}.

P r o o f. (i) Obvious.

(ii) For any x ∈ V (G) with deg(x, G) > 0, any γH(G − N(x, G))-set is also a

dominating H-set of G. �

Observation 4.2. Let G be a graph and let H ⊆ G be nondegenerate and closed

under the union with K1. If S = {x1, . . . , xk} ( V (G) then γH(G)−k 6 γH(G−S).

If equality holds then γH(G) − 1 > k, S is independent, S ⊆ V
−

H
(G) and for any

x ∈ S and any Sx ⊆ S − {x}, x ∈ V
−
H

(G − Sx). In particular, if G is in CV kRH

then γH(G) − k 6 γH(G − S) 6 γH(G) − 1.

P r o o f. Because of Observation 2.1(3) it remains to prove that S is independent

when equality holds. Suppose to the contrary, x1x2 ∈ E(G). Then x1 ∈ V
−
H

(G) and

by Lemma 2.2 it follows that x2 ∈ BH(G − x1) contradicting x2 ∈ V
−

H
(G− x1). �

Proposition 4.3. Let H ⊆ G be nondegenerate and closed under the union with

K1. Let a graph G be in CV 2RH.

(i) Then V (G) = V
−

H
(G) ∪ Fr

0

H(G) ∪ BH(G).

(ii) If H = G then V (G) = V
−(G) ∪Fr

0(G).

P r o o f. (i) Since the removal of a vertex can decrease γH(G) by at most one

(Observation 2.1(3)), V+

H
(G) is empty. If v ∈ Fi

0

H(G) then γH(G−{u, v}) = γH(G)

for any u ∈ N(v, G) because of Lemma 2.4.

(ii) Suppose v ∈ B(G) and u ∈ N(v, G). Since γ(G − {u, v}) < γ(G), adding v to

any γ(G − {u, v})-set produces a γ(G)-set containing v—a contradiction. �

80



Proposition 4.4. Let G be a graph of order n > 2 and let H ⊆ G be induced-

hereditary and closed under the union with K1.

(i) G is in CV 1RH if and only if γH(G − v) 6= γH(G) for all v ∈ V (G).

(ii) G is in CV 1RH if and only if γH(G − v) = γH(G) − 1 for all v ∈ V (G).

(iii) If G is in CV 1RH then Fi
−1

H (G) = {x ∈ V (G) : deg(x, G) = 0}.

P r o o f. Clearly H is nondegenerate. (i) Necessity: Obvious.

Sufficiency: Assume V
+

H
(G) is not empty. By Lemma 2.2 and Observation 2.1(5),

no vertex in V
+

H
(G) is adjacent to a vertex in V

−

H
(G). Hence for every vertex

x ∈ V
+

H
(G), N [x, G] ⊆ V

+

H
(G). This implies deg(x, G) = 0 for every x ∈ V

+

H
(G)

(H is induced-hereditary). But then V
+

H
(G) ⊆ V

−

H
(G)—a contradiction. Thus

V (G) = V
−
H

(G).

(ii) Sufficiency: Obvious.

Necessity: The result immediately follows by Observation 2.1(3).

(iii) If x ∈ Fi
−1

H (G) then clearly N(x, G) ⊆ BH(G). �

Observation 4.5 ([4] when H = G). Let H ⊆ G be nondegenerate. A graph G

with γH(G) = 2 is in CV 1RH if and only if it is isomorphic to K2n with a 1-factor

removed for some n > 1.

E x am p l e 4.6. Let H ⊆ G be nondegenerate.

(1) Kn, n > 2, is the unique graph of order n which is in CV kRH for all k =

1, 2, . . . , n − 1 (by Observation 4.1).

(2) K2n minus a 1-factor is in CV kRH if and only if k is odd and 1 6 k 6 2n− 1.

(3) Km,m, m > 2 is in CV kRI if and only if k ∈ {1, 2, . . . , 2m − 1} − {m}.

(4) If K2 ∈ H then Km,m, m > 2 is in CV kRH if and only if either m = 2 and

k ∈ {1, 3} or m > 3 and k = 2m − 1.

Proposition 4.7. Let H ⊆ G be hereditary and closed under the union with K1.

If a graph G is in CV 1RH and G has at least one edge then b+

H
(G) > 2.

P r o o f. The result immediately follows by Corollary 3.2(ii) and Proposition 4.4.

�

Our next result is an upper bound on the order of (γP , k)P -critical graphs in terms

of ∆ and γP . Some properties of the extremal graphs are obtained.
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Theorem 4.8. Let H ⊆ G be induced-hereditary and closed under the union with

K1 and let G be in CV 1RH. Then |V (G)| 6 (∆(G) + 1)(γH(G)− 1) + 1. If equality

holds then:

(i) if x ∈ V (G) and v ∈ GH(G − x) then x ∈ FiH(G − v) and v ∈ FiH(G − x);

(ii) for every x ∈ V (G), GH(G − x) = FiH(G − x) − Fi
−1

H (G − x) and GH(G − x)

is an efficient dominating set of G − x;

(iii) ([7] when H = G) G is regular;

(iv) γ(G) = i(G);

(v) let U ⊆ G be induced-hereditary and closed under union with K1. Then G is in

CV 1RU ;

(vi) ([16] when H = G) b+

H
(G) 6 ∆(G) + 1 = δ(G) + 1 provided ∆(G) > 1.

We need the following observation to prove Theorem 4.8.

Observation 4.9. Let H ⊆ G be nondegenerate and let G be a graph. Then

|V (G)| 6 (1 + ∆(G))γH(G). The equality holds if and only if each γH(G)-set is

efficient dominating and each γH-good vertex of G has the maximum degree.

P r o o f. Let M = {x1, . . . , xk} be a γH(G)-set. Then |V (G)| =
∣

∣

∣

k
⋃

i=1

N [xi, G]
∣

∣

∣
6

Σk
i=1(deg(xi, G) + 1) 6 k(∆(G) + 1) = γH(G)(∆(G) + 1). The equality holds if and

only if deg(xi, G) = ∆(G), i = 1, 2, . . . , k and {N [x1, G], N [x2, G], . . . , N [xk, G]} is a

partition of V (G). �

P r o o f of Theorem 4.8. If G has no edges then the results are obvious. So,

let G have edges. Clearly ∆(G) > 2 and γH(G) > 2. Let v ∈ V (G). Using

Observation 4.9 we have |V (G)| = |V (G− v)|+ 1 6 (1 + ∆(G− v))γH(G− v) + 1 6

(1+∆(G))(γH(G)−1)+1. Let equality hold and letM = {x1, . . . , xk} be a γH(G−v)-

set. It follows by Observation 4.9 that M is an efficient dominating set of G− v and

deg(xi, G − v) = ∆(G), i = 1, . . . , k. Hence to prove (iii) it suffices to prove (i).

(i) and (ii): LetM be an efficient dominating set of G−v and let Q be an efficient

dominating set of G−x with v ∈ Q. Since |Q| = γH(G)−1 = |M | it follows: (a) each

vertex in Q − {v} dominates a unique vertex of M , and (b) there exists exactly one

vertex in M , say w, which is not dominated by Q− v. Since M ∪{v} is independent

(by Lemma 2.2), it follows that w = x. Therefore x ∈ FiH(G− v) and by symmetry,

v ∈ FiH(G−x). Thus (i) holds and to prove (ii) it remains to show that Fi
−1

H (G−x)

is empty. Suppose to the contrary u ∈ Fi
−1

H (G − x). By Observation 4.9 it follows

that |V (G)|−2 = |V ((G−x)−u)| 6 (∆(G)+1)(γH(G)−2) = |V (G)|−∆(G)−1—a

contradiction with ∆(G) > 2.

82



(iv) Let v ∈ V (G) and let M be a γH(G − v)-set. Since M is independent (by

(ii)), it follows by Lemma 2.2 that M ∪ {v} is an independent γH(G)-set. Hence

γH(G) = i(G).

(v) By (iv) it follows that γ(G) = γU (G) = i(G). By (ii) applied to the property

U we have γU(G − v) = i(G − v) = i(G) − 1 = γU (G) − 1 for each v ∈ V (G).

(vi) Let v ∈ V (G) and let M be the unique γH(G − v)-set. Let x ∈ M and let

y ∈ V (G) be adjacent. Consider the graph G1 = (G − v) − xy. Assume γH(G1) 6

γH(G− v). Since |V (G1)| = |V (G− v)|, it follows by Observation 4.9 that ∆(G1) =

∆(G − v) = ∆(G), γH(G1) = γH(G − v) and if M1 is a γH(G1)-set then (a) M1 is

efficient dominating, and (b) each vertex in M1 has degree ∆(G). Hence x 6∈ M1.

But then M1 6= M is a γH(G − v)-set—a contradiction with (ii). Thus γH(G1) >

γH(G − v).

Let Gv be the graph obtained from G after deleting all edges incident with v in G.

Since H is induced-hereditary and closed under the union with K1, γH(Gv − xy) =

γH(G1) + 1 > γH(G − v) + 1 = γH(G). Therefore b+

H
(G) 6 ∆(G) + 1. �

Examples of CV 1R-graphs G of order (∆(G) + 1)(γ(G) − 1) + 1 may be found in

[4], [10, p. 140] and [19].

Proposition 4.10 ([13] when H = G). Let H ⊆ G be induced-hereditary and

closed under the union withK1 and let G be in CV kRH. Then |V (G)| 6 (∆(G)+1)×

(γH(G) − 1) + k.

P r o o f. We proceed by induction on k. If k = 1 then the result follows by

Theorem 4.8. So, let G be in CV kRH, k > 2, and not in CV 1RH. If x ∈ V
+

H
(G)

then there is y ∈ N(x, G) − V
+

H
(G) (H is induced-hereditary) and by Lemma 2.2,

y ∈ V
0
H(G). Hence γH(G − y) = γH(G) and G − y is in CV k−1RH. The result now

follows by the inductive hypothesis. �

The next conjecture concerning the case P = G is the main outstanding conjecture

on the ordinary bondage number.

Conjecture 4.11 (Teschner [20] when P = G). Let P ⊆ G be additive and hered-

itary. For any graph G which is in CV 1RP , b
+

P
(G) 6 1.5∆(G).

Particular support for this conjecture is the fact that bP(C3k+1) = 3 = 1.5∆(C3k+1)

[17]. NowletP = G. Teschner[20]hasshownthatConjecture4.11istruewhenγ(G) 6 3.

Observe that if G = Kt × Kt for a positive integer t > 2, then b(G) = 1.5∆(G) as was

found independently by Hartnel and Rall [9] and by Teschner [21].

Motivated by Theorem 4.8 and Lemma 2.5 we state the following:
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Conjecture 4.12. Let G be in CV 1RP where P ⊆ G is induced-hereditary and

closed under the union with K1. If ∆(G) > 1 and |V (G)| = (∆(G)+1)(γP (G)−1)+1

then (a) b+

P
(G) = ∆(G) + 1, and (b) G is not in CV 2RP .
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