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Productivity of the Zariski topology on groups

D. Dikranjan, D. Toller

Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. This paper investigates the productivity of the Zariski topology ZG of
a group G. If G = {Gi | i ∈ I} is a family of groups, and G =

∏
i∈I

Gi is their
direct product, we prove that ZG ⊆

∏
i∈I

ZGi
. This inclusion can be proper

in general, and we describe the doubletons G = {G1, G2} of abelian groups, for
which the converse inclusion holds as well, i.e., ZG = ZG1

× ZG2
.

If e2 ∈ G2 is the identity element of a group G2, we also describe the class ∆
of groups G2 such that G1 × {e2} is an elementary algebraic subset of G1 ×G2

for every group G1. We show among others, that ∆ is stable under taking finite
products and arbitrary powers and we describe the direct products that belong
to ∆. In particular, ∆ contains arbitrary direct products of free non-abelian
groups.

Keywords: Zariski topology, (elementary, additively) algebraic subset, δ-word,
universal word, verbal function, (semi) Z-productive pair of groups, direct prod-
uct

Classification: Primary 20F70, 20K45; Secondary 20K25, 57M07

1. Introduction

1.1 Algebraic subsets of a group and the Zariski topology. Let G be a
group. A self-map G → G of the form g 7→ g1g

ε1g2g
ε2 · · · gngεng0, where n ∈ N,

g0, g1, . . . , gn ∈ G, ε1, . . . , εn ∈ {−1, 1} and g ∈ G, will be called a verbal function

of G. Since these functions play a pivotal role in the paper, we give also a more
formal definition as follows.

Taking x as a symbol for a variable, we denote by G[x] = G ∗ 〈x〉 the free
product of G and the infinite cyclic group 〈x〉 generated by x. A non-trivial
element w ∈ G[x] is given by

(1) w(x) = g1x
ε1g2x

ε2 · · · gnx
εng0,

where n ∈ N and g0, g1, . . . , gn ∈ G, ε1, . . . , εn ∈ {−1, 1}. For simplicity, we write
only w, when this leads to no misunderstanding. We call G[x] the group of words

with coefficients in G and its elements w are called words in G. We denote by
eG[x] the neutral element (the trivial word) of G[x].

In these terms, every word w ∈ G[x] determines a verbal function of G, namely
the associated evaluation function fw : G → G, mapping g 7→ w(g), where w(g) ∈
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G is obtained replacing x with g in (1) and taking products (and eventually
inversions) in G (see [15] for more details on verbal functions).

Definition 1.1. If w ∈ G[x], we let

EG
w = f−1

w ({eG}) = {g ∈ G | fw(g) = eG} ⊆ G,

we call EG
w elementary algebraic subset of G, and we will denote it simply by Ew

when no confusion is possible.
We denote by EG = {Ew | w ∈ G[x]} ⊆ P(G) the family of elementary

algebraic subsets of G, and by E∪
G the family of finite unions of elements of EG.

If X ⊆ G, we call X :

(a) additively algebraic if X is a finite union of elementary algebraic subsets
of G, i.e. if X ∈ E∪

G;
(b) algebraic if X is an intersection of additively algebraic subsets of G.

Obviously, every singleton is an elementary algebraic subset, so every finite
subset is additively algebraic. Then the family of algebraic subsets is closed under
finite unions and arbitrary intersections, and containsG and all finite subsets of G.
So it can be taken as the family of closed sets of a unique T1 topology ZG on G,
called the Zariski topology ([5], [6], [7], [8], [9], [2], [15]).

While the definition of elementary algebraic, additively algebraic and algebraic
subset goes back to Markov [11], he did not explicitly introduce the Zariski to-
pology, although it was implicitly present in [11], [12], [13] (through the algebraic

closure of a subset X , i.e., the smallest algebraic subset of the group G that con-
tains X). It was explicitly introduced only in 1977 by Bryant [3] under the name
verbal topology. Here we keep the name Zariski topology and the notation ZG for
this topology.

The Zariski topology of the abelian groups was described and thoroughly stud-
ied in the abelian case in [7] (we recall some of the most relevant facts in the
abelian case in §1.4). Here we provide examples in the non-abelian case.

Example 1.2. (1) If g ∈ G, its centralizer in G is the subgroup

CG(g) = {h ∈ G | gh = hg}

consisting of the elements of G that commute with g. Then CG(g) = Ew,
where w = gxg−1x−1 ∈ G[x]. Hence CG(g) ∈ EG.

If S ⊆ G, the centralizer of S is the intersection CG(S) =
⋂

s∈S CG(s),
consisting of the elements of G that commute with every element of S.
Therefore, CG(S) is an algebraic subset of G.

In particular, the center Z(G) = CG(G) of G is an algebraic subset.
We call center-free a group G such that Z(G) = {eG}.

(2) For every n ∈ Z, let

G[n] = {g ∈ G | gn = eG} ⊆ G.
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For example, G[1] = {eG} and G[0] = G.
The word xn ∈ G[x] determines the verbal function fxn : g 7→ gn, and

obviously G[n] = Exn .
If G is abelian, every G[n] is a subgroup of G, and these (together with

their cosets, of course) are all the non-empty elementary algebraic subsets
of G (see (3) and §1.4).

(3) Let n ∈ N. Here we shall provide some easy examples of cases when the
elementary algebraic subset Exn = G[n] is not a coset of a subgroup, by
imposing that the subgroup generated by G[n] 6= G is the whole group
G (as eG ∈ G[n] 6= G). To this end, it suffices to consider a simple

group G with {eG} 6= G[n]. Indeed, the subset G[n] is invariant under
conjugations, so the subgroup N generated by G[n] is normal in G, and
we conclude N = G.

To get an easy example to this effect take a non-abelian finite simple
group G. Then |G| is even (e.g., by Feit-Thompson theorem), so that
{eG} 6= G[2] 6= G.

As another example, let G be a compact, connected, simple Lie group
(for example, the group G = SO3(R) will do). Then G is covered by
copies of the torus R/Z (see for example [1]), so that {eG} 6= G[n] 6= G
for every n > 1.

(4) By item 2, we have that G[2] = Ex2 . Here we slightly generalize this
example studying Ew for a word w = g1xg2x (note that w = x2 when
g1 = g2 = eG).

Then w = a−1(g2x)
2, for a = g2g

−1
1 , so that

Ew = {g ∈ G | (g2g)
2 = a} = {g−1

2 h ∈ G | h2 = a} = g−1
2 {g ∈ G | g2 = a}

is a translate of the ‘square roots’ of the element a ∈ G.
If Ew 6= ∅, i.e. if a = b2 for some b ∈ G, then g−1

2 (CG(b)[2])b ⊆ Ew .

1.2 Preliminaries. We denote by Z the group of integers, by N+ the set of
positive integers, by N the set of naturals, and by P the set of prime numbers.

Given two elements g, h of a group G, their commutator element is [g, h] =
ghg−1h−1 ∈ G. Note that [g, h] = eG if and only if gh = hg, i.e. g and h commute.

A torsion group is a group in which each element has finite order. All finite
groups are torsion.

The exponent exp(G) of a torsion group G is the least common multiple, if
it exists, of the orders of the elements of G. In this case, the group is called
bounded , and exp(G) > 0. Otherwise, or if G is not even torsion, it will be
called unbounded , and we conventionally define exp(G) = 0. Any finite group has
positive exponent: it is a divisor of |G|.

Definition 1.3. Let w ∈ G[x] be as in (1).
If gi 6= eG whenever εi−1 = −εi for i = 2, . . . , n, we say that w is a reduced

word in the free product G[x] = G∗〈x〉 and we define the lenght of w by l(w) = n,
where n ∈ N is the least natural number such that w is as in (1).
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We call constant a word w with l(w) = 0, i.e. a word of the form w = g0 ∈ G.

The proof of the following standard fact can be found in [15] and will be used
in Lemma 3.1.

Proposition 1.4 ([15]). Let φ : G1 → G2 be a group homomorphism. Then there

exists a unique group homomorphism F : G1[x] → G2[x] such that F ↾G1= φ,
F (x) = x.

The map F : G1[x] → G2[x] can be explicitly described as the assignment

G1[x] ∋ g1x
ε1g2x

ε2 · · · gnx
εng0 7→ φ(g1)x

ε1φ(g2)x
ε2 · · ·φ(gn)x

εnφ(g0) ∈ G2[x].

Remark 1.5. If w ∈ G[x] and g ∈ G, then also w′ = gwg−1 ∈ G[x], and
Ew = Ew′ . As a consequence, if w is a non-constant word as in (1), we will

assume g0 = eG.

We also introduce the following notions.

• The constant term of w is ct(w) = w(eG) = g1g2 · · · gn ∈ G.
• The content of w is ǫ(w) =

∑n
j=1 εj ∈ Z, which will also be denoted

simply by ǫ when no confusion is possible.

If w = g ∈ G, then ct(w) = w(eG) = g, and we define ǫ(w) = 0. We call
singular a word w such that ǫ(w) = 0. By definition, all constant words are
singular.

Definition 1.6. Let G be a group. A word w ∈ G[x] is called universal , if
Ew = G. We denote by UG the normal subgroup ofG[x] consisting of the universal
words of G.

Note that w is universal if and only if fw ≡ eG is the constant function eG
on G.

1.3 The Zariski topology and subgroups. If H is a subgroup of a group G,
then H carries its own Zariski topology ZH , as well as the induced topology
ZG ↾H . If w ∈ H [x], then one can consider w also in G[x], so that both EH

w

and EG
w make sense, and EH

w = EG
w ∩H . From this, one can deduce the inclusion

ZH ⊆ ZG ↾H . To better describe the cases when the two topologies ZH and ZG ↾H
on H coincide, the following definition was given in [6].

Definition 1.7 ([6, Definition 2.1]). A subgroup H of a group G is called Zariski

embedded in G if ZG ↾H= ZH .

Note thatH is Zariski embedded in G if and only if ZG ↾H⊆ ZH . This condition
is also equivalent to ask EG

w ∩ H to be an algebraic subset of H for every word
w ∈ G[x].

As a consequence of [6, Theorem 3.4] and [9, Proposition 2.7(c)] one can imme-
diately obtain the following result we will use in Corollary 4.13. For the reader’s
convenience, we give a direct proof here.

Proposition 1.8. Every central subgroup is Zariski embedded.
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Proof: Let G be a group, and H ≤ Z(G) be a subgroup of G. We will prove
that EG

w ∩H ∈ EH for every word w ∈ G[x].
Let w ∈ G[x]. Then w(h) = ct(w)hǫ(w) as H ≤ Z(G), so that

EG
w ∩H = {x ∈ H | w(h) = eG} = {x ∈ H | ct(w)hǫ(w) = eG}.

If ct(w) ∈ G \H , then EG
w ∩H = ∅ and there is nothing to prove.

Otherwise, let ct(w) = h0 ∈ H . Then w0 = h0x
ǫ(w) ∈ H [x], and the above

equation shows that EG
w ∩H = EH

w0
. �

1.4 The Zariski topology on abelian groups. Here we resume some results
from [7] on the Zariski topology of an abelian group.

Let (G,+, 0G) be an abelian group. Then the elementary algebraic subset
G[n] = {g ∈ G | ng = 0G} is a subgroup of G, called the n-socle of G.

It can be easily verified that the family of verbal functions of G is {fg+nx | g ∈
G,n ∈ Z}. The elementary algebraic subset of G determined by fg+nx is

Eg+nx =

{
∅ if g + nx = 0G has no solution in G,

G[n] + x0 if x0 is a solution of g + nx = 0G.
(2)

On the other hand, if n ∈ Z, and g ∈ G, then G[n] + g = E−ng+nx. So the
non-empty elementary algebraic subsets of G are exactly the cosets of the n-socles
of G:

(3) EG \ {∅} = {G[n] + g | n ∈ N, g ∈ G}.

One can verify that EG is stable under taking finite intersections, and satisfies
the descending chain condition. Using this fact, the authors of [7] proved that E∪

G

is the family of all the ZG-closed subsets of an abelian group G. In other words,
every algebraic subset of G is additively algebraic.

Theorem 1.9 ([7]). If G is an abelian group, then the family of ZG-closed sets

is E∪
G.

Remark 1.10. It follows from (2) that if G is abelian, and w ∈ G[x] is singular,
then either Ew = G or Ew = ∅.

The following result from [14] classifies the class of abelian groups that have a
cofinite Zariski topology. Recall that G is said to be almost torsion-free, if G[n]
is finite for every n 6= 0.

Proposition 1.11 ([14, Theorem 5.1]). Let G be an abelian group. Then ZG is

the cofinite topology if and only if either G is almost torsion-free, or exp(G) ∈ P.

Finally, every subgroup of an abelian group is Zariski embedded by Proposi-
tion 1.8.
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1.5 Productivity of the Zariski topology. Consider the group Z of integers,
and the product G = Z × Z. Then the Zariski topology of G is the cofinite
topology by Proposition 1.11, so neither Z × {0} nor {0} × Z are Zariski closed
in G, whereas they are certainly closed in the product topology ZZ × ZZ.

Moreover, as the topology ZZ × ZZ is T1, it contains the cofinite topology ZG,
so that ZZ×Z ⊆ ZZ × ZZ. We prove that this inequality holds in the general case
(see the comments below).

If {Gi | i ∈ I} is a non-empty family of groups, we denote by ei ∈ Gi the
identity element of Gi. We consider the direct product G =

∏
i∈I Gi, and we

denote G by HI when all the groups Gi coincide with a group H .
We denote by

∏
i∈I ZGi

the product topology on G of the Zariski topologies ZGi

on each factor Gi. Then the Zariski topology ZG of the direct product is coarser
than the product topology

∏
i∈I ZGi

. For more details, see Theorem 3.4, where
we give also a description of the elementary algebraic subsets of the product G.

As we noted above, these two topologies ZG and
∏

i∈I ZGi
on a product group

G =
∏

i∈I Gi need not coincide even in very simple cases. These observations
motivated the following definitions.

Definition 1.12. Let G1, G2 be groups, and G = G1×G2. Then the pair G1, G2

will be called:

• Z-productive, if ZG = ZG1 × ZG2 ;
• semi Z-productive, if both G1×{e2} and {e1}×G2 are ZG-closed subsets
of G.

The pair G1, G2 is Z-productive exactly when ZG1×G2 ⊇ ZG1 × ZG2 , as the
other inclusion always holds by Theorem 3.4.

From the definitions, it immediately follows that a Z-productive pair is semi
Z-productive. We are interested in studying when the converse implication holds
true, so we explicitly state the following question.

Question 1. LetG1, G2 be a semi Z-productive pair. IsG1, G2 then Z-productive?

Theorem A below answers the above question when G1, G2 are abelian, thus
classifying the abelian Z-productive pairs.

Theorem A. Let G1, G2 be abelian groups, and G = G1 × G2. Then the
following conditions are equivalent:

(a) the pair G1, G2 is Z-productive;
(b) the pair G1, G2 is semi Z-productive;
(c) G1 and G2 are bounded, G1

∼= F1×G∗
1, and G2

∼= F2×G∗
2, for finite sub-

groups Fi ≤ Gi for i = 1, 2, and subgroups G∗
i ≤ Gi for i = 1, 2 such that

(exp(G∗
1 ×G∗

2), |F1|) = 1, (exp(G∗
1 ×G∗

2), |F2|) = 1, (exp(G∗
1), exp(G

∗
2)) =

1.

This theorem will be proved in §4.3.
To study when a pair of groups G1, G2 is (semi) Z-productive, we have also

considered the cases when G1×{e2} ∈ EG1×G2 . To this end, we give the following
definition.
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Definition 1.13. Let G be a group. A word w ∈ G[x] is called a δ-word for G if
w is singular, and EG

w = {eG}.

Let us immediately see that a non-trivial abelian group G has no δ-words.
Indeed, if w ∈ G[x] is singular, then Ew 6= {eG} by Remark 1.10.

The class ∆ of the groups that admit a δ-word can be characterized as follows.

Theorem B. Let G2 be a non-trivial group. Then, the following conditions are
equivalent:

(a) G2 belongs to ∆;
(b) G1 × {e2} ∈ EG1×G2 for every group G1.

In what follows, we will deduce Theorem B from some more general results
proved in Theorem 4.6 and Corollary 4.7.

We prove that the class ∆ is stable under taking finite products (Corollary 3.9)
and under taking arbitrary powers (Theorem 3.10 Theorem 3.10). Moreover, we
characterize the infinite direct products that belong to ∆ (Theorem 3.12). This
implies that every direct product of free non-abelian groups belongs to ∆ (see
Proposition 3.11 and its proof).

2. δ-Words

We begin this section giving the definition and a few properties of the Tăımanov

topology of a group.

Definition 2.1. The Tăımanov topology TG on a group G is the topology having
the family of the centralizers of the elements of G as a subbase of the filter of the
neighborhoods of eG.

It is easy to check that TG is a group topology, and for every element g ∈ G
the subgroup CG(g) is a TG-open (hence, closed) subset of G. In particular,

{eG}
TG

= Z(G), so TG need not be Hausdorff.

Lemma 2.2 ([4, Lemma 4.1]). If G is a group, then the following hold for TG.

(1) TG is Hausdorff if and only if G is center-free.

(2) TG is indiscrete if and only if G is abelian.

We have already noted that a non-trivial abelian group does not admit any
δ-word. In the following lemma, we give a much more precise result.

Lemma 2.3. If a group G ∈ ∆, then its Tăımanov topology TG is discrete. In

particular, G has trivial center.

Proof: Assume w = g1x
ε1g2x

ε2 · · · gnxεn ∈ G[x] to be a δ-word for G. Then in
particular ǫ(w) = 0, and eG ∈ Ew, i.e. ct(w) = eG.

Let C = CG(g1, g2, . . . , gn) be the centralizer of g1, g2, . . . , gn, and assume
g ∈ C. Then

w(g) = ct(w) gǫ(w) = eGg
0 = eG,
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so that g ∈ Ew, which yields g = eG. This proves C = {eG}. As C is a TG-
neighborhood of eG, we conclude that TG coincides with the discrete topology
of G. �

Remark 2.4. Note that a δ-word has even length, being singular. It is immediate
to verify that the only group having a δ-word w with l(w) = 0 is the trivial group,
and w is the trivial word.

Now we show that no group has a δ-word with l(w) = 2. Assume by contra-
diction w ∈ G[x] to be a δ-word with l(w) = 2. As ct(w) = eG, we can assume
w = gxg−1x−1, so that w = [g, x] and Example 1.2, item 1, gives

{eG} = Ew = CG(g).

This forces g = eG, hence w to be trivial, which contradicts l(w) = 2.

In the following proposition we show a δ-word with length 4 for every free
non-abelian group.

Proposition 2.5. Let F be a free non-abelian group, generated by the elements

{ai | i ∈ I}, and let a 6= b be two of them. Then

w = [a, x][b, x] = axa−1x−1bxb−1x−1 ∈ F [x]

is a δ-word for F .

Proof: Obviously w is singular, w(eF ) = eF , and we have to prove that fw(g) 6=
eG for every g ∈ F , g 6= eF . To this end, let f1 = fw1 and f2 = fw2 , where

w1 = [a, x]−1 = [x, a] = xax−1a−1 ∈ F [x],

w2 = [b, x] = bxb−1x−1 ∈ F [x].

As w = w−1
1 w2, we have that fw = (f1)

−1f2, and so fw(g) = eG if and only if
f1(g) = f2(g), for every g ∈ F . So it suffices to prove that f1(g) 6= f2(g) for every
g ∈ F , g 6= eF .

So let eF 6= g ∈ F , and we are going to show that f1(g) 6= f2(g). We can
assume g /∈

⋃
i∈I〈ai〉, so let g = ani ha

m
j be the reduced form of g, for h ∈ F ,

0 6= n ∈ Z and m ∈ Z. (In particular, if h = eF , then g = ani a
m
j , with i 6= j.)

Then

f1(g) = ani ha
m
j · a · (ani ha

m
j )−1 · a−1 = ani h a

m
j · a · a−m

j h−1a−n
i · a−1,

f2(g) = b · ani ha
m
j · b−1 · (ani ha

m
j )−1 = b · ani h a

m
j · b−1 · a−m

j h−1a−n
i .

As the only possible cancellations are between underlined elements, we can imme-
diately say that f1(g) begins with ani h . . .; on the other hand, f2(g) either begins
with an+1

i h . . . (if ai = b), or it begins with b · ani h . . . (if ai 6= b). In either case,
f1(g) 6= f2(g). �
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Although Theorem B characterizes the class ∆, it is desirable to have another
description of ∆.

Problem 1. Find an alternative description of the class ∆.

A necessary condition for G ∈ ∆ is given by Lemma 2.3 in terms of Tăımanov
topology of G.

As a free non-abelian group contains cyclic (hence, abelian) subgroups, ∆ is
not stable under taking subgroups. According to Proposition 2.5, ∆ is not stable
under taking quotients either (as every group is a quotient of a free non-abelian
group).

The class ∆ is stable under taking finite products (Corollary 3.9), and under
taking arbitrary powers (Theorem 3.10), while Theorem 3.12 characterizes which
infinite products belong to ∆. In particular, every product of free non-abelian
groups belongs to ∆ by Proposition 3.11.

3. The Zariski topology on products

If I 6= ∅ is a set, and {Gi | i ∈ I} is a family of groups, throughout this section
we will consider the direct product G =

∏
i∈I Gi.

Lemma 3.1. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. Then

there exists a canonical map ϑ : G[x] →
∏

i∈I(Gi[x]).

Proof: For every i ∈ I, let pi : G → Gi be the i-th canonical projection. Apply
Proposition 1.4 to obtain the homomorphism πi : G[x] → Gi[x], such that πi ↾G=
pi, and πi(x) = x. Finally, consider the diagonal map ϑ of the family {πi | i ∈ I},
so that ϑ : G[x] →

∏
i∈I(Gi[x]).

The map ϑ : G[x] →
∏

i∈I(Gi[x]) has the following explicit form. Let

w = g(1)xε1g(2)xε2 · · · g(n)xεn ∈ G[x],

where g(j) = (g
(j)
i )i∈I ∈ G for elements g

(j)
i = pi(g

(j)) ∈ Gi, for i ∈ I and
j = 1, . . . , n. Let

wi = g
(1)
i xε1g

(2)
i xε2 · · · g

(n)
i xεn ∈ Gi[x]

be the word in Gi obtained by taking the i-th coordinate of the coefficients of w.
Then wi = πi(w), and ϑ(w) = (wi)i∈I ∈

∏
i∈I(Gi[x]). �

Definition 3.2. In the notation of Lemma 3.1, we call ϑ(w) = (wi)i∈I the
coordinates of w in

∏
i∈I(Gi[x]). Note that ǫ(wi) = ǫ(w) for every i ∈ I.

The map ϑ in Lemma 3.1 is not injective if |I| > 1 and the groups under con-
sideration are not trivial (we discuss ker(ϑ) in Example 3.5 below). Nonetheless,
Lemma 3.1 suffices to obtain the following corollary which describes the verbal
functions of a direct product as products of verbal functions of each component.

Corollary 3.3. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. If

w ∈ G[x] has coordinates ϑ(w) = (wi)i∈I ∈
∏

i∈I(Gi[x]), then the verbal function
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fw : G → G is the mapping (gi)i∈I 7→ (fwi
(gi))i∈I , i.e., the product of the verbal

functions fwi
.

In the following theorem we show that the elementary algebraic subset Ew of
a direct product is the cartesian product of the elementary algebraic subsets Ewi

,
where (wi)i∈I are the coordinates of w in

∏
i∈I(Gi[x]).

Theorem 3.4. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. If

w ∈ G[x], and (wi)i∈I are the coordinates of w in
∏

i∈I(Gi[x]), then EG
w has the

form

(4) EG
w =

∏

i∈I

EGi
wi

.

In particular, w ∈ UG (resp., w is a δ-word) if and only if wi ∈ UGi
(resp., wi

is a δ-word) for every i ∈ I.
As a consequence, the Zariski topology ZG of the direct product is coarser than

the product topology
∏

i∈I ZGi
.

Proof: By Corollary 3.3, g = (gi)i∈I ∈ G satisfies w(g) = eG if and only if
gi ∈ Gi satisfies wi(gi) = ei for every i ∈ I. Thus EG

w is as in (4), and EG
w = G if

and only if EGi
wi

= Gi for every i ∈ I, while EG
w = {eG} if and only if EGi

wi
= {ei}

for every i ∈ I, and ǫ(wi) = ǫ(w) for every i ∈ I.
By (4), it follows that EG

w is closed in the product topology
∏

i∈I ZGi
. Being

EG a subbase for ZG-closed sets, we conclude that ZG ⊆
∏

i∈I ZGi
. �

Example 3.5. Let G1, G2 be non-trivial groups, gi ∈ Gi\{ei}, and G = G1×G2.
Consider the word

w = (g−1
1 , e2)x(e1, g2)x

−1(g1, e2)x(e1, g
−1
2 )x−1 ∈ G[x],

and note that w 6= eG[x] is non-trivial, in fact l(w) = 4. As

w1 = π1(w) = g−1
1 xe1x

−1g1xe1x
−1 = eG1[x],

w2 = π2(w) = e2xg2x
−1e2xg

−1
2 x−1 = eG2[x],

we have w ∈ ker(ϑ), in the notation of Lemma 3.1.
If w ∈ ker(ϑ), then wi = eGi[x] is the trivial word for every i ∈ I, so that in

particular wi ∈ UGi
. Then also w ∈ UG by Theorem 3.4.

Corollary 3.6. Let G1, G2 be non-trivial groups, and G = G1 × G2. Then G
has a singular, non-trivial universal word.

Proof: Consider the singular, non-trivial word w ∈ G[x] defined in Example 3.5.
Its coordinates in G1[x] × G2[x] are (w1, w2) = (eG1[x], eG2[x]), so that equation

(4) gives EG
w = EG1

eG1[x]
× EG2

eG2[x]
= G1 ×G2. �

The next definition will be used in the following Lemma 3.8 to give a suffi-
cient condition on an element (wi)i∈I ∈

∏
i∈I(Gi[x]) to belong to ϑ(G[x]), where

ϑ : G[x] →
∏

i∈I(Gi[x]) is the map defined in Lemma 3.1.
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Definition 3.7. Let G be an arbitrary group and w ∈ G[x]. If l(w) = n ∈ N+ and
w = g1x

ε1g2x
ε2 · · · gnx

εng0 ∈ G[x], we define ~ǫ(w) = (ε1, ε2, . . . , εn) ∈ {1,−1}n.

Lemma 3.8. Let n ∈ N+, ~ǫ = (ε1, ε2, . . . , εn) ∈ {1,−1}n, and {Gi | i ∈ I} be

a family of groups. For every i ∈ I, let wi ∈ Gi[x] be such that l(wi) = n and

~ǫ(wi) = ~ǫ. Then, with G =
∏

i∈I Gi,

(a) (wi)i∈I = ϑ(w) for a word w ∈ G[x];
(b) if every wi ∈ Gi[x] is a δ-word (resp., a universal word) for Gi, then also

w ∈ G[x] is a δ-word (resp., a universal word) for G.

Proof: (a). We have to prove that there exists w ∈ G[x] such that (wi)i∈I are
the coordinates of w in

∏
i∈I(Gi[x]). By assumption, for every i ∈ I, the word wi

has the form

wi = g
(1)
i xε1g

(2)
i xε2 · · · g

(n)
i xεn ∈ Gi[x].

Defining g(j) = (g
(j)
i )i∈I ∈ G for j = 1, . . . , n, the word w = g(1)xε1g(2)xε2 · · ·

g(n)xεn ∈ G[x] satisfies ϑ(w) = (wi)i∈I , i.e. (wi)i∈I are the coordinates of w in∏
i∈I(Gi[x]).
(b). By (4), w is a δ-word (resp., a universal word) for G, if every wi ∈ Gi[x]

is a δ-word (resp., a universal word). �

Now we prove that the class ∆ is stable under taking finite products, using the
idea of the proof of Lemma 3.8.

Corollary 3.9. If G ∈ ∆, and H ∈ ∆, then also P = G×H ∈ ∆.

Proof: Let

w1 = g1x
ε1g2x

ε2 · · · gnx
εn ∈ G[x],

w2 = h1x
δ1h2x

δ2 · · ·hmxδm ∈ H [x]

be δ-words respectively for G and H .
Let

v1 = eGx
δ1eGx

δ2 · · · eGx
δmg1x

ε1g2x
ε2 · · · gnx

εn ∈ G[x],

v2 = h1x
δ1h2x

δ2 · · ·hmxδmeHxε1eHxε2 · · · eHxεn ∈ H [x].

Note that ǫ(vi) = ǫ(wi) = ǫ(w1) + ǫ(w2) = 0 and EG
v1

= EG
w1

= {eG}, EH
v2

=

EH
w2

= {eH}, so that also v1, v2 are δ-words respectively for G and H .
Let pj = (eG, hj) ∈ P for j = 1, . . . ,m, and pm+j = (gj, eH) ∈ P for j =

i, . . . , n, and consider

w = p1x
δ1p2x

δ2 · · · pmxδmpm+1x
ε1pm+2x

ε2 · · · pm+nx
εn ∈ P [x].

Obviously, ǫ(w) = 0, and (v1, v2) are the coordinates of w in G[x]×H [x], so that
EP

w = EG
v1

× EH
v2

= {eP} by Theorem 3.4. So w is a δ-word for P . �

In the following theorem we show that a group G has a δ-word (in other words,
G ∈ ∆) if and only if GI does.
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Theorem 3.10. Let G be a group, and I be a set. Then G ∈ ∆ if and only if

GI ∈ ∆.

Proof: Let w ∈ G[x] be a δ-word. Then Lemma 3.8 gives a word v ∈ GI [x] such
that (w)i∈I ∈ G[x]I are the coordinates of v, and v is a δ-word for GI .

By (4), w ∈ GI [x] with coordinates (wi)i∈I is a δ-word if and only if wi ∈ G[x]
is a δ-word for every i ∈ I. �

As a consequence of Proposition 2.5 and Theorem 3.10, we get that every power
of a free non-abelian group has a δ-word, i.e., belongs to ∆. In the following result,
we show that ∆ contains all products of free non-abelian groups.

Proposition 3.11. Let {Gi | i ∈ I} be a family of free non-abelian groups. Then

G =
∏

i∈I Gi belongs to ∆.

Proof: For every i ∈ I, let ai, bi ∈ Gi be two of the generators of Gi, and
wi = [ai, x][bi, x] = aixa

−1
i x−1bixb

−1
i x−1 ∈ Gi[x] be the δ-word forGi constructed

in Proposition 2.5. As l(wi) = 4, and ~ǫ(wi) = (1,−1, 1,−1) for every i ∈ I,
Lemma 3.8 applies, so there exists a δ-word w ∈ G[x] such that (wi)i∈I are the
coordinates of w in

∏
i∈I(Gi[x]). �

Let ∆m ⊆ ∆ be the class of groups G having a δ-word w ∈ G[x] with l(w) ≤ m.
Then ∆2k = ∆2k+1 for every k ∈ N, and ∆0 = ∆2 only contains the trivial group
{e} by Remark 2.4. Moreover, ∆4 contains every product of free non-abelian
groups by Proposition 3.11. Then

(5) ∆0 = ∆2 =
{
{e}

}
( ∆4 ⊆ ∆6 ⊆ . . . ⊆

⋃

m∈N

∆m = ∆.

In the following theorem, we characterize which products belong to the class ∆.

Theorem 3.12. Let {Gi | i ∈ I} be a family of groups, and G =
∏

i∈I Gi. Then

the following are equivalent:

1. G ∈ ∆;

2. there exists m ∈ N such that G ∈ ∆m;

3. there exists m ∈ N such that Gi ∈ ∆m for every i ∈ I.

Proof: The equivalence between conditions 1 and 2 follows from the definitions,
while 2 implies 3 (with the same m) by Theorem 3.4.

So we only have to prove that 3 implies 1. Let wi ∈ Gi[x] be a δ-word, with
l(wi) = li ≤ m.

For 1 ≤ k ≤ m, let Ik = {i ∈ I | l(wi) = k}, and note that ~ǫ(wi) ∈ {−1, 1}k for
every i ∈ Ik. So for every ~ǫ ∈ {−1, 1}k, let also Ik,~ǫ = {i ∈ Ik | ~ǫ(wi) = ~ǫ}.

Note that I =
⋃m

k=1

⋃
~ǫ∈{−1,1}k Ik,~ǫ is a partition of I into finitely many subsets

Ik,~ǫ. If Ik,~ǫ is empty, let Gk,~ǫ = {e} be the trivial group, otherwise let Gk,~ǫ =
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∏
i∈Ik,~ǫ

Gi. Then

G =
∏

k=1,...,m

~ǫ∈{−1,1}k

Gk,~ǫ

is a finite product of the groups Gk,~ǫ.
Then we can apply Lemma 3.8 to the family {Gi | i ∈ Ik,~ǫ}, obtaining that

Gk,~ǫ ∈ ∆.
Finally, G ∈ ∆ by Corollary 3.9. �

Note that both Theorem 3.10 and Proposition 3.11 can be obtained as corol-
laries of Theorem 3.12.

Remark 3.13. (a) The class ∆ is stable under taking arbitrary products if
and only if ∆ = ∆m for some m ∈ N, i.e. the chain (5) stabilizes after
finitely many steps.

(b) We do not know if the equivalent conditions in item (a) do hold, for
example we do not even know if ∆4 ( ∆6.

Motivated by Remark 3.13, one can ask the following question.

Question 2. Does the equality ∆ = ∆m hold for some m ∈ N? Or, equivalently,
is it true that for every integer m ≥ 2 there exists a group Gm ∈ ∆2m+2 \∆2m?

We conclude this part with an easy result on the Zariski topology of a direct
product.

Lemma 3.14. Let {Gi | i ∈ I} be a family of groups, and Xi ⊆ Gi be a subset

for every i ∈ I. If G =
∏

i∈I Gi, then
∏

i∈I CGi
(Xi) is a ZG-closed subgroup of G.

In particular, if Gi0 is center-free for some i0 ∈ I, then {ei0} ×
∏

i0 6=i∈I Gi is

ZG-closed.

Proof: It follows from the fact that
∏

i∈I CGi
(Xi) = CG(

∏
i∈I Xi). Then Ex-

ample 1.2, item 1, applies.
In the special case when Gi0 is center-free,

{ei0} ×
∏

i0 6=i∈I

Gi = CG

(
Gi0 ×

∏

i0 6=i∈I

{ei}
)
. �

4. Z-productivity

4.1 The class ∆ and Z-productivity.

Lemma 4.1. Let G1, G2 be groups, with G2 ∈ ∆ and G = G1 × G2. Then

G1 × {e2} = EG
w , for a singular word w ∈ G[x].

Proof: Let w0 = g1x
ε1g2x

ε2 · · · gnxεn ∈ G2[x] be a δ-word for G2. For i =
1, 2, . . . , n define the elements g̃i = (e1, gi) ∈ G and let w = g̃1x

ε1 g̃2x
ε2 · · · g̃nx

εn ∈
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G[x]. The coordinates of w inG1[x]×G2[x] are (w1, w0), where w1 = e1x
ε1e1x

ε2 · · ·
e1x

εn = xǫ(w0) = x0 is the neutral element of G1[x].
Then EG

w = EG1
w1

× EG2
w0

= G1 × {e2} and ǫ(w) = ǫ(w0) = 0. �

Example 4.2. Let G2 be a product of free non-abelian groups, G1 be an arbitrary
group, and G = G1 ×G2. By Proposition 3.11, G2 ∈ ∆, so that G1 × {e2} ∈ EG

by Lemma 4.1.
In particular, G1 × {e2} is a ZG-closed subset of G for every group G1. In

Theorem 4.11 we prove that the groups G2 with this property are exactly the
center-free groups.

Lemma 4.3. Let G be an abelian group, and assume that G is a finite union

of elementary algebraic subsets determined by non-singular words. Then G is

bounded.

Proof: Let G =
⋃k

i=1 G[ni] + gi for elements gi ∈ G and integers ni ∈ N+, as

1 ≤ i ≤ k. If m = n1n2 · · ·nk, then G[ni] ⊆ G[m], so that G =
⋃k

i=1 G[m] + gi.
Then [G : G[m]] is finite, and so mG ∼= G/G[m] is finite. As m 6= 0, we deduce
that G is bounded. �

As a consequence of Lemma 4.3, if G is an abelian unbounded group, and
G is a finite union of elementary algebraic subsets, then at least one of them is
determined by a singular word. This motivates the following definition introducing
the class W∗

0 of groups in the general case.

Definition 4.4. We say that a groupG ∈ W∗
0 if G satisfies the following property:

for every k ∈ N+, if w1, w2, . . . , wk ∈ G[x] are such that G =
⋃k

i=1 Ewi
, then wi

is singular for some i = 1, 2, . . . , k.

Here we give some necessary and sufficient conditions on a group G to belong
to W∗

0 .

Remark 4.5. • If G ∈ W∗
0 , then every universal word of G is singular. In

particular, if G is a bounded group, and n = exp(G), then n > 0 and
xn ∈ UG is non-singular, so that G /∈ W∗

0 .
• On the other hand, if G is an abelian unbounded group, then G ∈ W∗

0 by
Lemma 4.3. So if G is abelian then G ∈ W∗

0 if and only if G is unbounded.

In the following theorem we prove that the converse of Lemma 4.1 holds for
groups G1 ∈ W∗

0 .

Theorem 4.6. Let G1 ∈ W∗
0 and G2 be groups. If G = G1 × G2, then the

following conditions are equivalent:

(a) G2 ∈ ∆;

(b) G1 × {e2} = EG
w , for a singular word w ∈ G[x];

(c) G1 × {e2} ∈ EG;

(d) G1 × {e2} ∈ E∪
G.



Productivity of the Zariski topology on groups 233

Proof: (a)⇒ (b) follows by Lemma 4.1.
(b)⇒ (c)⇒ (d) are trivial.

(d)⇒ (a). Assume G1 × {e2} =
⋃k

i=1 E
G
wi

for a positive integer k, and words

wi ∈ G[x] for i = 1, . . . , k with EG
wi

6= ∅.

By (4), every elementary algebraic subset EG
w of G has the form EG

w = EG1

w′ ×

EG2

w′′ for words w′ ∈ G1[x] and w′′ ∈ G2[x]. So G1 × {e2} =
⋃k

i=1 E
G1

w′

i
× EG2

w′′

i
,

from which we deduce

G1 =

k⋃

i=1

EG1

w′

i
,(6)

and {e2} =

k⋃

i=1

EG2

w′′

i
, i.e. EG2

w′′

i
= {e2} for every i = 1, . . . , k.(7)

As G1 ∈ W∗
0 , (6) implies that w′

i is singular for some i = 1, . . . , k. This implies
that also w′′

i is singular. By (7), w′′
i is a δ-word for G2. �

Lemma 4.1 and Theorem 4.6 immediately imply Corollary 4.7 below. In par-
ticular, the equivalence between its items (b) and (c) provides a converse to
Lemma 4.1. Moreover, the equivalence between items (a) and (b) is Theorem B.

Corollary 4.7. Let G2 be a group. Then, the following conditions are equivalent:

(a) G2 ∈ ∆;

(b) G1 × {e2} ∈ EG1×G2 for every group G1;

(c) G1 × {e2} ∈ EG1×G2 for every G1 ∈ W∗
0 ;

(d) G1 × {e2} ∈ EG1×G2 for some G1 ∈ W∗
0 .

By Theorem 3.10, every powerGI
2 has the same properties as those of G2 stated

in the above corollary.

Corollary 4.8. Let G1, G2 be abelian groups, with G1 unbounded and G2 non-

trivial. Then G1 × {02} is not a Zariski closed subset of G = G1 ×G2.

Proof: We have G1 ∈ W∗
0 by Lemma 4.3, while the abelian group G2 has no δ-

words by Lemma 2.3. Then G1×{0G2} /∈ E∪
G by Theorem 4.6, so that Theorem 1.9

applies. �

Remark 4.9. (a) The implication in Corollary 4.8 need not hold if one of
the groups G1, G2 is not abelian. Indeed, consider an arbitrary group
G1, a product G2 of free non-abelian groups, and let G = G1 × G2. By
Example 4.2, we have that G1 × {e2} is ZG-closed, independently on G1.

(b) One can relax the hypothesis “non-trivial abelian” for G2 to Z(G2) 6=
{e2}, but then only the weaker conclusion “G1 × {e2} is not additively
algebraic” can be obtained.

We anticipate the following result from [10] about the Zariski closure of G1 ×
{e2} in the product G1 ×G2, when G1 ∈ W∗

0 .
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Proposition 4.10 ([10]). Let G1 ∈ W∗
0 . Then G1 × {e2}

ZG1×G2 = G1 × Z(G2)
for every group G2.

By Corollary 4.7, a group G2 ∈ ∆ if and only if G1 × {e2} ∈ EG1×G2 for every
group G1. In particular, G1 ×{e2} is a Zariski closed subset of G1 ×G2 for every
group G1. The next theorem characterizes the groups G2 with the latter (weaker)
property.

Theorem 4.11. For a group G2 the following are equivalent:

(a) G2 is center-free;

(b) G1 × {e2} is a Zariski closed subset of G1 ×G2 for every group G1.

Proof: (b)⇒ (a). Proposition 4.10, applied with H = G1 = Z, implies Z(G2) =
{e2}.

(a)⇒ (b). Since G2 is a center-free group, Lemma 3.14 applies to conclude
that G2 satisfies (b). �

4.2 Semi Z-productive pairs.

Lemma 4.12. Let G1, G2 be groups, Hi ≤ Gi, for i = 1, 2 be subgroups, G =
G1 × G2 and H = H1 ×H2. If H is Zariski embedded in G, then the following

hold.

(1) If the pair G1, G2 is semi Z-productive, then also the pair H1, H2 is semi

Z-productive.

(2) If the pair G1, G2 is Z-productive, then also the pair H1, H2 is Z-produc-

tive.

Proof: (1) By assumption, G1 × {e2} is a ZG-closed subset of G, so H1 × {e2}
is a ZG ↾H-closed subsets of H . As ZG ↾H= ZH , this proves that H1 × {e2} is a
ZH -closed subset of H . The same argument holds for {e1} ×H2.

(2) Note that ZG1↾H1
× ZG2↾H2

⊇ ZH1 × ZH2 . Then

ZH = ZG ↾H= (ZG1 × ZG2) ↾H= ZG1↾H1
× ZG2↾H2

⊇ ZH1 × ZH2 ,

where the first equality holds as H is Zariski embedded in G, while the second
equality holds as G1, G2 is Z-productive.

From Theorem 3.4 and the above equation, it follows that ZH = ZH1 × ZH2 .
�

Corollary 4.13. If G1, G2 is a (semi) Z-productive pair, and Hi ≤ Z(Gi), for
i = 1, 2 are subgroups, then also H1, H2 is (semi) Z-productive.

In particular, if G1, G2 is an abelian (semi) Z-productive pair, and Hi ≤ Gi,

for i = 1, 2 are subgroups, then also H1, H2 is (semi) Z-productive.

Proof: As central subgroups are Zariski embedded by Proposition 1.8, we have
that H = H1 × H2 ≤ Z(G1) × Z(G2) = Z(G1 × G2) is Zariski embedded in
G1 ×G2.

Finally, Lemma 4.12 applies. �
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4.3 Abelian Z-productive pairs.

Lemma 4.14. Let G1, G2 be bounded abelian groups having coprime exponents.

Then G1, G2 is Z-productive.

Proof: Let G = G1×G2, and exp(Gi) = mi for i = 1, 2. By (3), the ZG1- (resp.,
ZG2)-closed subsets are generated by the cosets of the n-soclesG1[n] (resp., G2[n]),
for n ∈ N. So it will suffice to show that, for every n ∈ N, the subgroupsG1[n]×G2

andG1×G2[n] are ZG-closed subsets. Indeed G1[n]×G2 is an elementary algebraic
subset of G, as

G1[n]×G2 = G1[n]×G2[nm2] = G1[nm2]×G2[nm2] = G[nm2],

where the first equality holds as m2 = exp(G2), and the second one as
(exp(G1),m2) = 1. Similarly, G1 ×G2[n] = G1[nm1]×G2[nm1] = G[nm1]. �

If {Gi | i ∈ I} is a family of groups, for an element g = (gi)i∈I ∈ G =
∏

i∈I Gi,
we denote by supp(g) = {i ∈ I | gi 6= ei} ⊆ I the set of indexes such that the
correspondent coordinates of g are non-trivial.

The subgroup S of G consisting of the elements g such that supp(g) is finite
will be called direct sum of {Gi | i ∈ I}, and denoted by S =

⊕
i∈I Gi. Obviously,

S = G when I is finite.

For an abelian group G, recall that π(G) = {p ∈ P | G[p] 6= {0}}, and for p ∈ P

it is defined the subgroup

Gp = {g ∈ G | ∃n ∈ N png = 0} =
⋃

n∈N

G[pn].

It is well-known that if G is a torsion, then G ∼=
⊕

p∈π(G)Gp.

Now we are ready to prove Theorem A. It will give a positive answer to Ques-
tion 1 for abelian Z-productive pairs, and provides a description of the structure
of abelian groups G1, G2 such that the pair G1, G2 is Z-productive. Moreover,
the implication (b)⇒ (c) is a ‘symmetric’ form of Corollary 4.8, giving a much
more precise conclusion.

Proof of Theorem A: We have to prove that if G1, G2 are abelian groups,
and G = G1 ×G2, then the following conditions are equivalent:

(a) the pair G1, G2 is Z-productive;
(b) the pair G1, G2 is semi Z-productive;
(c) G1 and G2 are bounded, G1 = F1⊕G∗

1, and G2 = F2⊕G∗
2, for finite sub-

groups Fi ≤ Gi for i = 1, 2, and subgroups G∗
i ≤ Gi for i = 1, 2 such that

(exp(G∗
1 ⊕G∗

2), |F1|) = 1, (exp(G∗
1 ⊕G∗

2), |F2|) = 1, (exp(G∗
1), exp(G

∗
2)) =

1.

(a)⇒ (b) follows by the definitions.
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(b)⇒ (c). As both G1 × {02} and {01} ×G2 are ZG-closed subsets of G, then
both G1 and G2 are bounded by Corollary 4.8. Let Gi =

⊕
p∈π(Gi)

Gi,p, where

π(Gi) is finite, for i = 1, 2.
Let π = π(G1) ∩ π(G2). If π = ∅, let F1 and F2 be the trivial subgroups of G1

and G2 respectively. Otherwise, let

F1 =
⊕

p∈π

G1,p and F2 =
⊕

p∈π

G2,p.

Set

G∗
1 =

⊕

p∈π(G1)\π(G2)

G1,p and G∗
2 =

⊕

p∈π(G2)\π(G1)

G2,p,

so that

G1 = F1 ⊕G∗
1 and G2 = F2 ⊕G∗

2.

It only remains to prove that both F1, F2 are finite groups, that is: if p ∈ π, then
both G1,p and G2,p are finite.

So let p ∈ π and by contradiction assume G1,p to be infinite. If H1 = G1[p] ≤
G1,p, then also H1 is infinite. Fix an element x ∈ G2 of order p, and let H2 =
〈x〉 ≤ G2. Finally, let H = H1×H2, and note that exp(H) = p, so that ZH is the
cofinite topology by Proposition 1.11. Being H0 = H1 × {02} an infinite proper
subgroup of H , it is not ZH -closed. This contradicts Corollary 4.13.

(c)⇒ (a). Assume G1 = F1 ⊕ G∗
1 and G2 = F2 ⊕ G∗

2, with F1, F2 finite, G∗
1,

G∗
2 bounded, with coprime exponents as in the statement of (c). Then ZGi

=
ZFi

× ZG∗

i
for i = 1, 2 by Lemma 4.14, so that

ZG1 × ZG2 = ZF1 × ZG∗

1
× ZF2 × ZG∗

2
.

Finally, let F = F1 × F2 and note that ZF = ZF1 × ZF2 is the discrete topology
on the finite group F . So

ZG1×G2 = ZF1⊕G∗

1×F2⊕G∗

2
= ZF×G∗

1×G∗

2

(∗)
= ZF×ZG∗

1
×ZG∗

2
= ZF1×ZF2×ZG∗

1
×ZG∗

2
,

where the equality (∗) follows again from Lemma 4.14, as the three groups F , G∗
1

and G∗
2 are all bounded with mutually coprime exponents. This concludes the

proof. �

Corollary 4.15. Let G1, G2 be an abelian semi Z-productive pair. Then neither

G1, nor G2, can contain as a subgroup any of the following groups: the group

of integers Z; the p-Prüfer group Zp∞ ;
⊕∞

n=1 Zpn for a prime number p ∈ P;⊕∞
n=1 Zpn

for infinitely many different prime numbers pn ∈ P, as n ∈ N.

It follows from Theorem A that for every non-trivial abelian group G there
exists a bounded abelian group H such that G, H is not a Z-productive pair.

Acknowledgments. We gratefully thank the referee for the valuable corrections
and suggestions which led us to the proof of Corollary 3.9.
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