Commentationes Mathematicae Universitatis Caroline

Dikran N. Dikranjan; D. Toller
Productivity of the Zariski topology on groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 54 (2013), No. 2, 219--237
Persistent URL: http://dml.cz/dmlcz/143270

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2013

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Productivity of the Zariski topology on groups

D. Dikranjan, D. Toller
Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract

This paper investigates the productivity of the Zariski topology \mathcal{Z}_{G} of a group G. If $\mathcal{G}=\left\{G_{i} \mid i \in I\right\}$ is a family of groups, and $G=\prod_{i \in I} G_{i}$ is their direct product, we prove that $\mathfrak{Z}_{G} \subseteq \prod_{i \in I} \mathfrak{Z}_{G_{i}}$. This inclusion can be proper in general, and we describe the doubletons $\mathcal{G}=\left\{G_{1}, G_{2}\right\}$ of abelian groups, for which the converse inclusion holds as well, i.e., $\mathfrak{Z}_{G}=\mathfrak{Z}_{G_{1}} \times \mathfrak{Z}_{G_{2}}$.

If $e_{2} \in G_{2}$ is the identity element of a group G_{2}, we also describe the class Δ of groups G_{2} such that $G_{1} \times\left\{e_{2}\right\}$ is an elementary algebraic subset of $G_{1} \times G_{2}$ for every group G_{1}. We show among others, that Δ is stable under taking finite products and arbitrary powers and we describe the direct products that belong to Δ. In particular, Δ contains arbitrary direct products of free non-abelian groups.

Keywords: Zariski topology, (elementary, additively) algebraic subset, δ-word, universal word, verbal function, (semi) \mathfrak{Z}-productive pair of groups, direct product

Classification: Primary 20F70, 20K45; Secondary 20K25, 57M07

1. Introduction

1.1 Algebraic subsets of a group and the Zariski topology. Let G be a group. A self-map $G \rightarrow G$ of the form $g \mapsto g_{1} g^{\varepsilon_{1}} g_{2} g^{\varepsilon_{2}} \cdots g_{n} g^{\varepsilon_{n}} g_{0}$, where $n \in \mathbb{N}$, $g_{0}, g_{1}, \ldots, g_{n} \in G, \varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,1\}$ and $g \in G$, will be called a verbal function of G. Since these functions play a pivotal role in the paper, we give also a more formal definition as follows.

Taking x as a symbol for a variable, we denote by $G[x]=G *\langle x\rangle$ the free product of G and the infinite cyclic group $\langle x\rangle$ generated by x. A non-trivial element $w \in G[x]$ is given by

$$
\begin{equation*}
w(x)=g_{1} x^{\varepsilon_{1}} g_{2} x^{\varepsilon_{2}} \cdots g_{n} x^{\varepsilon_{n}} g_{0} \tag{1}
\end{equation*}
$$

where $n \in \mathbb{N}$ and $g_{0}, g_{1}, \ldots, g_{n} \in G, \varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,1\}$. For simplicity, we write only w, when this leads to no misunderstanding. We call $G[x]$ the group of words with coefficients in G and its elements w are called words in G. We denote by $e_{G[x]}$ the neutral element (the trivial word) of $G[x]$.

In these terms, every word $w \in G[x]$ determines a verbal function of G, namely the associated evaluation function $f_{w}: G \rightarrow G$, mapping $g \mapsto w(g)$, where $w(g) \in$
G is obtained replacing x with g in (1) and taking products (and eventually inversions) in G (see [15] for more details on verbal functions).

Definition 1.1. If $w \in G[x]$, we let

$$
E_{w}^{G}=f_{w}^{-1}\left(\left\{e_{G}\right\}\right)=\left\{g \in G \mid f_{w}(g)=e_{G}\right\} \subseteq G
$$

we call E_{w}^{G} elementary algebraic subset of G, and we will denote it simply by E_{w} when no confusion is possible.

We denote by $\mathbb{E}_{G}=\left\{E_{w} \mid w \in G[x]\right\} \subseteq \mathcal{P}(G)$ the family of elementary algebraic subsets of G, and by \mathbb{E}_{G}^{U} the family of finite unions of elements of \mathbb{E}_{G}.

If $X \subseteq G$, we call X :
(a) additively algebraic if X is a finite union of elementary algebraic subsets of G, i.e. if $X \in \mathbb{E}_{G}^{U}$;
(b) algebraic if X is an intersection of additively algebraic subsets of G.

Obviously, every singleton is an elementary algebraic subset, so every finite subset is additively algebraic. Then the family of algebraic subsets is closed under finite unions and arbitrary intersections, and contains G and all finite subsets of G. So it can be taken as the family of closed sets of a unique T_{1} topology \mathfrak{Z}_{G} on G, called the Zariski topology ([5], [6], [7], [8], [9], [2], [15]).

While the definition of elementary algebraic, additively algebraic and algebraic subset goes back to Markov [11], he did not explicitly introduce the Zariski topology, although it was implicitly present in [11], [12], [13] (through the algebraic closure of a subset X, i.e., the smallest algebraic subset of the group G that contains X). It was explicitly introduced only in 1977 by Bryant [3] under the name verbal topology. Here we keep the name Zariski topology and the notation \mathfrak{Z}_{G} for this topology.

The Zariski topology of the abelian groups was described and thoroughly studied in the abelian case in [7] (we recall some of the most relevant facts in the abelian case in $\S 1.4$). Here we provide examples in the non-abelian case.

Example 1.2. (1) If $g \in G$, its centralizer in G is the subgroup

$$
C_{G}(g)=\{h \in G \mid g h=h g\}
$$

consisting of the elements of G that commute with g. Then $C_{G}(g)=E_{w}$, where $w=g x g^{-1} x^{-1} \in G[x]$. Hence $C_{G}(g) \in \mathbb{E}_{G}$.

If $S \subseteq G$, the centralizer of S is the intersection $C_{G}(S)=\bigcap_{s \in S} C_{G}(s)$, consisting of the elements of G that commute with every element of S. Therefore, $C_{G}(S)$ is an algebraic subset of G.

In particular, the center $Z(G)=C_{G}(G)$ of G is an algebraic subset. We call center-free a group G such that $Z(G)=\left\{e_{G}\right\}$.
(2) For every $n \in \mathbb{Z}$, let

$$
G[n]=\left\{g \in G \mid g^{n}=e_{G}\right\} \subseteq G
$$

For example, $G[1]=\left\{e_{G}\right\}$ and $G[0]=G$.
The word $x^{n} \in G[x]$ determines the verbal function $f_{x^{n}}: g \mapsto g^{n}$, and obviously $G[n]=E_{x^{n}}$.

If G is abelian, every $G[n]$ is a subgroup of G, and these (together with their cosets, of course) are all the non-empty elementary algebraic subsets of G (see (3) and $\S 1.4$).
(3) Let $n \in \mathbb{N}$. Here we shall provide some easy examples of cases when the elementary algebraic subset $E_{x^{n}}=G[n]$ is not a coset of a subgroup, by imposing that the subgroup generated by $G[n] \neq G$ is the whole group $G\left(\right.$ as $\left.e_{G} \in G[n] \neq G\right)$. To this end, it suffices to consider a simple group G with $\left\{e_{G}\right\} \neq G[n]$. Indeed, the subset $G[n]$ is invariant under conjugations, so the subgroup N generated by $G[n]$ is normal in G, and we conclude $N=G$.

To get an easy example to this effect take a non-abelian finite simple group G. Then $|G|$ is even (e.g., by Feit-Thompson theorem), so that $\left\{e_{G}\right\} \neq G[2] \neq G$.

As another example, let G be a compact, connected, simple Lie group (for example, the group $G=\mathrm{SO}_{3}(\mathbb{R})$ will do). Then G is covered by copies of the torus \mathbb{R} / \mathbb{Z} (see for example [1]), so that $\left\{e_{G}\right\} \neq G[n] \neq G$ for every $n>1$.
(4) By item 2, we have that $G[2]=E_{x^{2}}$. Here we slightly generalize this example studying E_{w} for a word $w=g_{1} x g_{2} x$ (note that $w=x^{2}$ when $\left.g_{1}=g_{2}=e_{G}\right)$.

Then $w=a^{-1}\left(g_{2} x\right)^{2}$, for $a=g_{2} g_{1}^{-1}$, so that

$$
E_{w}=\left\{g \in G \mid\left(g_{2} g\right)^{2}=a\right\}=\left\{g_{2}^{-1} h \in G \mid h^{2}=a\right\}=g_{2}^{-1}\left\{g \in G \mid g^{2}=a\right\}
$$

is a translate of the 'square roots' of the element $a \in G$.
If $E_{w} \neq \emptyset$, i.e. if $a=b^{2}$ for some $b \in G$, then $g_{2}^{-1}\left(C_{G}(b)[2]\right) b \subseteq E_{w}$.
1.2 Preliminaries. We denote by \mathbb{Z} the group of integers, by \mathbb{N}_{+}the set of positive integers, by \mathbb{N} the set of naturals, and by \mathbb{P} the set of prime numbers.

Given two elements g, h of a group G, their commutator element is $[g, h]=$ $g h g^{-1} h^{-1} \in G$. Note that $[g, h]=e_{G}$ if and only if $g h=h g$, i.e. g and h commute.

A torsion group is a group in which each element has finite order. All finite groups are torsion.

The exponent $\exp (G)$ of a torsion group G is the least common multiple, if it exists, of the orders of the elements of G. In this case, the group is called bounded, and $\exp (G)>0$. Otherwise, or if G is not even torsion, it will be called unbounded, and we conventionally define $\exp (G)=0$. Any finite group has positive exponent: it is a divisor of $|G|$.
Definition 1.3. Let $w \in G[x]$ be as in (1).
If $g_{i} \neq e_{G}$ whenever $\varepsilon_{i-1}=-\varepsilon_{i}$ for $i=2, \ldots, n$, we say that w is a reduced word in the free product $G[x]=G *\langle x\rangle$ and we define the lenght of w by $\mathrm{l}(w)=n$, where $n \in \mathbb{N}$ is the least natural number such that w is as in (1).

We call constant a word w with $\mathrm{l}(w)=0$, i.e. a word of the form $w=g_{0} \in G$.
The proof of the following standard fact can be found in [15] and will be used in Lemma 3.1.

Proposition $1.4([15])$. Let $\phi: G_{1} \rightarrow G_{2}$ be a group homomorphism. Then there exists a unique group homomorphism $F: G_{1}[x] \rightarrow G_{2}[x]$ such that $F \upharpoonright_{G_{1}}=\phi$, $F(x)=x$.

The map $F: G_{1}[x] \rightarrow G_{2}[x]$ can be explicitly described as the assignment

$$
G_{1}[x] \ni g_{1} x^{\varepsilon_{1}} g_{2} x^{\varepsilon_{2}} \cdots g_{n} x^{\varepsilon_{n}} g_{0} \mapsto \phi\left(g_{1}\right) x^{\varepsilon_{1}} \phi\left(g_{2}\right) x^{\varepsilon_{2}} \cdots \phi\left(g_{n}\right) x^{\varepsilon_{n}} \phi\left(g_{0}\right) \in G_{2}[x] .
$$

Remark 1.5. If $w \in G[x]$ and $g \in G$, then also $w^{\prime}=g w g^{-1} \in G[x]$, and $E_{w}=E_{w^{\prime}}$. As a consequence, if w is a non-constant word as in (1), we will assume $g_{0}=e_{G}$.

We also introduce the following notions.

- The constant term of w is $\operatorname{ct}(w)=w\left(e_{G}\right)=g_{1} g_{2} \cdots g_{n} \in G$.
- The content of w is $\epsilon(w)=\sum_{j=1}^{n} \varepsilon_{j} \in \mathbb{Z}$, which will also be denoted simply by ϵ when no confusion is possible.
If $w=g \in G$, then $\operatorname{ct}(w)=w\left(e_{G}\right)=g$, and we define $\epsilon(w)=0$. We call singular a word w such that $\epsilon(w)=0$. By definition, all constant words are singular.
Definition 1.6. Let G be a group. A word $w \in G[x]$ is called universal, if $E_{w}=G$. We denote by \mathcal{U}_{G} the normal subgroup of $G[x]$ consisting of the universal words of G.

Note that w is universal if and only if $f_{w} \equiv e_{G}$ is the constant function e_{G} on G.
1.3 The Zariski topology and subgroups. If H is a subgroup of a group G, then H carries its own Zariski topology \mathfrak{Z}_{H}, as well as the induced topology $\mathfrak{Z}_{G} \upharpoonright_{H}$. If $w \in H[x]$, then one can consider w also in $G[x]$, so that both E_{w}^{H} and E_{w}^{G} make sense, and $E_{w}^{H}=E_{w}^{G} \cap H$. From this, one can deduce the inclusion $\mathfrak{Z}_{H} \subseteq \mathfrak{Z}_{G} \upharpoonright_{H}$. To better describe the cases when the two topologies \mathfrak{Z}_{H} and $\mathfrak{Z}_{G} \upharpoonright_{H}$ on H coincide, the following definition was given in [6].

Definition 1.7 ([6, Definition 2.1]). A subgroup H of a group G is called Zariski embedded in G if $\mathfrak{Z}_{G} \upharpoonright_{H}=\mathfrak{Z}_{H}$.

Note that H is Zariski embedded in G if and only if $\mathfrak{Z}_{G} \upharpoonright_{H} \subseteq \mathfrak{Z}_{H}$. This condition is also equivalent to ask $E_{w}^{G} \cap H$ to be an algebraic subset of H for every word $w \in G[x]$.

As a consequence of [6 , Theorem 3.4] and [9, Proposition 2.7(c)] one can immediately obtain the following result we will use in Corollary 4.13. For the reader's convenience, we give a direct proof here.
Proposition 1.8. Every central subgroup is Zariski embedded.

Proof: Let G be a group, and $H \leq Z(G)$ be a subgroup of G. We will prove that $E_{w}^{G} \cap H \in \mathbb{E}_{H}$ for every word $w \in G[x]$.

Let $w \in G[x]$. Then $w(h)=\operatorname{ct}(w) h^{\epsilon(w)}$ as $H \leq Z(G)$, so that

$$
E_{w}^{G} \cap H=\left\{x \in H \mid w(h)=e_{G}\right\}=\left\{x \in H \mid \operatorname{ct}(w) h^{\epsilon(w)}=e_{G}\right\}
$$

If $\operatorname{ct}(w) \in G \backslash H$, then $E_{w}^{G} \cap H=\emptyset$ and there is nothing to prove.
Otherwise, let $\operatorname{ct}(w)=h_{0} \in H$. Then $w_{0}=h_{0} x^{\epsilon(w)} \in H[x]$, and the above equation shows that $E_{w}^{G} \cap H=E_{w_{0}}^{H}$.
1.4 The Zariski topology on abelian groups. Here we resume some results from [7] on the Zariski topology of an abelian group.

Let $\left(G,+, 0_{G}\right)$ be an abelian group. Then the elementary algebraic subset $G[n]=\left\{g \in G \mid n g=0_{G}\right\}$ is a subgroup of G, called the n-socle of G.

It can be easily verified that the family of verbal functions of G is $\left\{f_{g+n x} \mid g \in\right.$ $G, n \in \mathbb{Z}\}$. The elementary algebraic subset of G determined by $f_{g+n x}$ is

$$
E_{g+n x}= \begin{cases}\emptyset & \text { if } g+n x=0_{G} \text { has no solution in } G \tag{2}\\ G[n]+x_{0} & \text { if } x_{0} \text { is a solution of } g+n x=0_{G}\end{cases}
$$

On the other hand, if $n \in \mathbb{Z}$, and $g \in G$, then $G[n]+g=E_{-n g+n x}$. So the non-empty elementary algebraic subsets of G are exactly the cosets of the n-socles of G :

$$
\begin{equation*}
\mathbb{E}_{G} \backslash\{\emptyset\}=\{G[n]+g \mid n \in \mathbb{N}, g \in G\} \tag{3}
\end{equation*}
$$

One can verify that \mathbb{E}_{G} is stable under taking finite intersections, and satisfies the descending chain condition. Using this fact, the authors of [7] proved that \mathbb{E}_{G}^{U} is the family of all the \mathfrak{Z}_{G}-closed subsets of an abelian group G. In other words, every algebraic subset of G is additively algebraic.

Theorem 1.9 ([7]). If G is an abelian group, then the family of \mathfrak{Z}_{G}-closed sets is \mathbb{E}_{G}^{U}.

Remark 1.10. It follows from (2) that if G is abelian, and $w \in G[x]$ is singular, then either $E_{w}=G$ or $E_{w}=\emptyset$.

The following result from [14] classifies the class of abelian groups that have a cofinite Zariski topology. Recall that G is said to be almost torsion-free, if $G[n]$ is finite for every $n \neq 0$.

Proposition 1.11 ([14, Theorem 5.1]). Let G be an abelian group. Then \mathfrak{Z}_{G} is the cofinite topology if and only if either G is almost torsion-free, or $\exp (G) \in \mathbb{P}$.

Finally, every subgroup of an abelian group is Zariski embedded by Proposition 1.8.
1.5 Productivity of the Zariski topology. Consider the group \mathbb{Z} of integers, and the product $G=\mathbb{Z} \times \mathbb{Z}$. Then the Zariski topology of G is the cofinite topology by Proposition 1.11 , so neither $\mathbb{Z} \times\{0\}$ nor $\{0\} \times \mathbb{Z}$ are Zariski closed in G, whereas they are certainly closed in the product topology $\mathfrak{Z}_{\mathbb{Z}} \times \mathfrak{Z}_{\mathbb{Z}}$.

Moreover, as the topology $\mathfrak{Z}_{\mathbb{Z}} \times \mathfrak{Z}_{\mathbb{Z}}$ is T_{1}, it contains the cofinite topology \mathfrak{Z}_{G}, so that $\mathfrak{Z}_{\mathbb{Z} \times \mathbb{Z}} \subseteq \mathfrak{Z}_{\mathbb{Z}} \times \mathfrak{Z}_{\mathbb{Z}}$. We prove that this inequality holds in the general case (see the comments below).

If $\left\{G_{i} \mid i \in I\right\}$ is a non-empty family of groups, we denote by $e_{i} \in G_{i}$ the identity element of G_{i}. We consider the direct product $G=\prod_{i \in I} G_{i}$, and we denote G by H^{I} when all the groups G_{i} coincide with a group H.

We denote by $\prod_{i \in I} \mathfrak{Z}_{G_{i}}$ the product topology on G of the Zariski topologies $\mathfrak{Z}_{G_{i}}$ on each factor G_{i}. Then the Zariski topology \mathfrak{Z}_{G} of the direct product is coarser than the product topology $\prod_{i \in I} \mathfrak{Z}_{G_{i}}$. For more details, see Theorem 3.4, where we give also a description of the elementary algebraic subsets of the product G.

As we noted above, these two topologies \mathfrak{Z}_{G} and $\prod_{i \in I} \mathfrak{Z}_{G_{i}}$ on a product group $G=\prod_{i \in I} G_{i}$ need not coincide even in very simple cases. These observations motivated the following definitions.
Definition 1.12. Let G_{1}, G_{2} be groups, and $G=G_{1} \times G_{2}$. Then the pair G_{1}, G_{2} will be called:

- \mathfrak{Z}-productive, if $\mathfrak{Z}_{G}=\mathfrak{Z}_{G_{1}} \times \mathfrak{Z}_{G_{2}} ;$
- semi \mathfrak{Z}-productive, if both $G_{1} \times\left\{e_{2}\right\}$ and $\left\{e_{1}\right\} \times G_{2}$ are \mathfrak{Z}_{G}-closed subsets of G.
The pair G_{1}, G_{2} is \mathfrak{Z}-productive exactly when $\mathfrak{Z}_{G_{1} \times G_{2}} \supseteq \mathfrak{Z}_{G_{1}} \times \mathfrak{Z}_{G_{2}}$, as the other inclusion always holds by Theorem 3.4.

From the definitions, it immediately follows that a \mathfrak{Z}-productive pair is semi \mathfrak{Z}-productive. We are interested in studying when the converse implication holds true, so we explicitly state the following question.
Question 1. Let G_{1}, G_{2} be a semi \mathfrak{Z}-productive pair. Is G_{1}, G_{2} then \mathfrak{Z}-productive?
Theorem A below answers the above question when G_{1}, G_{2} are abelian, thus classifying the abelian \mathfrak{Z}-productive pairs.
Theorem A. Let G_{1}, G_{2} be abelian groups, and $G=G_{1} \times G_{2}$. Then the following conditions are equivalent:
(a) the pair G_{1}, G_{2} is \mathfrak{Z}-productive;
(b) the pair G_{1}, G_{2} is semi \mathfrak{Z}-productive;
(c) G_{1} and G_{2} are bounded, $G_{1} \cong F_{1} \times G_{1}^{*}$, and $G_{2} \cong F_{2} \times G_{2}^{*}$, for finite subgroups $F_{i} \leq G_{i}$ for $i=1,2$, and subgroups $G_{i}^{*} \leq G_{i}$ for $i=1,2$ such that $\left(\exp \left(G_{1}^{*} \times G_{2}^{*}\right),\left|F_{1}\right|\right)=1,\left(\exp \left(G_{1}^{*} \times G_{2}^{*}\right),\left|F_{2}\right|\right)=1,\left(\exp \left(G_{1}^{*}\right), \exp \left(G_{2}^{*}\right)\right)=$ 1.

This theorem will be proved in $\S 4.3$.
To study when a pair of groups G_{1}, G_{2} is (semi) \mathfrak{Z}-productive, we have also considered the cases when $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G_{1} \times G_{2}}$. To this end, we give the following definition.

Definition 1.13. Let G be a group. A word $w \in G[x]$ is called a δ-word for G if w is singular, and $E_{w}^{G}=\left\{e_{G}\right\}$.

Let us immediately see that a non-trivial abelian group G has no δ-words. Indeed, if $w \in G[x]$ is singular, then $E_{w} \neq\left\{e_{G}\right\}$ by Remark 1.10.

The class Δ of the groups that admit a δ-word can be characterized as follows.
Theorem B. Let G_{2} be a non-trivial group. Then, the following conditions are equivalent:
(a) G_{2} belongs to Δ;
(b) $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G_{1} \times G_{2}}$ for every group G_{1}.

In what follows, we will deduce Theorem B from some more general results proved in Theorem 4.6 and Corollary 4.7.

We prove that the class Δ is stable under taking finite products (Corollary 3.9) and under taking arbitrary powers (Theorem 3.10 Theorem 3.10). Moreover, we characterize the infinite direct products that belong to Δ (Theorem 3.12). This implies that every direct product of free non-abelian groups belongs to Δ (see Proposition 3.11 and its proof).

2. δ-Words

We begin this section giving the definition and a few properties of the Taŭmanov topology of a group.

Definition 2.1. The Taimanov topology \mathcal{T}_{G} on a group G is the topology having the family of the centralizers of the elements of G as a subbase of the filter of the neighborhoods of e_{G}.

It is easy to check that \mathcal{T}_{G} is a group topology, and for every element $g \in G$ the subgroup $C_{G}(g)$ is a \mathcal{T}_{G}-open (hence, closed) subset of G. In particular, ${\overline{\left\{e_{G}\right\}}}^{\mathcal{T}_{G}}=Z(G)$, so \mathcal{T}_{G} need not be Hausdorff.

Lemma 2.2 ([4, Lemma 4.1]). If G is a group, then the following hold for \mathcal{T}_{G}.
(1) \mathcal{T}_{G} is Hausdorff if and only if G is center-free.
(2) \mathcal{T}_{G} is indiscrete if and only if G is abelian.

We have already noted that a non-trivial abelian group does not admit any δ-word. In the following lemma, we give a much more precise result.

Lemma 2.3. If a group $G \in \Delta$, then its Taĭmanov topology \mathcal{T}_{G} is discrete. In particular, G has trivial center.

Proof: Assume $w=g_{1} x^{\varepsilon_{1}} g_{2} x^{\varepsilon_{2}} \cdots g_{n} x^{\varepsilon_{n}} \in G[x]$ to be a δ-word for G. Then in particular $\epsilon(w)=0$, and $e_{G} \in E_{w}$, i.e. $\operatorname{ct}(w)=e_{G}$.

Let $C=C_{G}\left(g_{1}, g_{2}, \ldots, g_{n}\right)$ be the centralizer of $g_{1}, g_{2}, \ldots, g_{n}$, and assume $g \in C$. Then

$$
w(g)=\operatorname{ct}(w) g^{\epsilon(w)}=e_{G} g^{0}=e_{G},
$$

so that $g \in E_{w}$, which yields $g=e_{G}$. This proves $C=\left\{e_{G}\right\}$. As C is a $\mathcal{T}_{G^{-}}$ neighborhood of e_{G}, we conclude that \mathcal{T}_{G} coincides with the discrete topology of G.

Remark 2.4. Note that a δ-word has even length, being singular. It is immediate to verify that the only group having a δ-word w with $\mathrm{l}(w)=0$ is the trivial group, and w is the trivial word.

Now we show that no group has a δ-word with $\mathrm{l}(w)=2$. Assume by contradiction $w \in G[x]$ to be a δ-word with $\mathrm{l}(w)=2$. As $\operatorname{ct}(w)=e_{G}$, we can assume $w=g x g^{-1} x^{-1}$, so that $w=[g, x]$ and Example 1.2, item 1, gives

$$
\left\{e_{G}\right\}=E_{w}=C_{G}(g)
$$

This forces $g=e_{G}$, hence w to be trivial, which contradicts $\mathrm{l}(w)=2$.
In the following proposition we show a δ-word with length 4 for every free non-abelian group.

Proposition 2.5. Let F be a free non-abelian group, generated by the elements $\left\{a_{i} \mid i \in I\right\}$, and let $a \neq b$ be two of them. Then

$$
w=[a, x][b, x]=a x a^{-1} x^{-1} b x b^{-1} x^{-1} \in F[x]
$$

is a δ-word for F.
Proof: Obviously w is singular, $w\left(e_{F}\right)=e_{F}$, and we have to prove that $f_{w}(g) \neq$ e_{G} for every $g \in F, g \neq e_{F}$. To this end, let $f_{1}=f_{w_{1}}$ and $f_{2}=f_{w_{2}}$, where

$$
\begin{gathered}
w_{1}=[a, x]^{-1}=[x, a]=x a x^{-1} a^{-1} \in F[x] \\
w_{2}=[b, x]=b x b^{-1} x^{-1} \in F[x] .
\end{gathered}
$$

As $w=w_{1}^{-1} w_{2}$, we have that $f_{w}=\left(f_{1}\right)^{-1} f_{2}$, and so $f_{w}(g)=e_{G}$ if and only if $f_{1}(g)=f_{2}(g)$, for every $g \in F$. So it suffices to prove that $f_{1}(g) \neq f_{2}(g)$ for every $g \in F, g \neq e_{F}$.

So let $e_{F} \neq g \in F$, and we are going to show that $f_{1}(g) \neq f_{2}(g)$. We can assume $g \notin \bigcup_{i \in I}\left\langle a_{i}\right\rangle$, so let $g=a_{i}^{n} h a_{j}^{m}$ be the reduced form of g, for $h \in F$, $0 \neq n \in \mathbb{Z}$ and $m \in \mathbb{Z}$. (In particular, if $h=e_{F}$, then $g=a_{i}^{n} a_{j}^{m}$, with $i \neq j$.) Then

$$
\begin{aligned}
& f_{1}(g)=a_{i}^{n} h a_{j}^{m} \cdot a \cdot\left(a_{i}^{n} h a_{j}^{m}\right)^{-1} \cdot a^{-1}=a_{i}^{n} h \underline{a_{j}^{m} \cdot a \cdot a_{j}^{-m} h^{-1}} \underline{a_{i}^{-n} \cdot a^{-1}} \\
& f_{2}(g)=b \cdot a_{i}^{n} h a_{j}^{m} \cdot b^{-1} \cdot\left(a_{i}^{n} h a_{j}^{m}\right)^{-1}=\underline{b \cdot a_{i}^{n} h \underline{a_{j}^{m} \cdot b^{-1} \cdot a_{j}^{-m} h^{-1} a_{i}^{-n}}}
\end{aligned}
$$

As the only possible cancellations are between underlined elements, we can immediately say that $f_{1}(g)$ begins with $a_{i}^{n} h \ldots$; on the other hand, $f_{2}(g)$ either begins with $a_{i}^{n+1} h \ldots$ (if $a_{i}=b$), or it begins with $b \cdot a_{i}^{n} h \ldots$ (if $a_{i} \neq b$). In either case, $f_{1}(g) \neq f_{2}(g)$.

Although Theorem B characterizes the class Δ, it is desirable to have another description of Δ.

Problem 1. Find an alternative description of the class Δ.
A necessary condition for $G \in \Delta$ is given by Lemma 2.3 in terms of Taŭmanov topology of G.

As a free non-abelian group contains cyclic (hence, abelian) subgroups, Δ is not stable under taking subgroups. According to Proposition 2.5, Δ is not stable under taking quotients either (as every group is a quotient of a free non-abelian group).

The class Δ is stable under taking finite products (Corollary 3.9), and under taking arbitrary powers (Theorem 3.10), while Theorem 3.12 characterizes which infinite products belong to Δ. In particular, every product of free non-abelian groups belongs to Δ by Proposition 3.11.

3. The Zariski topology on products

If $I \neq \emptyset$ is a set, and $\left\{G_{i} \mid i \in I\right\}$ is a family of groups, throughout this section we will consider the direct product $G=\prod_{i \in I} G_{i}$.

Lemma 3.1. Let $\left\{G_{i} \mid i \in I\right\}$ be a family of groups, and $G=\prod_{i \in I} G_{i}$. Then there exists a canonical map $\vartheta: G[x] \rightarrow \prod_{i \in I}\left(G_{i}[x]\right)$.

Proof: For every $i \in I$, let $p_{i}: G \rightarrow G_{i}$ be the i-th canonical projection. Apply Proposition 1.4 to obtain the homomorphism $\pi_{i}: G[x] \rightarrow G_{i}[x]$, such that $\pi_{i}{ }_{G}=$ p_{i}, and $\pi_{i}(x)=x$. Finally, consider the diagonal map ϑ of the family $\left\{\pi_{i} \mid i \in I\right\}$, so that $\vartheta: G[x] \rightarrow \prod_{i \in I}\left(G_{i}[x]\right)$.

The map $\vartheta: G[x] \rightarrow \prod_{i \in I}\left(G_{i}[x]\right)$ has the following explicit form. Let

$$
w=g^{(1)} x^{\varepsilon_{1}} g^{(2)} x^{\varepsilon_{2}} \cdots g^{(n)} x^{\varepsilon_{n}} \in G[x]
$$

where $g^{(j)}=\left(g_{i}^{(j)}\right)_{i \in I} \in G$ for elements $g_{i}^{(j)}=p_{i}\left(g^{(j)}\right) \in G_{i}$, for $i \in I$ and $j=1, \ldots, n$. Let

$$
w_{i}=g_{i}^{(1)} x^{\varepsilon_{1}} g_{i}^{(2)} x^{\varepsilon_{2}} \cdots g_{i}^{(n)} x^{\varepsilon_{n}} \in G_{i}[x]
$$

be the word in G_{i} obtained by taking the i-th coordinate of the coefficients of w. Then $w_{i}=\pi_{i}(w)$, and $\vartheta(w)=\left(w_{i}\right)_{i \in I} \in \prod_{i \in I}\left(G_{i}[x]\right)$.

Definition 3.2. In the notation of Lemma 3.1, we call $\vartheta(w)=\left(w_{i}\right)_{i \in I}$ the coordinates of w in $\prod_{i \in I}\left(G_{i}[x]\right)$. Note that $\epsilon\left(w_{i}\right)=\epsilon(w)$ for every $i \in I$.

The map ϑ in Lemma 3.1 is not injective if $|I|>1$ and the groups under consideration are not trivial (we discuss $\operatorname{ker}(\vartheta)$ in Example 3.5 below). Nonetheless, Lemma 3.1 suffices to obtain the following corollary which describes the verbal functions of a direct product as products of verbal functions of each component.

Corollary 3.3. Let $\left\{G_{i} \mid i \in I\right\}$ be a family of groups, and $G=\prod_{i \in I} G_{i}$. If $w \in G[x]$ has coordinates $\vartheta(w)=\left(w_{i}\right)_{i \in I} \in \prod_{i \in I}\left(G_{i}[x]\right)$, then the verbal function
$f_{w}: G \rightarrow G$ is the mapping $\left(g_{i}\right)_{i \in I} \mapsto\left(f_{w_{i}}\left(g_{i}\right)\right)_{i \in I}$, i.e., the product of the verbal functions $f_{w_{i}}$.

In the following theorem we show that the elementary algebraic subset E_{w} of a direct product is the cartesian product of the elementary algebraic subsets $E_{w_{i}}$, where $\left(w_{i}\right)_{i \in I}$ are the coordinates of w in $\prod_{i \in I}\left(G_{i}[x]\right)$.
Theorem 3.4. Let $\left\{G_{i} \mid i \in I\right\}$ be a family of groups, and $G=\prod_{i \in I} G_{i}$. If $w \in G[x]$, and $\left(w_{i}\right)_{i \in I}$ are the coordinates of w in $\prod_{i \in I}\left(G_{i}[x]\right)$, then E_{w}^{G} has the form

$$
\begin{equation*}
E_{w}^{G}=\prod_{i \in I} E_{w_{i}}^{G_{i}} \tag{4}
\end{equation*}
$$

In particular, $w \in \mathcal{U}_{G}$ (resp., w is a δ-word) if and only if $w_{i} \in \mathcal{U}_{G_{i}}$ (resp., w_{i} is a δ-word) for every $i \in I$.

As a consequence, the Zariski topology \mathfrak{Z}_{G} of the direct product is coarser than the product topology $\prod_{i \in I} \mathfrak{Z}_{G_{i}}$.
Proof: By Corollary 3.3, $g=\left(g_{i}\right)_{i \in I} \in G$ satisfies $w(g)=e_{G}$ if and only if $g_{i} \in G_{i}$ satisfies $w_{i}\left(g_{i}\right)=e_{i}$ for every $i \in I$. Thus E_{w}^{G} is as in (4), and $E_{w}^{G}=G$ if and only if $E_{w_{i}}^{G_{i}}=G_{i}$ for every $i \in I$, while $E_{w}^{G}=\left\{e_{G}\right\}$ if and only if $E_{w_{i}}^{G_{i}}=\left\{e_{i}\right\}$ for every $i \in I$, and $\epsilon\left(w_{i}\right)=\epsilon(w)$ for every $i \in I$.

By (4), it follows that E_{w}^{G} is closed in the product topology $\prod_{i \in I} \mathfrak{Z}_{G_{i}}$. Being \mathbb{E}_{G} a subbase for \mathfrak{Z}_{G}-closed sets, we conclude that $\mathfrak{Z}_{G} \subseteq \prod_{i \in I} \mathfrak{Z}_{G_{i}}$.
Example 3.5. Let G_{1}, G_{2} be non-trivial groups, $g_{i} \in G_{i} \backslash\left\{e_{i}\right\}$, and $G=G_{1} \times G_{2}$. Consider the word

$$
w=\left(g_{1}^{-1}, e_{2}\right) x\left(e_{1}, g_{2}\right) x^{-1}\left(g_{1}, e_{2}\right) x\left(e_{1}, g_{2}^{-1}\right) x^{-1} \in G[x]
$$

and note that $w \neq e_{G[x]}$ is non-trivial, in fact $\mathrm{l}(w)=4$. As

$$
\begin{aligned}
& w_{1}=\pi_{1}(w)=g_{1}^{-1} x e_{1} x^{-1} g_{1} x e_{1} x^{-1}=e_{G_{1}[x]} \\
& w_{2}=\pi_{2}(w)=e_{2} x g_{2} x^{-1} e_{2} x g_{2}^{-1} x^{-1}=e_{G_{2}[x]}
\end{aligned}
$$

we have $w \in \operatorname{ker}(\vartheta)$, in the notation of Lemma 3.1.
If $w \in \operatorname{ker}(\vartheta)$, then $w_{i}=e_{G_{i}[x]}$ is the trivial word for every $i \in I$, so that in particular $w_{i} \in \mathcal{U}_{G_{i}}$. Then also $w \in \mathcal{U}_{G}$ by Theorem 3.4.
Corollary 3.6. Let G_{1}, G_{2} be non-trivial groups, and $G=G_{1} \times G_{2}$. Then G has a singular, non-trivial universal word.
Proof: Consider the singular, non-trivial word $w \in G[x]$ defined in Example 3.5. Its coordinates in $G_{1}[x] \times G_{2}[x]$ are $\left(w_{1}, w_{2}\right)=\left(e_{G_{1}[x]}, e_{G_{2}[x]}\right)$, so that equation (4) gives $E_{w}^{G}=E_{e_{G_{1}[x]}}^{G_{1}} \times E_{e_{G_{2}[x]}}^{G_{2}}=G_{1} \times G_{2}$.

The next definition will be used in the following Lemma 3.8 to give a sufficient condition on an element $\left(w_{i}\right)_{i \in I} \in \prod_{i \in I}\left(G_{i}[x]\right)$ to belong to $\vartheta(G[x])$, where $\vartheta: G[x] \rightarrow \prod_{i \in I}\left(G_{i}[x]\right)$ is the map defined in Lemma 3.1.

Definition 3.7. Let G be an arbitrary group and $w \in G[x]$. If $\mathrm{l}(w)=n \in \mathbb{N}_{+}$and $w=g_{1} x^{\varepsilon_{1}} g_{2} x^{\varepsilon_{2}} \cdots g_{n} x^{\varepsilon_{n}} g_{0} \in G[x]$, we define $\vec{\epsilon}(w)=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) \in\{1,-1\}^{n}$.
Lemma 3.8. Let $n \in \mathbb{N}_{+}, \vec{\epsilon}=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}\right) \in\{1,-1\}^{n}$, and $\left\{G_{i} \mid i \in I\right\}$ be a family of groups. For every $i \in I$, let $w_{i} \in G_{i}[x]$ be such that $\mathrm{l}\left(w_{i}\right)=n$ and $\vec{\epsilon}\left(w_{i}\right)=\vec{\epsilon}$. Then, with $G=\prod_{i \in I} G_{i}$,
(a) $\left(w_{i}\right)_{i \in I}=\vartheta(w)$ for a word $w \in G[x]$;
(b) if every $w_{i} \in G_{i}[x]$ is a δ-word (resp., a universal word) for G_{i}, then also $w \in G[x]$ is a δ-word (resp., a universal word) for G.
Proof: (a). We have to prove that there exists $w \in G[x]$ such that $\left(w_{i}\right)_{i \in I}$ are the coordinates of w in $\prod_{i \in I}\left(G_{i}[x]\right)$. By assumption, for every $i \in I$, the word w_{i} has the form

$$
w_{i}=g_{i}^{(1)} x^{\varepsilon_{1}} g_{i}^{(2)} x^{\varepsilon_{2}} \cdots g_{i}^{(n)} x^{\varepsilon_{n}} \in G_{i}[x]
$$

Defining $g^{(j)}=\left(g_{i}^{(j)}\right)_{i \in I} \in G$ for $j=1, \ldots, n$, the word $w=g^{(1)} x^{\varepsilon_{1}} g^{(2)} x^{\varepsilon_{2}} \ldots$ $g^{(n)} x^{\varepsilon_{n}} \in G[x]$ satisfies $\vartheta(w)=\left(w_{i}\right)_{i \in I}$, i.e. $\left(w_{i}\right)_{i \in I}$ are the coordinates of w in $\prod_{i \in I}\left(G_{i}[x]\right)$.
(b). By (4), w is a δ-word (resp., a universal word) for G, if every $w_{i} \in G_{i}[x]$ is a δ-word (resp., a universal word).

Now we prove that the class Δ is stable under taking finite products, using the idea of the proof of Lemma 3.8.
Corollary 3.9. If $G \in \Delta$, and $H \in \Delta$, then also $P=G \times H \in \Delta$.
Proof: Let

$$
\begin{aligned}
& w_{1}=g_{1} x^{\varepsilon_{1}} g_{2} x^{\varepsilon_{2}} \cdots g_{n} x^{\varepsilon_{n}} \in G[x] \\
& w_{2}=h_{1} x^{\delta_{1}} h_{2} x^{\delta_{2}} \cdots h_{m} x^{\delta_{m}} \in H[x]
\end{aligned}
$$

be δ-words respectively for G and H.
Let

$$
\begin{aligned}
& v_{1}=e_{G} x^{\delta_{1}} e_{G} x^{\delta_{2}} \cdots e_{G} x^{\delta_{m}} g_{1} x^{\varepsilon_{1}} g_{2} x^{\varepsilon_{2}} \cdots g_{n} x^{\varepsilon_{n}} \in G[x] \\
& v_{2}=h_{1} x^{\delta_{1}} h_{2} x^{\delta_{2}} \cdots h_{m} x^{\delta_{m}} e_{H} x^{\varepsilon_{1}} e_{H} x^{\varepsilon_{2}} \cdots e_{H} x^{\varepsilon_{n}} \in H[x] .
\end{aligned}
$$

Note that $\epsilon\left(v_{i}\right)=\epsilon\left(w_{i}\right)=\epsilon\left(w_{1}\right)+\epsilon\left(w_{2}\right)=0$ and $E_{v_{1}}^{G}=E_{w_{1}}^{G}=\left\{e_{G}\right\}, E_{v_{2}}^{H}=$ $E_{w_{2}}^{H}=\left\{e_{H}\right\}$, so that also v_{1}, v_{2} are δ-words respectively for G and H.

Let $p_{j}=\left(e_{G}, h_{j}\right) \in P$ for $j=1, \ldots, m$, and $p_{m+j}=\left(g_{j}, e_{H}\right) \in P$ for $j=$ i, \ldots, n, and consider

$$
w=p_{1} x^{\delta_{1}} p_{2} x^{\delta_{2}} \cdots p_{m} x^{\delta_{m}} p_{m+1} x^{\varepsilon_{1}} p_{m+2} x^{\varepsilon_{2}} \cdots p_{m+n} x^{\varepsilon_{n}} \in P[x]
$$

Obviously, $\epsilon(w)=0$, and $\left(v_{1}, v_{2}\right)$ are the coordinates of w in $G[x] \times H[x]$, so that $E_{w}^{P}=E_{v_{1}}^{G} \times E_{v_{2}}^{H}=\left\{e_{P}\right\}$ by Theorem 3.4. So w is a δ-word for P.

In the following theorem we show that a group G has a δ-word (in other words, $G \in \Delta)$ if and only if G^{I} does.

Theorem 3.10. Let G be a group, and I be a set. Then $G \in \Delta$ if and only if $G^{I} \in \Delta$.

Proof: Let $w \in G[x]$ be a δ-word. Then Lemma 3.8 gives a word $v \in G^{I}[x]$ such that $(w)_{i \in I} \in G[x]^{I}$ are the coordinates of v, and v is a δ-word for G^{I}.

By (4), $w \in G^{I}[x]$ with coordinates $\left(w_{i}\right)_{i \in I}$ is a δ-word if and only if $w_{i} \in G[x]$ is a δ-word for every $i \in I$.

As a consequence of Proposition 2.5 and Theorem 3.10, we get that every power of a free non-abelian group has a δ-word, i.e., belongs to Δ. In the following result, we show that Δ contains all products of free non-abelian groups.

Proposition 3.11. Let $\left\{G_{i} \mid i \in I\right\}$ be a family of free non-abelian groups. Then $G=\prod_{i \in I} G_{i}$ belongs to Δ.

Proof: For every $i \in I$, let $a_{i}, b_{i} \in G_{i}$ be two of the generators of G_{i}, and $w_{i}=\left[a_{i}, x\right]\left[b_{i}, x\right]=a_{i} x a_{i}^{-1} x^{-1} b_{i} x b_{i}^{-1} x^{-1} \in G_{i}[x]$ be the δ-word for G_{i} constructed in Proposition 2.5. As $1\left(w_{i}\right)=4$, and $\vec{\epsilon}\left(w_{i}\right)=(1,-1,1,-1)$ for every $i \in I$, Lemma 3.8 applies, so there exists a δ-word $w \in G[x]$ such that $\left(w_{i}\right)_{i \in I}$ are the coordinates of w in $\prod_{i \in I}\left(G_{i}[x]\right)$.

Let $\Delta_{m} \subseteq \Delta$ be the class of groups G having a δ-word $w \in G[x]$ with $\mathrm{l}(w) \leq m$. Then $\Delta_{2 k}=\Delta_{2 k+1}$ for every $k \in \mathbb{N}$, and $\Delta_{0}=\Delta_{2}$ only contains the trivial group $\{e\}$ by Remark 2.4. Moreover, Δ_{4} contains every product of free non-abelian groups by Proposition 3.11. Then

$$
\begin{equation*}
\Delta_{0}=\Delta_{2}=\{\{e\}\} \subsetneq \Delta_{4} \subseteq \Delta_{6} \subseteq \ldots \subseteq \bigcup_{m \in \mathbb{N}} \Delta_{m}=\Delta \tag{5}
\end{equation*}
$$

In the following theorem, we characterize which products belong to the class Δ.
Theorem 3.12. Let $\left\{G_{i} \mid i \in I\right\}$ be a family of groups, and $G=\prod_{i \in I} G_{i}$. Then the following are equivalent:

1. $G \in \Delta$;
2. there exists $m \in \mathbb{N}$ such that $G \in \Delta_{m}$;
3. there exists $m \in \mathbb{N}$ such that $G_{i} \in \Delta_{m}$ for every $i \in I$.

Proof: The equivalence between conditions 1 and 2 follows from the definitions, while 2 implies 3 (with the same m) by Theorem 3.4.

So we only have to prove that 3 implies 1 . Let $w_{i} \in G_{i}[x]$ be a δ-word, with $\mathrm{l}\left(w_{i}\right)=l_{i} \leq m$.

For $1 \leq k \leq m$, let $I_{k}=\left\{i \in I \mid \mathrm{l}\left(w_{i}\right)=k\right\}$, and note that $\vec{\epsilon}\left(w_{i}\right) \in\{-1,1\}^{k}$ for every $i \in I_{k}$. So for every $\vec{\epsilon} \in\{-1,1\}^{k}$, let also $I_{k, \vec{\epsilon}}=\left\{i \in I_{k} \mid \vec{\epsilon}\left(w_{i}\right)=\vec{\epsilon}\right\}$.

Note that $I=\bigcup_{k=1}^{m} \bigcup_{\vec{\epsilon} \in\{-1,1\}^{k}} I_{k, \vec{\epsilon}}$ is a partition of I into finitely many subsets $I_{k, \vec{\epsilon}}$. If $I_{k, \vec{\epsilon}}$ is empty, let $G_{k, \vec{\epsilon}}=\{e\}$ be the trivial group, otherwise let $G_{k, \vec{\epsilon}}=$
$\prod_{i \in I_{k, e}} G_{i}$. Then

$$
G=\prod_{\substack{k=1, \ldots, m \\ \epsilon \in\{-1,\}^{k}}} G_{k, \epsilon}
$$

is a finite product of the groups $G_{k, \vec{\epsilon}}$.
Then we can apply Lemma 3.8 to the family $\left\{G_{i} \mid i \in I_{k, \vec{\epsilon}\}}\right\}$, obtaining that $G_{k, \vec{\epsilon}} \in \Delta$.

Finally, $G \in \Delta$ by Corollary 3.9.
Note that both Theorem 3.10 and Proposition 3.11 can be obtained as corollaries of Theorem 3.12.

Remark 3.13. (a) The class Δ is stable under taking arbitrary products if and only if $\Delta=\Delta_{m}$ for some $m \in \mathbb{N}$, i.e. the chain (5) stabilizes after finitely many steps.
(b) We do not know if the equivalent conditions in item (a) do hold, for example we do not even know if $\Delta_{4} \subsetneq \Delta_{6}$.
Motivated by Remark 3.13, one can ask the following question.
Question 2. Does the equality $\Delta=\Delta_{m}$ hold for some $m \in \mathbb{N}$? Or, equivalently, is it true that for every integer $m \geq 2$ there exists a group $G_{m} \in \Delta_{2 m+2} \backslash \Delta_{2 m}$?

We conclude this part with an easy result on the Zariski topology of a direct product.

Lemma 3.14. Let $\left\{G_{i} \mid i \in I\right\}$ be a family of groups, and $X_{i} \subseteq G_{i}$ be a subset for every $i \in I$. If $G=\prod_{i \in I} G_{i}$, then $\prod_{i \in I} C_{G_{i}}\left(X_{i}\right)$ is a \mathfrak{Z}_{G}-closed subgroup of G. In particular, if $G_{i_{0}}$ is center-free for some $i_{0} \in I$, then $\left\{e_{i_{0}}\right\} \times \prod_{i_{0} \neq i \in I} G_{i}$ is \mathfrak{Z}_{G}-closed.
Proof: It follows from the fact that $\prod_{i \in I} C_{G_{i}}\left(X_{i}\right)=C_{G}\left(\prod_{i \in I} X_{i}\right)$. Then Example 1.2, item 1, applies.

In the special case when $G_{i_{0}}$ is center-free,

$$
\left\{e_{i_{0}}\right\} \times \prod_{i_{0} \neq i \in I} G_{i}=C_{G}\left(G_{i_{0}} \times \prod_{i_{0} \neq i \in I}\left\{e_{i}\right\}\right)
$$

4. \mathfrak{Z}-productivity

4.1 The class Δ and \mathfrak{Z}-productivity.

Lemma 4.1. Let G_{1}, G_{2} be groups, with $G_{2} \in \Delta$ and $G=G_{1} \times G_{2}$. Then $G_{1} \times\left\{e_{2}\right\}=E_{w}^{G}$, for a singular word $w \in G[x]$.
Proof: Let $w_{0}=g_{1} x^{\varepsilon_{1}} g_{2} x^{\varepsilon_{2}} \cdots g_{n} x^{\varepsilon_{n}} \in G_{2}[x]$ be a δ-word for G_{2}. For $i=$ $1,2, \ldots, n$ define the elements $\widetilde{g_{i}}=\left(e_{1}, g_{i}\right) \in G$ and let $w=\widetilde{g_{1}} x^{\varepsilon_{1}} \widetilde{g_{2}} x^{\varepsilon_{2}} \cdots \widetilde{g_{n}} x^{\varepsilon_{n}} \in$
$G[x]$. The coordinates of w in $G_{1}[x] \times G_{2}[x]$ are $\left(w_{1}, w_{0}\right)$, where $w_{1}=e_{1} x^{\varepsilon_{1}} e_{1} x^{\varepsilon_{2}} \ldots$ $e_{1} x^{\varepsilon_{n}}=x^{\epsilon\left(w_{0}\right)}=x^{0}$ is the neutral element of $G_{1}[x]$.

Then $E_{w}^{G}=E_{w_{1}}^{G_{1}} \times E_{w_{0}}^{G_{2}}=G_{1} \times\left\{e_{2}\right\}$ and $\epsilon(w)=\epsilon\left(w_{0}\right)=0$.
Example 4.2. Let G_{2} be a product of free non-abelian groups, G_{1} be an arbitrary group, and $G=G_{1} \times G_{2}$. By Proposition $3.11, G_{2} \in \Delta$, so that $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G}$ by Lemma 4.1.

In particular, $G_{1} \times\left\{e_{2}\right\}$ is a \mathfrak{Z}_{G}-closed subset of G for every group G_{1}. In Theorem 4.11 we prove that the groups G_{2} with this property are exactly the center-free groups.

Lemma 4.3. Let G be an abelian group, and assume that G is a finite union of elementary algebraic subsets determined by non-singular words. Then G is bounded.

Proof: Let $G=\bigcup_{i=1}^{k} G\left[n_{i}\right]+g_{i}$ for elements $g_{i} \in G$ and integers $n_{i} \in \mathbb{N}_{+}$, as $1 \leq i \leq k$. If $m=n_{1} n_{2} \cdots n_{k}$, then $G\left[n_{i}\right] \subseteq G[m]$, so that $G=\bigcup_{i=1}^{k} G[m]+g_{i}$. Then $[G: G[m]]$ is finite, and so $m G \cong G / G[m]$ is finite. As $m \neq 0$, we deduce that G is bounded.

As a consequence of Lemma 4.3, if G is an abelian unbounded group, and G is a finite union of elementary algebraic subsets, then at least one of them is determined by a singular word. This motivates the following definition introducing the class \mathcal{W}_{0}^{*} of groups in the general case.

Definition 4.4. We say that a group $G \in \mathcal{W}_{0}^{*}$ if G satisfies the following property: for every $k \in \mathbb{N}_{+}$, if $w_{1}, w_{2}, \ldots, w_{k} \in G[x]$ are such that $G=\bigcup_{i=1}^{k} E_{w_{i}}$, then w_{i} is singular for some $i=1,2, \ldots, k$.

Here we give some necessary and sufficient conditions on a group G to belong to \mathcal{W}_{0}^{*}.

Remark 4.5. - If $G \in \mathcal{W}_{0}^{*}$, then every universal word of G is singular. In particular, if G is a bounded group, and $n=\exp (G)$, then $n>0$ and $x^{n} \in \mathcal{U}_{G}$ is non-singular, so that $G \notin \mathcal{W}_{0}^{*}$.

- On the other hand, if G is an abelian unbounded group, then $G \in \mathcal{W}_{0}^{*}$ by Lemma 4.3. So if G is abelian then $G \in \mathcal{W}_{0}^{*}$ if and only if G is unbounded.

In the following theorem we prove that the converse of Lemma 4.1 holds for groups $G_{1} \in \mathcal{W}_{0}^{*}$.

Theorem 4.6. Let $G_{1} \in \mathcal{W}_{0}^{*}$ and G_{2} be groups. If $G=G_{1} \times G_{2}$, then the following conditions are equivalent:
(a) $G_{2} \in \Delta$;
(b) $G_{1} \times\left\{e_{2}\right\}=E_{w}^{G}$, for a singular word $w \in G[x]$;
(c) $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G}$;
(d) $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G}^{U}$.

Proof: $(\mathrm{a}) \Rightarrow(\mathrm{b})$ follows by Lemma 4.1.
$(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d})$ are trivial.
$(\mathrm{d}) \Rightarrow(\mathrm{a})$. Assume $G_{1} \times\left\{e_{2}\right\}=\bigcup_{i=1}^{k} E_{w_{i}}^{G}$ for a positive integer k, and words $w_{i} \in G[x]$ for $i=1, \ldots, k$ with $E_{w_{i}}^{G} \neq \emptyset$.

By (4), every elementary algebraic subset E_{w}^{G} of G has the form $E_{w}^{G}=E_{w^{\prime}}^{G_{1}} \times$ $E_{w^{\prime \prime}}^{G_{2}}$ for words $w^{\prime} \in G_{1}[x]$ and $w^{\prime \prime} \in G_{2}[x]$. So $G_{1} \times\left\{e_{2}\right\}=\bigcup_{i=1}^{k} E_{w_{i}^{\prime}}^{G_{1}} \times E_{w_{i}^{\prime \prime}}^{G_{2}}$, from which we deduce

$$
\begin{equation*}
G_{1}=\bigcup_{i=1}^{k} E_{w_{i}^{\prime}}^{G_{1}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\text { and }\left\{e_{2}\right\}=\bigcup_{i=1}^{k} E_{w_{i}^{\prime \prime}}^{G_{2}} \text { i.e. } E_{w_{i}^{\prime \prime}}^{G_{2}}=\left\{e_{2}\right\} \text { for every } i=1, \ldots, k \text {. } \tag{7}
\end{equation*}
$$

As $G_{1} \in \mathcal{W}_{0}^{*}$, (6) implies that w_{i}^{\prime} is singular for some $i=1, \ldots, k$. This implies that also $w_{i}^{\prime \prime}$ is singular. By (7), $w_{i}^{\prime \prime}$ is a δ-word for G_{2}.

Lemma 4.1 and Theorem 4.6 immediately imply Corollary 4.7 below. In particular, the equivalence between its items (b) and (c) provides a converse to Lemma 4.1. Moreover, the equivalence between items (a) and (b) is Theorem B.

Corollary 4.7. Let G_{2} be a group. Then, the following conditions are equivalent:
(a) $G_{2} \in \Delta$;
(b) $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G_{1} \times G_{2}}$ for every group G_{1};
(c) $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G_{1} \times G_{2}}$ for every $G_{1} \in \mathcal{W}_{0}^{*}$;
(d) $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G_{1} \times G_{2}}$ for some $G_{1} \in \mathcal{W}_{0}^{*}$.

By Theorem 3.10, every power G_{2}^{I} has the same properties as those of G_{2} stated in the above corollary.

Corollary 4.8. Let G_{1}, G_{2} be abelian groups, with G_{1} unbounded and G_{2} nontrivial. Then $G_{1} \times\left\{0_{2}\right\}$ is not a Zariski closed subset of $G=G_{1} \times G_{2}$.

Proof: We have $G_{1} \in \mathcal{W}_{0}^{*}$ by Lemma 4.3, while the abelian group G_{2} has no δ words by Lemma 2.3. Then $G_{1} \times\left\{0_{G_{2}}\right\} \notin \mathbb{E}_{G}^{U}$ by Theorem 4.6 , so that Theorem 1.9 applies.

Remark 4.9. (a) The implication in Corollary 4.8 need not hold if one of the groups G_{1}, G_{2} is not abelian. Indeed, consider an arbitrary group G_{1}, a product G_{2} of free non-abelian groups, and let $G=G_{1} \times G_{2}$. By Example 4.2, we have that $G_{1} \times\left\{e_{2}\right\}$ is \mathfrak{Z}_{G}-closed, independently on G_{1}.
(b) One can relax the hypothesis "non-trivial abelian" for G_{2} to $Z\left(G_{2}\right) \neq$ $\left\{e_{2}\right\}$, but then only the weaker conclusion " $G_{1} \times\left\{e_{2}\right\}$ is not additively algebraic" can be obtained.

We anticipate the following result from [10] about the Zariski closure of $G_{1} \times$ $\left\{e_{2}\right\}$ in the product $G_{1} \times G_{2}$, when $G_{1} \in \mathcal{W}_{0}^{*}$.

Proposition 4.10 ([10]). Let $G_{1} \in \mathcal{W}_{0}^{*}$. Then ${\overline{G_{1} \times\left\{e_{2}\right\}}}^{{ }^{3}}{ }_{G_{1} \times G_{2}}=G_{1} \times Z\left(G_{2}\right)$ for every group G_{2}.

By Corollary 4.7, a group $G_{2} \in \Delta$ if and only if $G_{1} \times\left\{e_{2}\right\} \in \mathbb{E}_{G_{1} \times G_{2}}$ for every group G_{1}. In particular, $G_{1} \times\left\{e_{2}\right\}$ is a Zariski closed subset of $G_{1} \times G_{2}$ for every group G_{1}. The next theorem characterizes the groups G_{2} with the latter (weaker) property.

Theorem 4.11. For a group G_{2} the following are equivalent:
(a) G_{2} is center-free;
(b) $G_{1} \times\left\{e_{2}\right\}$ is a Zariski closed subset of $G_{1} \times G_{2}$ for every group G_{1}.

Proof: $(\mathrm{b}) \Rightarrow(\mathrm{a})$. Proposition 4.10, applied with $H=G_{1}=\mathbb{Z}$, implies $Z\left(G_{2}\right)=$ $\left\{e_{2}\right\}$.
$(\mathrm{a}) \Rightarrow(\mathrm{b})$. Since G_{2} is a center-free group, Lemma 3.14 applies to conclude that G_{2} satisfies (b).

4.2 Semi \mathfrak{Z}-productive pairs.

Lemma 4.12. Let G_{1}, G_{2} be groups, $H_{i} \leq G_{i}$, for $i=1,2$ be subgroups, $G=$ $G_{1} \times G_{2}$ and $H=H_{1} \times H_{2}$. If H is Zariski embedded in G, then the following hold.
(1) If the pair G_{1}, G_{2} is semi \mathfrak{Z}-productive, then also the pair H_{1}, H_{2} is semi \mathfrak{Z}-productive.
(2) If the pair G_{1}, G_{2} is \mathfrak{Z}-productive, then also the pair H_{1}, H_{2} is \mathfrak{Z}-productive.

Proof: (1) By assumption, $G_{1} \times\left\{e_{2}\right\}$ is a \mathfrak{Z}_{G}-closed subset of G, so $H_{1} \times\left\{e_{2}\right\}$ is a $\mathfrak{Z}_{G} \upharpoonright_{H}$-closed subsets of H. As $\mathfrak{Z}_{G} \upharpoonright_{H}=\mathfrak{Z}_{H}$, this proves that $H_{1} \times\left\{e_{2}\right\}$ is a \mathfrak{Z}_{H}-closed subset of H. The same argument holds for $\left\{e_{1}\right\} \times H_{2}$.
(2) Note that $\mathfrak{Z}_{G_{1} \upharpoonright H_{1}} \times \mathfrak{Z}_{G_{2} \mid H_{2}} \supseteq \mathfrak{Z}_{H_{1}} \times \mathfrak{Z}_{H_{2}}$. Then

$$
\mathfrak{Z}_{H}=\mathfrak{Z}_{G} \upharpoonright_{H}=\left(\mathfrak{Z}_{G_{1}} \times \mathfrak{Z}_{G_{2}}\right) \upharpoonright_{H}=\mathfrak{Z}_{G_{1} \upharpoonright_{H_{1}}} \times \mathfrak{Z}_{G_{2} \upharpoonright_{H_{2}}} \supseteq \mathfrak{Z}_{H_{1}} \times \mathfrak{Z}_{H_{2}}
$$

where the first equality holds as H is Zariski embedded in G, while the second equality holds as G_{1}, G_{2} is \mathfrak{Z}-productive.

From Theorem 3.4 and the above equation, it follows that $\mathfrak{Z}_{H}=\mathfrak{Z}_{H_{1}} \times \mathfrak{Z}_{H_{2}}$.

Corollary 4.13. If G_{1}, G_{2} is a (semi) \mathfrak{Z}-productive pair, and $H_{i} \leq Z\left(G_{i}\right)$, for $i=1,2$ are subgroups, then also H_{1}, H_{2} is (semi) \mathfrak{Z}-productive.

In particular, if G_{1}, G_{2} is an abelian (semi) \mathfrak{Z}-productive pair, and $H_{i} \leq G_{i}$, for $i=1,2$ are subgroups, then also H_{1}, H_{2} is (semi) \mathfrak{Z}-productive.

Proof: As central subgroups are Zariski embedded by Proposition 1.8, we have that $H=H_{1} \times H_{2} \leq Z\left(G_{1}\right) \times Z\left(G_{2}\right)=Z\left(G_{1} \times G_{2}\right)$ is Zariski embedded in $G_{1} \times G_{2}$.

Finally, Lemma 4.12 applies.

4.3 Abelian \mathfrak{Z}-productive pairs.

Lemma 4.14. Let G_{1}, G_{2} be bounded abelian groups having coprime exponents. Then G_{1}, G_{2} is \mathfrak{Z}-productive.

Proof: Let $G=G_{1} \times G_{2}$, and $\exp \left(G_{i}\right)=m_{i}$ for $i=1,2$. By (3), the $\mathfrak{Z}_{G_{1}}$ (resp., $\mathfrak{Z}_{G_{2}}$)-closed subsets are generated by the cosets of the n-socles $G_{1}[n]$ (resp., $G_{2}[n]$), for $n \in \mathbb{N}$. So it will suffice to show that, for every $n \in \mathbb{N}$, the subgroups $G_{1}[n] \times G_{2}$ and $G_{1} \times G_{2}[n]$ are \mathfrak{Z}_{G}-closed subsets. Indeed $G_{1}[n] \times G_{2}$ is an elementary algebraic subset of G, as

$$
G_{1}[n] \times G_{2}=G_{1}[n] \times G_{2}\left[n m_{2}\right]=G_{1}\left[n m_{2}\right] \times G_{2}\left[n m_{2}\right]=G\left[n m_{2}\right]
$$

where the first equality holds as $m_{2}=\exp \left(G_{2}\right)$, and the second one as $\left(\exp \left(G_{1}\right), m_{2}\right)=1$. Similarly, $G_{1} \times G_{2}[n]=G_{1}\left[n m_{1}\right] \times G_{2}\left[n m_{1}\right]=G\left[n m_{1}\right]$.

If $\left\{G_{i} \mid i \in I\right\}$ is a family of groups, for an element $g=\left(g_{i}\right)_{i \in I} \in G=\prod_{i \in I} G_{i}$, we denote by $\operatorname{supp}(g)=\left\{i \in I \mid g_{i} \neq e_{i}\right\} \subseteq I$ the set of indexes such that the correspondent coordinates of g are non-trivial.

The subgroup S of G consisting of the elements g such that $\operatorname{supp}(g)$ is finite will be called direct sum of $\left\{G_{i} \mid i \in I\right\}$, and denoted by $S=\bigoplus_{i \in I} G_{i}$. Obviously, $S=G$ when I is finite.

For an abelian group G, recall that $\pi(G)=\{p \in \mathbb{P} \mid G[p] \neq\{0\}\}$, and for $p \in \mathbb{P}$ it is defined the subgroup

$$
G_{p}=\left\{g \in G \mid \exists n \in \mathbb{N} \quad p^{n} g=0\right\}=\bigcup_{n \in \mathbb{N}} G\left[p^{n}\right]
$$

It is well-known that if G is a torsion, then $G \cong \bigoplus_{p \in \pi(G)} G_{p}$.
Now we are ready to prove Theorem A. It will give a positive answer to Question 1 for abelian \mathfrak{Z}-productive pairs, and provides a description of the structure of abelian groups G_{1}, G_{2} such that the pair G_{1}, G_{2} is \mathfrak{Z}-productive. Moreover, the implication $(\mathrm{b}) \Rightarrow(\mathrm{c})$ is a 'symmetric' form of Corollary 4.8, giving a much more precise conclusion.

Proof of Theorem A: We have to prove that if G_{1}, G_{2} are abelian groups, and $G=G_{1} \times G_{2}$, then the following conditions are equivalent:
(a) the pair G_{1}, G_{2} is \mathfrak{Z}-productive;
(b) the pair G_{1}, G_{2} is semi \mathfrak{Z}-productive;
(c) G_{1} and G_{2} are bounded, $G_{1}=F_{1} \oplus G_{1}^{*}$, and $G_{2}=F_{2} \oplus G_{2}^{*}$, for finite subgroups $F_{i} \leq G_{i}$ for $i=1,2$, and subgroups $G_{i}^{*} \leq G_{i}$ for $i=1,2$ such that $\left(\exp \left(G_{1}^{*} \oplus G_{2}^{*}\right),\left|F_{1}\right|\right)=1,\left(\exp \left(G_{1}^{*} \oplus G_{2}^{*}\right),\left|F_{2}\right|\right)=1,\left(\exp \left(G_{1}^{*}\right), \exp \left(G_{2}^{*}\right)\right)=$ 1.
(a) \Rightarrow (b) follows by the definitions.
(b) \Rightarrow (c). As both $G_{1} \times\left\{0_{2}\right\}$ and $\left\{0_{1}\right\} \times G_{2}$ are \mathfrak{Z}_{G}-closed subsets of G, then both G_{1} and G_{2} are bounded by Corollary 4.8. Let $G_{i}=\bigoplus_{p \in \pi\left(G_{i}\right)} G_{i, p}$, where $\pi\left(G_{i}\right)$ is finite, for $i=1,2$.

Let $\pi=\pi\left(G_{1}\right) \cap \pi\left(G_{2}\right)$. If $\pi=\emptyset$, let F_{1} and F_{2} be the trivial subgroups of G_{1} and G_{2} respectively. Otherwise, let

$$
F_{1}=\bigoplus_{p \in \pi} G_{1, p} \text { and } F_{2}=\bigoplus_{p \in \pi} G_{2, p}
$$

Set

$$
G_{1}^{*}=\bigoplus_{p \in \pi\left(G_{1}\right) \backslash \pi\left(G_{2}\right)} G_{1, p} \text { and } G_{2}^{*}=\bigoplus_{p \in \pi\left(G_{2}\right) \backslash \pi\left(G_{1}\right)} G_{2, p},
$$

so that

$$
G_{1}=F_{1} \oplus G_{1}^{*} \quad \text { and } \quad G_{2}=F_{2} \oplus G_{2}^{*}
$$

It only remains to prove that both F_{1}, F_{2} are finite groups, that is: if $p \in \pi$, then both $G_{1, p}$ and $G_{2, p}$ are finite.

So let $p \in \pi$ and by contradiction assume $G_{1, p}$ to be infinite. If $H_{1}=G_{1}[p] \leq$ $G_{1, p}$, then also H_{1} is infinite. Fix an element $x \in G_{2}$ of order p, and let $H_{2}=$ $\langle x\rangle \leq G_{2}$. Finally, let $H=H_{1} \times H_{2}$, and note that $\exp (H)=p$, so that \mathfrak{Z}_{H} is the cofinite topology by Proposition 1.11. Being $H_{0}=H_{1} \times\left\{0_{2}\right\}$ an infinite proper subgroup of H, it is not \mathfrak{Z}_{H}-closed. This contradicts Corollary 4.13.
$(\mathrm{c}) \Rightarrow(\mathrm{a})$. Assume $G_{1}=F_{1} \oplus G_{1}^{*}$ and $G_{2}=F_{2} \oplus G_{2}^{*}$, with F_{1}, F_{2} finite, G_{1}^{*}, G_{2}^{*} bounded, with coprime exponents as in the statement of (c). Then $\mathfrak{Z}_{G_{i}}=$ $\mathfrak{Z}_{F_{i}} \times \mathfrak{Z}_{G_{i}^{*}}$ for $i=1,2$ by Lemma 4.14 , so that

$$
\mathfrak{Z}_{G_{1}} \times \mathfrak{Z}_{G_{2}}=\mathfrak{Z}_{F_{1}} \times \mathfrak{Z}_{G_{1}^{*}} \times \mathfrak{Z}_{F_{2}} \times \mathfrak{Z}_{G_{2}^{*}} .
$$

Finally, let $F=F_{1} \times F_{2}$ and note that $\mathfrak{Z}_{F}=\mathfrak{Z}_{F_{1}} \times \mathfrak{Z}_{F_{2}}$ is the discrete topology on the finite group F. So
$\mathfrak{Z}_{G_{1} \times G_{2}}=\mathfrak{Z}_{F_{1} \oplus G_{1}^{*} \times F_{2} \oplus G_{2}^{*}}=\mathfrak{Z}_{F \times G_{1}^{*} \times G_{2}^{*}} \stackrel{(*)}{=} \mathfrak{Z}_{F} \times \mathfrak{Z}_{G_{1}^{*}} \times \mathfrak{Z}_{G_{2}^{*}}=\mathfrak{Z}_{F_{1}} \times \mathfrak{Z}_{F_{2}} \times \mathfrak{Z}_{G_{1}^{*}} \times \mathfrak{Z}_{G_{2}^{*}}$,
where the equality $(*)$ follows again from Lemma 4.14 , as the three groups F, G_{1}^{*} and G_{2}^{*} are all bounded with mutually coprime exponents. This concludes the proof.

Corollary 4.15. Let G_{1}, G_{2} be an abelian semi \mathfrak{Z}-productive pair. Then neither G_{1}, nor G_{2}, can contain as a subgroup any of the following groups: the group of integers \mathbb{Z}; the p-Prüfer group $\mathbb{Z}_{p^{\infty}} ; \bigoplus_{n=1}^{\infty} \mathbb{Z}_{p^{n}}$ for a prime number $p \in \mathbb{P}$; $\bigoplus_{n=1}^{\infty} \mathbb{Z}_{p_{n}}$ for infinitely many different prime numbers $p_{n} \in \mathbb{P}$, as $n \in \mathbb{N}$.

It follows from Theorem A that for every non-trivial abelian group G there exists a bounded abelian group H such that G, H is not a \mathfrak{Z}-productive pair.

Acknowledgments. We gratefully thank the referee for the valuable corrections and suggestions which led us to the proof of Corollary 3.9.

References

[1] Adams J.F., Lectures on Lie Groups, W.A. Benjamin Inc., New York-Amsterdam, 1969, xii+182 pp.
[2] Banakh T., Guran I., Protasov I., Algebraically determined topologies on permutation groups, Topology Appl. 159 (2012), no. 9, 2258-2268.
[3] Bryant R.M., The verbal topology of a group, J. Algebra 48 (1977), no. 2, 340-346.
[4] Dikranjan D., Giordano Bruno A., Arnautov's problems on semitopological isomorphisms, Appl. Gen. Topol. 10 (2009), no. 1, 85-119.
[5] Dikranjan D., Shakhmatov D., Selected topics from the structure theory of topological groups, in: Open Problems in Topology II, E. Pearl, ed., Elsevier, 2007, pp. 389-406.
[6] Dikranjan D., Shakhmatov D., Reflection principle characterizing groups in which unconditionally closed sets are algebraic, J. Group Theory 11 (2008), no. 3, 421-442.
[7] Dikranjan D., Shakhmatov D., The Markov-Zariski topology of an abelian group, J. Algebra 324 (2010), 1125-1158.
[8] Dikranjan D., Toller D., Markov's problems through the looking glass of Zariski and Markov topologies, Ischia Group Theory 2010, Proc. of the Conference, World Scientific Publ., Singapore, 2011, pp. 87-130.
[9] Dikranjan D., Toller D., The Markov and Zariski topologies of some linear groups, Topology Appl. 159 (2012), no.13, 2951-2972.
[10] Dikranjan D., Toller D., The universal exponents of a group, work in progress.
[11] Markov A.A., On unconditionally closed sets, Comptes Rendus Dokl. Akad. Nauk SSSR (N.S.) 44 (1944), 180-181 (in Russian).
[12] Markov A.A., On free topological groups, Izv. Akad. Nauk SSSR, Ser. Mat. 9 (1945), no. 1, 3-64 (in Russian). English translation: A.A. Markov, Three papers on topological groups: I. On the existence of periodic connected topological groups, II. On free topological groups, III. On unconditionally closed sets, Amer. Math. Soc. Transl. 1950, (1950), no. 30, 120 pp.
[13] Markov A.A., On unconditionally closed sets, Mat. Sbornik 18 (1946), 3-28 (in Russian). English translation: A.A. Markov, Three papers on topological groups: I. On the existence of periodic connected topological groups, II. On free topological groups, III. On unconditionally closed sets, Amer. Math. Soc. Transl. 1950, (1950), no. 30, 120 pp.; another English translation: Topology and Topological Algebra, Transl. Ser. 1, vol. 8, Amer. Math. Soc., 1962, pp. 273-304.
[14] Tkachenko M.G., Yaschenko I., Independent group topologies on abelian groups, Topology Appl. 122 (2002), 435-451.
[15] Toller D., Verbal functions of a group, to appear.
Dipartimento di Matematica e Informatica, Università di Udine, Via delle Scienze 206, 33100 Udine, Italy

E-mail: dikran.dikranjan@uniud.it tollerdaniele@gmail.com

