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Free non-archimedean topological groups

Michael Megrelishvili, Menachem Shlossberg

Dedicated to the 120th birthday anniversary of Eduard Čech.

Abstract. We study free topological groups defined over uniform spaces in some
subclasses of the class NA of non-archimedean groups. Our descriptions of the
corresponding topologies show that for metrizable uniformities the correspond-
ing free balanced, free abelian and free Boolean NA groups are also metrizable.
Graev type ultra-metrics determine the corresponding free topologies. Such re-
sults are in a striking contrast with free balanced and free abelian topological
groups cases (in standard varieties).

Another contrasting advantage is that the induced topological group actions
on free abelian NA groups frequently remain continuous. One of the main
applications is: any epimorphism in the category NA must be dense. Moreover,
the same methods improve the following result of T.H. Fay [A note on Hausdorff

groups, Bull. Austral. Math. Soc. 13 (1975), 117–119]: the inclusion of a proper
open subgroup H →֒ G ∈ TGR is not an epimorphism in the category TGR

of all Hausdorff topological groups. A key tool in the proofs is Pestov’s test
of epimorphisms [V.G. Pestov, Epimorphisms of Hausdorff groups by way of

topological dynamics, New Zealand J. Math. 26 (1997), 257–262].
Our results provide a convenient way to produce surjectively universal NA

abelian and balanced groups. In particular, we unify and strengthen some recent
results of Gao [Graev ultrametrics and surjectively universal non-Archimedean

Polish groups, Topology Appl. 160 (2013), no. 6, 862–870] and Gao-Xuan [On

non-Archimedean Polish groups with two-sided invariant metrics, preprint, 2012]
as well as classical results about profinite groups which go back to Iwasawa and
Gildenhuys-Lim [Free pro-C-groups, Math. Z. 125 (1972), 233–254].

Keywords: epimorphisms, free profinite group, free topological G-group, non-
archimedean group, ultra-metric, ultra-norm

Classification: 54H11, 22A05, 46S10, 54H15, 54E15

1. Introduction and preliminaries

1.1 Non-archimedean groups and uniformities. A topological group G is
said to be non-archimedean if it has a local base B at the identity consisting
of open subgroups. Notation: G ∈ NA. If in this definition every H ∈ B is
a normal subgroup of G then we obtain the subclass of all balanced (or, SIN)
non-archimedean groups. Notation: G ∈ NAb. All prodiscrete (in particular,
profinite) groups are in NAb.

A uniform space is called non-archimedean if it possesses a base of equivalence
relations. Observe that a topological group is non-archimedean if and only if its
left (right) uniform structure is non-archimedean. The study of non-archimedean
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groups and non-archimedean uniformities has great influence on various fields of
Mathematics: Functional Analysis, Descriptive Set Theory and Computer Science
are only some of them. The reader can get a general impression from [48], [3],
[28], [27], [35] and references therein.

1.2 Free groups in different contexts. Recall that according to [29] any con-
tinuous map from a Tychonoff space X to a topological group G can be uniquely
extended to a continuous homomorphism from the (Markov) free topological group
F (X) into G. Moreover, X is a (closed) topological subspace of F (X). There are
several descriptions of free topological groups. See for example, [56], [40], [58],
[51]. Considering the category of uniform spaces and uniformly continuous maps
one obtains the definition of a uniform free topological group F (X,U) (see [39]).
A description of the topology of this group was given by Pestov [40], [41]. Free

topological G-groups , the G-space version of the above notions, were introduced
in [31].

Let Ω be a class of some Hausdorff topological groups. We study in Section 3
a useful unifying concept of the Ω-free topological groups .

Remark 1.1 (‘Zoo’ of free NA groups). Here we give a list of some natural sub-
classes Ω of NA and establish the notation for the corresponding free groups.
These groups are well defined by virtue of Theorem 3.4.

(1) Ω = NA. The free non-archimedean group FNA.
(2) Ω = AbNA. The free non-archimedean abelian group ANA.
(3) Ω = NAb. The free non-archimedean balanced group F b

NA
.

(4) Ω = BoolNA. The free non-archimedean Boolean group BNA.
(5) Ω = NA ∩Prec. The free non-archimedean precompact group F Prec

NA
.

(6) Ω = Pro. The free profinite group FPro.
(7) Ω = BoolPro. The free Boolean profinite group BPro.

The following diagram demonstrates the interrelation (by the induced homo-
morphisms) between these free groups defined over the same uniform space (X,U).

FNA
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F Prec

NA
→֒ FPro is the completion of the group F Prec

NA
and BNA 99K BPro is a

dense injection. Other arrows are onto.

We give descriptions of the topologies of these groups in Sections 4 and 5.
These descriptions show that for metrizable uniformities the corresponding free
balanced, free abelian and free Boolean non-archimedean groups are also metriz-
able. The same is true (and is known) for the free profinite group which can be
treated as the free compact non-archimedean group over a uniform space. Such
results for the subclasses ofNA are in a striking contrast with the standard classes
outside of NA. Indeed, it is well known that the usual free topological and free
abelian topological groups F (X) and A(X) respectively, are metrizable only for
discrete topological spaces X . Similar results are valid for uniform spaces.

In Section 5.1 we discuss the free Boolean profinite group BPro(X) of a Stone
space X which is the Pontryagin dual of the discrete Boolean group of all clopen
subsets in X .

In Section 6 we unify and strengthen some recent results of Gao [15] and Gao-
Xuan [16] about the existence and the structure of surjectively universal non-
archimedean Polish groups for abelian and balanced cases; as well as, results on
surjectively universal profinite groups which go back to Iwasawa and Gildenhuys-
Lim [17].

1.3 The actions which come from automorphisms. Every continuous group
action of G on a Stone space X (= compact zero-dimensional space) is auto-

morphizable in the sense of [31] (see Fact 7.3), that is, X is a G-subspace of a
G-group Y . This contrasts with the case of general compact G-spaces (see [31]).
More generally, we study (Theorem 8.2) also metric and uniform versions of au-
tomorphizable actions. As a corollary we obtain that every ultra-metric G-space
is isometric to a closed G-subset of an ultra-normed Boolean G-group. This re-
sult can be treated as a non-archimedean (equivariant) version of the classical
Arens-Eells isometric linearization theorem [1].

1.4 Epimorphisms in topological groups. A morphism f : M → G in a
category C is an epimorphism if there exists no pair of distinct g, h : G→ P in C
such that gf = hf . In the category of Hausdorff topological groups a morphism
with a dense range is obviously an epimorphism. K.H. Hofmann asked in the late
1960’s whether the converse is true. This epimorphism problem was answered
by Uspenskij [59] in the negative. Nevertheless, in many natural cases, indeed,
the epimorphism M → G must be dense. For example, in case that the co-
domain G is either locally compact or balanced, that is, having the coinciding
left and right uniformities (see [38]). Using a criterion of Pestov [42] and the
uniform automorphizability of certain actions by non-archimedean groups (see
Theorem 7.6) we prove in Theorem 7.9 that any epimorphism in the category
NA must be dense. Moreover, we show that if a proper closed subgroup H in
a Hausdorff topological group G induces a non-archimedean uniformity on G/H ,
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then the inclusion is not an epimorphism in the category TGR. This result
improves the following result of T.H. Fay [13]: for a topological group G the
inclusion of a proper open subgroup H is not an epimorphism.

1.5 Graev type ultra-metrics. In his classical work [18], Graev proved that
every metric on X ∪ {e} admits an extension to a maximal invariant metric on
F (X). In the present work we explore (especially see Theorem 8.2) Graev type
ultra-metrics and ultra-norms on free Boolean groups which appeared in our pre-
vious work [36]).

Graev type ultra-metrics play a major role in several recent papers. In Sec-
tion 9 we briefly compare two seemingly different constructions: one of Savchenko-
Zarichnyi [49] and the other of Gao [15].

1.6 Preliminaries and notations. All topological groups and spaces in this
paper are assumed to be Hausdorff unless otherwise is stated (for example, in
Section 4). The cardinality of a set X is denoted by |X |. All cardinal in-
variants are assumed to be infinite. As usual for a topological space X by
w(X), d(X), χ(X), l(X), c(X) we denote the weight, density, character, Lindelöf
degree and the cellularity, respectively. By Nx(X) or Nx we mean the set of all
neighborhoods at x.

For every group G we denote the identity element by e (or by 0 for additive
groups). A Boolean group is a group in which every nonidentity element is of
order two. A topological space X with a continuous group action π : G×X → X
of a topological group G is called a G-space. If, in addition, X is a topological
group and all g-translations, πg : X → X, x 7→ gx := π(g, x), are automorphisms
of X then X becomes a G-group.

We say that a topological group G is complete if it is complete in its two-sided
uniformity. For every set X denote by F (X), A(X) and B(X) the free group, the
free abelian group and the free Boolean group over X respectively. We reserve
the notation F (X) also for the free topological group in the sense of Markov.

2. Some facts about non-archimedean groups and uniformities

We mostly use the standard definition of a uniform space (X,U) by entourages

(see for example, [12]). An equivalent approach via coverings can be found in
[23]. We denote the induced topology by top(U) and require it to be Hausdorff,
namely,

⋂
{ε ∈ U} = △. By Unif we denote the category of all uniform spaces.

The subset {ε(a) : ε ∈ U} is a neighborhood base at a ∈ X in the topological
space (X, top(U)), where ε(a) = {x ∈ X : (a, x) ∈ ε}. For a nonempty subset
A ⊂ X denote ε(A) = ∪{ε(a) : a ∈ A}. We say that a subset A ⊂ X is ε-dense
if ε(A) = X .

A subfamily α ⊂ U such that each ε ∈ U has a refinement δ ⊂ ε with δ ∈ α
is said to be a (uniform) base of U . The minimal cardinality of a base of U is
called the weight of U . Notation: w(U). Recall that U is metrizable (that is, U is
induced by a metric on X) if and only if the weight is countable, w(U) = ℵ0.
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As usual, (X,U) is precompact (or, totally bounded) if for every ε ∈ U there
exists a finite ε-dense subset. By the uniform Lindelöf degree of (X,U) we mean
the minimal (infinite) cardinal κ such that for each entourage ε ∈ U there exists
an ε-dense subset Aε ⊂ X of cardinality |Aε| ≤ κ. Notation: l(U) = κ. We write
(X,U) ∈ Unif(·, κ) whenever l(U) ≤ κ.

In terms of coverings, l(U) ≤ κ means that every uniform covering ε ∈ U has
a subcovering δ (equivalently, a subcovering δ ∈ U) of cardinality |δ| ≤ κ. So, we
may always choose a base α of U such that |α| = w(U) and |δ| ≤ l(U) for every
δ ∈ α. Note that l(U) ≤ min{l(X), d(X), c(X)} and l(U) ≤ w(X) ≤ w(U) · l(U),
where X = (X, top(U)) is a topological space induced by U .

Remark 2.1. The class Unif(·, κ) is closed under arbitrary products, subspaces
and uniformly continuous images. (X,U) ∈ Unif(·, κ) if and only if (X,U) can
be embedded into a product

∏
iXi of metrizable uniform spaces (Xi,Ui) with

w(Xi) = l(Ui) ≤ κ such that |I| ≤ w(U).

Note that w(U) = λ, l(U) = κ exactly means that the (uniform) double weight ,
in the sense of [25] is dw(U) = (λ, κ). Denote by Unif(λ, κ) the class of all
uniform spaces with double weight dw(X,U) ≤ (λ, κ).

Definition 2.2. Let K ⊂ Unif be a class of uniform spaces. Let us say that a
uniform space X is:

(a) universal in K if X ∈ K and for every Y ∈ K there exists a uniform
embedding Y →֒ X ;

(b) co-universal in K if X ∈ K and for every Y ∈ K there exists a uniformly
continuous onto map f : X → Y which is a quotient map of topological
spaces.

In [25] Kulpa proves that there exists a universal uniform space with dimension
≤ n and dw(U) ≤ (λ, κ). Every isometrically universal separable metric space
(say, C[0, 1], or the Urysohn space U) provides an example of a universal uniform
space in the class Unif (ℵ0,ℵ0). For some results about isometrically universal
spaces see [24], [57], [22]. However, seemingly it is an open question if there exists
a universal uniform space in Unif (λ, κ). In fact, it is enough to solve this question
for Unif (ℵ0, κ). Indeed, if (X,U) is universal in Unif(ℵ0, κ) then the uniform
space Xλ is universal in Unif(λ, κ). In order to see this recall that Unif (·, κ) is
closed under products, subspaces and uniformly continuous images (Remark 2.1).

For a topological group G we have four natural uniformities: left , right , two-
sided and lower . Notation: Ul,Ur,Ul∨r, Ul∧r respectively. Note that the weight
of all these uniformities is equal to χ(G), the topological character of G. Also,
l(Ul) = l(Ur) = l(Ul∨r). This invariant, the uniform Lindelöf degree of G, is
denoted by lu(G). Always, l(Ul∧r) ≤ lu(G). Note that lu(G) ≤ κ if and only if G
is κ-bounded in the sense of Guran (κ-narrow in other terminology). That is, for
every U ∈ Ne(G) there exists a subset S ⊂ G such that US = G and |S| ≤ κ.

Lemma 2.3. Let G be a topological group.
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(1) w(G) = χ(G) · lu(G) and dw(G,Ul∨r) = (χ(G), lu(G)) ≤ (w(G), w(G)).
(2) (Guran, see for example [2, Theorem 5.1.10]) lu(G) ≤ κ if and only if

G can be embedded into a product
∏
iGi of topological groups Gi of

topological weight w(Gi) ≤ κ.
(3) [8] (see also [2, p. 292]) Let X ⊂ G topologically generate G. Consider the

induced uniform subspace (X,UX) where UX = Ul∨r|X . Then lu(G) =
l(UX).

Every uniform space (X,U) is uniformly embedded into an (abelian) topological
group G such that w(U) = χ(G) and l(U) = lu(G) (i.e., dw(U) = dw(G,Ul∨r)).
In order to see this one may use Arens-Eells embedding theorem [1] taking into
account Lemma 2.3.3.

2.1 Non-archimedean uniformities. Monna (see [48, p. 38] for more details)
introduced the notion of non-archimedean uniform spaces. A uniform space X
is non-archimedean if it has a base B consisting of equivalence relations (or,
partitions, in the language of coverings) on X . It is also equivalent to say that
for such a space the large uniform dimension (in the sense of [23, p. 78]) is zero.
For a uniform space (X,U) denote by Eq(U) the set of all equivalence relations
on X which belong to U .

Recall that every compact space has a unique compatible uniformity. A Stone

space is a compact zero-dimensional space. It is easy to see that such a space
is always non-archimedean. There exist 2ℵ0-many nonhomeomorphic metrizable
Stone spaces.

A metric space (X, d) is an ultra-metric space (or, isosceles [27]) if d is an
ultra-metric, i.e., it satisfies the strong triangle inequality

d(x, z) ≤ max{d(x, y), d(y, z)}.

Allowing the distance between distinct elements to be zero we obtain the defini-
tion of an ultra-pseudometric. For every ultra-pseudometric d on X the open balls
of radius ε > 0 form a clopen partition of X . So, the uniformity induced by any
ultra-pseudometric d on X is non-archimedean. A uniformity is non-archimedean
if and only if it is generated by a system {di}i∈I of ultra-pseudometrics .

Let us say that a uniformity U on X is discrete if U = P (X ×X) (or, equiva-
lently, ∆ := {(x, x) : x ∈ X} ∈ U).

Denote by κλ the power space of the discrete uniform space with cardinality κ.

Lemma 2.4. (1) The Baire space B(κ) = κℵ0 is a universal uniform space in
the classUnifNA(ℵ0, κ) of all metrizable non-archimedean uniform spaces
(X,U) such that l(U) ≤ κ.

(2) The generalized Baire space κλ is a universal uniform space in
UnifNA(λ, κ).

Let (X,U) be a non-archimedean uniformity. By a result of R. Ellis [11] for
every uniform ultra-pseudometric on a subset Y ⊂ X there exists an extension to
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a uniform ultra-pseudometric on X . Another result from [11] shows that, in fact,
B(κ) is also co-universal in the class UnifNA(ℵ0, κ) (see Section 6 below).

2.2 Non-archimedean groups. Recall that a topological group is said to be
non-archimedean if it has a local base at the identity consisting of open subgroups.
All NA groups are totally disconnected. The converse is not true in general (e.g.,
the group Q of all rationals). However, in case that a totally disconnected groupG
is also locally compact then both G and Aut(G), the group of all automorphisms
of G endowed with the Birkhoff topology, are NA (see Theorems 7.7 and 26.8 in
[20]).

The prodiscrete groups (= inverse limits of discrete groups) are in NA. Every
complete balanced NA group (in particular, every profinite group) is prodiscrete.

Example 2.5. We list here some non-archimedean groups.

(1) (Z, τp) where τp is the p-adic topology on the set of all integers Z.
(2) The symmetric topological group SX with the topology of pointwise con-

vergence. Note that SX is not balanced for any infinite set X .
(3) Homeo ({0, 1}ℵ0), the homeomorphism group of the Cantor cube,

equipped with the compact-open topology.

The NA topological groups from Example 2.5 are all minimal , that is, each
of them does not admit a strictly coarser Hausdorff group topology. By a result
of Becker-Kechris [3] every second countable (Polish) NA group is topologically
isomorphic to a (resp., closed) subgroup of the symmetric group SN. So, SN is a
universal group in the class of all second countable NA groups. In fact, a more
general result remains true: SX is a universal group in the class of all NA groups
G with the topological weight w(G) ≤ |X |, where |X | is the cardinality of the
infinite set X . See for example, [19], [35] and also Fact 2.6 below.

By results of [35] there are many minimal NA groups: every NA group is a
group retract of a minimal NA group. See Section 5.1 below and also survey
papers on minimal groups [6], [7].

Teleman [55] proved that every topological group is a subgroup of Homeo (X)
for some compactX and, it is also a subgroup of Is(M,d), the topological group of
isometries of some metric space (M,d) equipped with the pointwise topology (see
also [44]). Replacing “compact” with “compact zero-dimensional” and “metric”
with “ultra-metric” we obtain characterizations for the class NA (see [28] and
Fact 2.6 below).

The class NA is a variety in the sense of [37], i.e., it is closed under taking
subgroups, quotients and arbitrary products. Furthermore, NA is closed under
group extensions (see [19, Theorem 2.7]). In particular, NA is stable under
semidirect products. We collect here some characterizations of non-archimedean
groups, majority of which are known. For details and more results see [28], [43],
[35].

Fact 2.6 ([35]). The following assertions are equivalent.

(1) G is a non-archimedean topological group.
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(2) The right (left, two-sided, lower) uniformity on G is non-archimedean.
(3) dimβGG = 0, where βGG is the maximal G-compactification [34] of G.
(4) G is a topological subgroup of Homeo (X) for some Stone space X (where

w(X) = w(G)).
(5) G is a topological subgroup of the automorphism group (with the point-

wise topology) Aut(V ) for some discrete Boolean ring V (where |V | =
w(G)).

(6) G is a topological subgroup of the group IsAut(M) of all norm preserving
automorphisms of some ultra-normed Boolean group (M, ‖ · ‖) (where
w(M) = w(G)).

(7) G is embedded into the symmetric topological group Sκ (where κ =
w(G)).

(8) G is a topological subgroup of the group Is(X, d) of all isometries of
an ultra-metric space (X, d), with the topology of pointwise convergence
(where w(X) = w(G)).

(9) The right (left) uniformity on G can be generated by a system {di}i∈I of
right (left) invariant ultra-pseudometrics of cardinality |I| ≤ χ(G).

(10) G is a topological subgroup of the automorphism group Aut(K) for some
compact abelian group K (with w(K) = w(G)).

(11) G is a topological subgroup of the automorphism group Aut(K) for some
profinite group K (with w(K) = w(G)).

An ultra-seminorm on a topological group G is a function p : G→ R such that

(1) p(e) = 0;
(2) p(x−1) = p(x);
(3) p(xy) ≤ max{p(x), p(y)}.

Always, p(x) ≥ 0. We call p an ultra-norm if in addition p(x) = 0 implies
x = e. For ultra-seminorms on an abelian additive group (G,+) we prefer the
notation ‖ · ‖ rather than p. For every ultra-seminorm on G and every a ∈ G
the function q(x) := p(axa−1) is also an ultra-seminorm on G. We say that p is
invariant if p(axa−1) = p(x) for every a, x ∈ G. We say that a pseudometric d
on G is invariant if it is left and right invariant.

Lemma 2.7. (1) For every ultra-seminorm p on G we have:
(a) Hε := {g ∈ G : p(g) < ε} is an open subgroup of G for every ε > 0.
(b) The function d : G ×G → R defined by d(x, y) := p(x−1y) is a left

invariant ultra-pseudometric on G and p(x) = d(e, x).
If p is invariant then Hε is a normal subgroup in G and d is invariant.

(2) Let G × X → X be an action of a group G on a set X . If d is a G-
invariant ultra-pseudometric on X and x0 ∈ X is a point in X then
p(g) := d(x0, gx0) is an ultra-seminorm on G.

(3) As a particular case of (2), for every left invariant ultra-pseudometric d
on G we have the ultra-seminorm p(x) := d(e, x). Here p is invariant if
and only if d is invariant.
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(4) For every topological group G and an open subgroup H of G there exists
a left invariant continuous ultra-seminorm p on G such that {x ∈ G :
p(x) ≤ 1} = H . If, in addition, H is normal in G then we can assume
that p is invariant.

(5) A homomorphism f : G → H from a topological group G into a non-
archimedean group H is continuous if and only if for every continuous
ultra-seminorm p on H the ultra-seminorm q : G→ R defined by q(g) :=
p(f(g)) is continuous.

Proof: (1) (a) Indeed, if p(x) < ε and p(y) < ε then

p(xy−1) ≤ max{p(x), p(y−1)} = max{p(x), p(y)} < ε.

If p is invariant then Hε is normal in G since p(axa−1) = p(x) < ε for every
a ∈ G.

(b) of (1) is trivial and (2), (3) and (5) are straightforward.
(4) Define the ultra-seminorm on G as p(g) = 0 for g ∈ H and p(g) := 1 if

g /∈ H . �

A topological group G is balanced (or, SIN) if its left and right uniform struc-
tures coincide (see for example [47]). It is equivalent to say that G has small neigh-
borhoods which are invariant under conjugations. That is, for every U ∈ Ne(G)
there exists V ∈ Ne(G) such that gV g−1 = V for every g ∈ G. Furthermore, G
is balanced if and only if the uniformity on G can be generated by a system of
invariant pseudometrics (or invariant seminorms).

Lemma 2.8. For a balanced group G the following conditions are equivalent:

(1) G ∈ NA;
(2) G has a local base at the identity consisting of open normal subgroups;
(3) G is embedded into a product

∏
i∈I Gi of discrete groups, where |I| ≤

χ(G);
(4) the uniformity on G can be generated by a system {di}i∈I of invariant

ultra-pseudometrics (ultra-seminorms), where |I| ≤ χ(G).

Proof: (1)⇒ (2) Let V be a neighborhood of e in G. We have to show that
there exists an open normal subgroup M of G such that M ⊆ V . Since G ∈ NA,
there exists an open subgroup H of G such that H ⊆ V . Since G is balanced
N := ∩g∈GgHg−1 is again a neighborhood of e. Then N is a normal subgroup of
G and N ⊆ V . Clearly the subgroup N is open because its interior is nonempty.

(2)⇒ (3) For every open, and hence closed, normal subgroup N of G the cor-
responding factor-group G/N is discrete.

(3)⇒ (4) For every discrete group P the usual {0, 1}-ultra-metric is invariant.
(4)⇒ (1) Let p be an invariant ultra-seminorm on G. Then the set

Hε := {g ∈ G : p(g) < ε}

is an open (normal) subgroup of G by Lemma 2.7.1. �
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Every complete balanced NA group G is a prodiscrete group as it follows from
assertion (3) and standard properties of projective limits (see e.g., [12, Proposi-
tion 2.5.6]).

Lemma 2.9. Let G ∈ NA.

(1) G is metrizable iff its right (left) uniformity can be generated by a single
right (left) invariant ultra-metric d on G.

(2) G is metrizable and balanced iff its right (left) uniformity can be generated
by a single invariant ultra-metric d on G.

Proof: (1) If G is metrizable then the right (left) uniformity of G ∈ NA

can be generated by a countable system {dn}n∈N of right (left) invariant ultra-
pseudometrics (cf. Fact 2.6.9). One may assume in addition that dn ≤ 1. Then
the desired right (left) invariant ultra-metric on G can be defined by d(x, y) :=
supn∈N{

1
2n dn(x, y)}.

(2) If G is metrizable and balanced then one may assume in the proof of (1)
that each dn is invariant (see Lemma 2.8). Therefore, d is also invariant.

Conversely, if the right (left) uniformity of G can be generated by an invariant
ultra-metric d then clearly, G is metrizable and balanced. �

3. Uniform free NA topological groups

By TGr we denote the category of all topological groups. By AbGr, Prec,
Pro we denote its full subcategories of all abelian, precompact, and profinite

(= inverse limits of finite groups) groups respectively. Usually we denote a cate-
gory and its class of all objects by the same symbol.

In this section, unless otherwise is stated, all topological groups are considered
with respect to the two sided uniformity Ul∨r. Assigning to every topological
group G the uniform space (G,Ul∨r) defines a forgetful functor from the category
of all topological groups TGr to the category of all uniform spaces Unif .

Definition 3.1. Let Ω be a subclass of TGr and (X,U) ∈ Unif be a uniform
space. By an Ω-free topological group of (X,U) we mean a pair (FΩ(X,U), i) (or,
simply, FΩ(X,U), when i is understood), where FΩ(X,U) is a topological group
from Ω and i : X → FΩ(X,U) is a uniform map satisfying the following universal
property. For every uniformly continuous map ϕ : (X,U)→ G into a topological
group G ∈ Ω there exists a unique continuous homomorphism Φ : FΩ(X,U)→ G
for which the following diagram commutes:

(X,U)

ϕ

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

i
// FΩ(X,U)

Φ

��

G

If Ω is a subcategory of TGr then a categorical reformulation of this definition
is that i : X → FΩ(X,U) is a universal arrow from (X,U) to the forgetful functor
Ω→ Unif .
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Remark 3.2. Also we use a shorter notation dropping U (and X) when the uni-
formity (and the space) is understood. For example, we may write FΩ(X) (or,
FΩ) instead of FΩ(X,U).

Every Tychonoff space X admits the greatest compatible uniformity, the so-
called fine uniformity, which we denote by Umax. The corresponding free group
FΩ(X,Umax) is denoted by FΩ(X) and is called the Ω-free topological group of X .
For Ω = TGr and Ω = AbTGr we get the classical free topological group and
free abelian topological group (in the sense of Markov) of X keeping the standard
notation: F (X) and A(X).

3.1 The existence.

Definition 3.3. A nonempty subclass Ω of TGr is said to be:

(1) SC-variety (see [2]) if Ω is closed under: a) cartesian products; b) closed
subgroups.

(2) SC-variety if Ω is closed under: a) cartesian products; b) subgroups.
(3) variety (see [37]) if Ω is closed under: a) cartesian products; b) subgroups;

c) quotients.

Note that while Pro is an SC-variety, all other subclasses Ω of TGr from
Remark 1.1 are varieties.

Theorem 3.4. Let Ω be a subclass of TGr which is an SC-variety and (X,U)
be a uniform space.

(1) The uniform free topological group FΩ := FΩ(X,U) exists.
(2) FΩ is unique up to a topological group isomorphism.
(3) (a) FΩ is topologically generated by i(X) ⊂ FΩ.

(b) For every uniform map ϕ : (X,U) → G into a topological group
G ∈ Ω there exists a continuous homomorphism Φ : FΩ → G such
that Φ ◦ i = ϕ.

Moreover, these two properties characterize FΩ(X,U).
(4) If Ω is an SC-variety then FΩ is algebraically generated by i(X).

Proof: (1) Existence. We give here a standard categorical construction (with
some minor adaptations) which goes back to Samuel and Kakutani. Denote m :=

max(|X |,ℵ0). Let F be a subclass of Ω such that |G| ≤ 22
m

for G ∈ F, distinct
members of F are not topologically isomorphic, and every topological group H for
which |H | ≤ 22

m

is topologically isomorphic with some G ∈ F. Let {(Gj , ϕj)}j∈J
consist of all pairs (Gj , ϕj) where Gj ∈ F and ϕj is a uniformly continuous
mapping of X into Gj . It is easy to see that F is a set. Then J is a set as well. If

H ∈ Ω is a topological group, |H | ≤ 22
m

, and ϕ is a uniformly continuous mapping
of X into H , then there is j0 ∈ J and a topological isomorphism τ : Gj0 → H
such that τ ◦ ϕj0 = ϕ. In such a case we identify the pair (H,φ) with the pair
(Gj0 , ϕj0). Let M =

∏
j∈J Gj . For x ∈ X , define i(x) ∈ M by i(x)j = ϕj(x).

Finally, let FΩ := FΩ(X,U) be the closed subgroup of M topologically generated
by i(X). Since the class Ω is an SC-variety, bothM and FΩ are in Ω by conditions
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(a) and (b) of Definition 3.3.1. Clearly, i : (X,U)→ FΩ is uniformly continuous.
Now, if ϕ is a uniformly continuous mapping of X into any topological group
G ∈ Ω, the image ϕ(X) in G is contained in the subgroup P := cl(〈ϕ(X)〉) of
G, where 〈ϕ(X)〉 is the subgroup of G algebraically generated by ϕ(X). Since

|〈ϕ(X)〉| ≤ m = max{|X |,ℵ0} and P is Hausdorff we have |P | ≤ 22
m

. Thus, by
our assumption on F, the pair (P, ϕ) is isomorphic to a pair (Gj0 , ϕj0) for some
j0 ∈ J . Let πj0 : FΩ → Gj0 be the restriction on FΩ ⊆

∏
j∈J Gj of the projection

onto the j0-th axis. Then ϕ = Φ ◦ i, where Φ := τ ◦ πj0 . Finally, note that Φ is
unique since 〈i(X)〉 is a dense subgroup of FΩ and G is Hausdorff.

(2) Uniqueness. Assume that there exist Hausdorff topological groups F1, F2

and uniformly continuous maps i : X → F1, j : X → F2 such that the pairs
(i, F1) and (j, F2) satisfy the universal property. Then by Definition 3.1 there
exist unique continuous homomorphisms Φ1 : F2 → F1, Φ2 : F1 → F2 such that
Φ2 ◦ i = j, Φ1 ◦ j = i. For Φ ∈ {Φ1 ◦ Φ2, IdF1

} we have Φ ◦ i = i, and thus
Φ1 ◦ Φ2 = IdF1

. Similarly, Φ2 ◦ Φ1 = IdF2
. Therefore, Φ2 : F1 → F2 is a

topological group isomorphism.

(3) Assertion (a) follows from the constructive description of FΩ given in the
proof of (1), and from (2). Property (b) is a part of the definition of FΩ. These
two properties characterize FΩ since the latter group is Hausdorff.

(4) As an SC-variety Ω is closed under (not necessarily closed) subgroups.
So in the constructive description appearing in the proof of (1) we may define
FΩ as the subgroup algebraically generated by i(X). Apply (2) to conclude the
proof. �

The completion of G with respect to the two-sided uniformity is denoted by Ĝ.
The proof of the following observation is straightforward.

Lemma 3.5. Let Ω be an SC-variety. Denote by ΩC its subclass of all complete

groups from Ω. Then FΩC
= F̂Ω.

3.2 Classical constructions. For Ω = TGr the universal object FΩ(X,U) is
the uniform free topological group of (X,U). Notation: F (X,U). This was in-
vented by Nakayama and studied by Numella [39] and Pestov [40], [41].

In particular, Pestov described the topology of F (X,U) ([40], see also Re-
mark 4.17 below). If Ω = AbGr then FΩ(X,U) is the uniform free abelian

topological group of (X,U). Notation: A(X,U). In [51] Sipacheva used Pestov’s
description of the free topological group F (X) to generate a description of the
free abelian topological group A(X). Similarly, one can prove the following:

Theorem 3.6 (compare with [51, p. 5779]). Let (X,U) be a uniform space. For
each n ∈ N, we fix an arbitrary entourage Wn ∈ U of the diagonal in X ×X and
set W = {Wn}n∈N,

U(Wn) = {ǫx− ǫy : (x, y) ∈ Wn, ǫ = ±1},
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and

Ũ(W ) =
⋃

n∈N

(U(W1) + U(W2) + · · ·+ U(Wn)).

The sets Ũ(W ), whereW are all sequences of uniform entourages of the diagonal,
form a neighborhood base at zero for the topology of the uniform free abelian
topological group A(X,U).

Recall a classical result concerning the (non)metrizability of free topological
groups.

Theorem 3.7 ([2, Theorem 7.1.20]). If a Tychonoff space X is non-discrete, then
neither F (X) nor A(X) are metrizable.

Theorem 3.7 has a uniform modification. In fact, we can mimic the proof of
Theorem 3.7 to obtain the following:

Theorem 3.8. Let U be a non-discrete uniformity on X and

Ω ∈ {TGr,Prec,SIN,AbGr}.

Then FΩ(X,U) is not metrizable.

Contrast this result with Theorem 4.16, where we show that for some natural
subclasses of Ω = NA the free group FΩ(X,U) is metrizable whenever (X,U) is
metrizable.

3.3 Free groups in some subclasses of NA. In Remark 1.1 we gave a list
of some classes Ω and the corresponding free groups. We keep the corresponding
notations.

Theorem 3.9. Let (X,U) be a non-archimedean uniform space and

G ∈ {FNA, F
b
NA
, ANA, BNA}.

Then:

(1) The universal morphism i : (X,U)→ G is a uniform embedding.
(2) If G ∈ {FNA, F

b
NA
} then G is algebraically free over i(X).

So, if G = ANA or G = BNA then G is algebraically isomorphic to A(X),
or B(X), respectively.

(3) i(X) is a closed subspace of G.

Proof: (1) It suffices to prove that the universal morphism i : X → BNA is a uni-
form embedding. We show the existence of a Hausdorff NA group topology τ on
the free Boolean group B(X), and a uniform embedding ι : (X,U)→ (B(X), τ),
that clearly will imply that i : (X,U)→ BNA is a uniform embedding.

Consider the natural set embedding

ι : X →֒ B(X), ι(x) = {x}.
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We identify x ∈ X with ι(x) = {x} ∈ B(X). Let B := {〈ε〉}ε∈Eq(U), where
Eq(U) is the set of equivalence relations from U and 〈ε〉 is the subgroup of B(X)
algebraically generated by the set

{x+ y ∈ B(X) : (x, y) ∈ ε}.

Now, B is a filter base on B(X) and ∀b ∈ B(X) ∀ε ∈ Eq(U) we have

〈ε〉+ 〈ε〉 = −〈ε〉 = b+ 〈ε〉+ b.

It follows that there exists aNA group topology τ for which B is a local base at the
identity. To prove that this topology is indeed Hausdorff, we have to show that if
u 6= 0 is of the form u =

∑2n
i=1 ai where n ∈ N and ai ∈ X ∀1 ≤ i ≤ 2n, then there

exists ε ∈ Eq(U) such that u /∈ 〈ε〉. Since (X,U) is a Hausdorff uniform space
there exists ε ∈ U such that (ai, aj) /∈ ε for every i 6= j. Assuming the contrary,
let u ∈ 〈ε〉. Then there exists a minimal m ∈ N such that u =

∑m
i=1(xi + yi)

where (xi, yi) ∈ ε ∀1 ≤ i ≤ m. Without loss of generality we may assume that
there exists 1 ≤ i0 ≤ m such that a1 = xi0 . Note that yi0 6= aj for every
1 ≤ j ≤ 2n, since otherwise we obtain a contradiction to the minimality of m
or to the definition of ε. Since B(X) is the free Boolean group over X and ε is
symmetric we can assume without loss of generality that there exists r 6= i such
that yi0 = xr. It follows that (xi0 + yi0)+ (xr+ yr) = xi0 + r. Since ε is transitive
we also have (xi0 , yr) ∈ ε and we obtain a contradiction to the minimality of m.
Therefore, τ is Hausdorff.

We show that ι : (X,U) → (B(X), τ) is uniformly continuous. To see this
observe that if (x, y) ∈ ε then x + y ∈ 〈ε〉. Finally, assume that (x, y) ∈ X ×X
such that x+ y ∈ 〈ε〉 where ε is an equivalence relation. We show that (x, y) ∈ ε
and conclude that ι : (X,U)→ (B(X), τ) is a uniform embedding. Since x+ y ∈
〈ε〉 there exists a natural number n such that x + y =

∑n
i=1(ai + bi), where

(ai, bi) ∈ ε ∀1 ≤ i ≤ n. Moreover, n may be chosen to be minimal. By the
definition of B(X) and the fact that ε is symmetric we may assume without loss
of generality that there exists 1 ≤ i0 ≤ n such that ai0 = x. The case bi0 = y
is trivial. So we can assume that bi0 6= y. Since B(X) is the free Boolean group
over X there exists i1 6= i0 such that either bi0 = ai1 or bi0 = bi1 . In the former
case we have (ai0 + bi0) + (ai1 + bi1) = ai0 + bi1 and (ai0 , bi1) ∈ ε, since ε is
transitive, which contradicts the minimality of n. The latter case yields a similar
contradiction.

(2) We can now identify X with i(X). Denote byX/ε the quotient set equipped
with the discrete uniformity. The function fε : X → X/ε is the uniformly con-
tinuous map which maps every x ∈ X to the equivalence class [x]ε. We first deal
with the case G = FNA. We reserve the notation fε also for the homomorphic
extension from FNA to the (discrete) group F (X/ε). This allows us to define
[w]ε := fε(w) for every w ∈ FNA. Let w = xt11 · · ·x

tk
k ∈ FNA where ti ∈ Z \ {0}

for every 1 ≤ i ≤ k and xi 6= xi+1 for every 1 ≤ i ≤ k − 1. If w is of the
form xt, one can consider the extension f : FNA → Z of the constant function
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f : (X,U)→ Z, f ≡ 1. We have

f(w) = t 6= 0.

Otherwise, assume that w is not of the form xt. Since (X,U) is a non-archimedean
Hausdorff space there exists an equivalence relation ε ∈ U such that

(xi, xi+1) /∈ ε ∀i ∈ {1, 2, . . . , k − 1}.

Since F (X/ε) is algebraically free it follows that fε(w) 6= eF (X/ε). The groups
F (X/ε) and Z (being discrete groups) are both non-archimedean Hausdorff. So
we can conclude that FNA is algebraically free over X .

For the case G = F b
NA

use the fact that Z and F (X/ε) are also balanced.
For the case G = ANA one may use the fact that Z is also abelian and replace

F (X/ε) with A(X/ε). Up to minor changes the proof is similar to the proof of
the case G = F b

NA
.

For the Boolean case replace Z with Z2 and F (X/ε) with B(X/ε).

(3) In case G = FNA, let w ∈ FNA \ X . Assume first that w is either the
identity element of FNA or has the form x−1 where x ∈ X . Then

f(w) 6= f(y) = 1 ∀y ∈ X

where f : FNA → Z is the extension of the constant function f : (X,U)→ Z, f ≡
1. Since Z is discrete the set O := {z ∈ FNA| f(z) 6= 1} is clearly an open subset
of FNA and we have w ∈ O ⊆ XC . Let k > 1 and w = xt11 · · ·x

tk
k where ti ∈ Z\{0}

for every 1 ≤ i ≤ k and xi 6= xi+1 for every 1 ≤ i ≤ k − 1. Then there exists an
equivalence relation ε ∈ U such that

(xi, xi+1) /∈ ε ∀i ∈ {1, 2, . . . , k − 1}.

Since F (X/ε) is algebraically free it follows that [w]ε 6= [x]ε ∀x ∈ X . Since
F (X/ε) is discrete the set U := {z ∈ FNA| fε(z) = [w]ε} is an open subset of FNA

and we also have w ∈ U ⊆ XC . This implies that (X,U) is a closed subspace
of FNA.

For G 6= FNA we may use the same modifications appearing in the proof
of (2). �

Remark 3.10. It is clear that if the universal morphism i : (X,U)→ G is a uniform
embedding, where G is non-archimedean, then (X,U) is non-archimedean.

Lemma 3.11. Let U be the discrete uniformity on a finite set X . Then F Prec

NA
is

algebraically the free group F (X) over X .

Proof: It suffices to find a Hausdorff non-archimedean precompact group topol-
ogy τ on the abstract free group F (X). Consider the group topology τ generated
by the filter base {N ⊳ F (X) : [F (X) : N ] <∞}. Clearly, τ is a non-archimedean
precompact group topology on F (X). To see that τ is Hausdorff recall that every
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free group is residually finite, that is, the intersection of all normal subgroups of
finite index is trivial. �

Theorem 3.12. Let (X,U) be a non-archimedean precompact uniform space and

G ∈ {F Prec

NA
, FPro}.

Then:

(1) the universal morphism i : (X,U)→ G is a uniform embedding;
(2) F Prec

NA
is algebraically free over i(X);

(3) i(X) is a closed subspace of F Prec

NA
.

Proof: (1) (X,U) is a uniform subspace of its compact zero dimensional com-

pletion (X̂, Û). Consider the compact group Zw(X̂)
2 where w(X̂) is the topological

weight of X̂. Then it is clear that (X̂, Û) is uniformly embedded in Zw(X̂)
2 . Now,

since Zw(X̂)
2 is a profinite group then each of the universal morphisms is a uniform

embedding.

(2) We use similar ideas to those appearing in the proof of Theorem 3.9.2. This
time due to the precompactness assumption the set X/ε is finite. By Lemma 3.11,
F Prec

NA
(X/ε) is algebraically free over the set X/ε. Thus we may replace FNA(X/ε)

with F Prec

NA
(X/ε), and also the discrete topology on Z with its Hausdorff topology

generated by all of its finite-index subgroups, to conclude that F Prec

NA
is alge-

braically free over i(X).

(3) Very similar to the proof of Theorem 3.9.3. Just observe that

O := {z ∈ F Prec

NA
| f(z) 6= 1}

is an open subset of F Prec

NA
, since the group topology on Z which we consider this

time remains Hausdorff. Moreover, the set

U := {z ∈ F Prec

NA
| fε(z) /∈ {[x]ε : x ∈ X}}

is also an open subset of F Prec

NA
, since F Prec

NA
(X/ε) is Hausdorff and {[x]ε : x ∈ X}

is finite. �

4. Final non-archimedean group topologies

In this section the topological groups are not necessarily Hausdorff. Recall
that the description of F (X,U), given by Pestov in [40] (see also Remark 4.17.1
below), was based on final group topologies, which were studied by Dierolf and
Roelcke [4, Chapter 4]. Here we study final non-archimedean group topologies.

In the sequel we present a non-archimedean modification of final group topolo-
gies. The general structure of final non-archimedean group topologies is then used
to find descriptions of the topologies for the free NA groups from Remark 1.1.

We also provide a new description of the topology of F b(X,U), the uniform
free balanced group of a uniform space (X,U).
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Definition 4.1. Let P be a group, α a filter base on P and Ω ⊂ TGr an SC-
variety. Assume that there exists a group topology τ on P such that:

(1) (P, τ) ∈ Ω, and
(2) the filter α converges to e (notation: α→ e) in (P, τ).

Then among all group topologies on P satisfying properties (1) and (2) there is a
finest one. We call it the Ω-group topology generated by α and denote it by 〈α〉Ω.

Definition 4.2 ([4, Chapter 4]). If P is a group and (Bn)n∈N a sequence of
subsets of P , let

[(Bn)] :=
⋃

n∈N

⋃

π∈Sn

Bπ(1)Bπ(2) · · ·Bπ(n).

Remark 4.3. Note that if (Bn)n∈N is a constant sequence such that

B1 = B2 = · · · = Bn = · · · = B

then [(Bn)] =
⋃
n∈N

Bn. In this case we write [B] instead of [(Bn)]. It is easy to

see that if B = B−1 then [B] is simply the subgroup generated by B.

Lemma 4.4. Let P be a non-archimedean topological group and L a base of
Ne(P ). Then the set {[B] : B ∈ L} is also a base of Ne(P ).

Proof: For every B ∈ L we have [B] ∈ Ne(P ) since B ⊆ [B]. Let V ∈ Ne(P ).
We have to show that there exists B ∈ L such that [B] ⊆ V . Since G is non-
archimedean, there exists an open subgroup H such that H ⊆ V and H ∈ Ne(P ).
On the other hand, L is a base of Ne(P ) and therefore there exists B ∈ L such
that B ⊆ H . From the fact that H is a subgroup we conclude that

[B] =
⋃

n∈N

Bn ⊆ H ⊆ V. �

Lemma 4.5 (compare with [4, Remark 4.27]). Let P be a group, α a filter base
on P and Ω an SC-variety. Then:

(1)

L :=
{ ⋃

p∈P

(pApp
−1 ∪ pA−1

p p−1) : Ap ∈ α (p ∈ P )
}

is also a filter base on P and if 〈α〉Ω exists then 〈α〉Ω = 〈L〉Ω.
(2) If, in addition, all topological groups belonging to Ω are balanced then

M :=
{ ⋃

p∈P

(pV p−1 ∪ pV −1p−1) : V ∈ α
}

is a filter base on P and if 〈α〉Ω exists then 〈α〉Ω = 〈M〉Ω.
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Proof: (1) This follows from the fact that for every group topology τ on P such
that (P, τ) ∈ Ω the filter base α converges to e in (P, τ) if and only if L converges
to e in (P, τ). Note that L satisfies the following properties:
(a) ∀A ∈ L A = A−1,
(b) ∀A ∈ L ∀p ∈ P ∃B ∈ L pBp−1 ⊆ A.

(2) This follows from the fact that for every group topology τ on P such that
(P, τ) ∈ Ω the filter base α converges to e in (P, τ) if and only ifM converges to
e in (P, τ). Note thatM satisfies the following stronger properties:
(a*) ∀A ∈M A = A−1,
(b*) ∀A ∈ M ∃B ∈M ∀p ∈ P pBp−1 ⊆ A. �

Lemma 4.6. Let P be a group, α a filter base on P and Ω an SC-variety.

(1) If Ω = NA and α satisfies the following property:
(a) ∀A ∈ α ∀p ∈ P ∃B ∈ α pBp−1 ⊆ A,
then a base of Ne(P, 〈α〉Ω) is formed by the sets [A], where A ∈ α.

(2) If Ω ∈ {NA,NAb,AbNA,BoolNA} and α satisfies the stronger
property
(a*) ∀A ∈ α ∃B ∈ α ∀p ∈ P pBp−1 ⊆ A,
then the sets [A], where A ∈ α, constitute a base of Ne(P, 〈α〉Ω).

(3) If Ω = NA ∩Prec and α satisfies property (a*) of (2) then

{N ⊳ P | [P : N ] <∞∧ ∃A ∈ α [A] ⊆ N}

is a local base at the identity element of (P, 〈α〉Ω).
(4) If Ω = SIN and α satisfies the following properties:

(a*) ∀A ∈M A = A−1,
(b*) ∀A ∈M ∃B ∈ M ∀p ∈ P pBp−1 ⊆ A,
then a base of Ne(P, 〈α〉Ω) is formed by the sets [(An)], where ∀n ∈
N An ∈ α.

Proof: (1) Clearly [A]2 ⊆ [A] and [A]−1 = [A] ∀A ∈ α. Moreover, for every
A ∈ α and for every p ∈ P there exists B ∈ α such that p[B]p−1 ⊆ [A]. Indeed,
we can use property (a) to find B ∈ α such that pBp−1 ⊆ A. It follows that
p[B]p−1 ⊆ [A]. This proves that there exists a non-archimedean group topology
T such that

{[A] : A ∈ α}

is a base of Ne(P, T ). Clearly, α converges to e with respect to T , and therefore
T ⊆ 〈α〉Ω.

Conversely, let σ be any non-archimedean group topology on P such that

∀U ∈ Ne(P, σ) ∃A ∈ α A ⊆ U.

To prove that σ ⊆ T , let U ∈ Ne(P, σ) be given. By Lemma 4.4 there exists V
in Ne(P, σ) such that [V ] ⊆ U , and, by the assumption, there exists a set A ∈ α
such that A ⊆ V . Consequently, [A] ⊆ [V ] ⊆ U , which proves σ ⊆ T .
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(2) The proof of the “balanced case” is quite similar. The only difference is
the new condition

∀A ∈ α ∃B ∈ α ∀p ∈ P pBp−1 ⊆ A,

which implies that the topology generated by the sets [A] is also balanced.

(3) Precompact case: Clearly there exists a non-archimedean precompact group
topology T on P such that

{N ⊳ P | [P : N ] <∞∧ ∃A ∈ α [A] ⊆ N}

is a base of Ne(P, T ). It is also trivial to see that α converges to e with respect
to T . Then, T is coarser than 〈α〉Ω. Let σ be any precompact non-archimedean
group topology on P such that

∀U ∈ Ne(P, σ) ∃A ∈ α A ⊆ U.

To prove that σ ⊆ T , let N ∈ Ne(P, σ) be given. We can assume that N is
a finite-index normal subgroup of P . By Lemma 4.4 there exists V in Ne(P, σ)
such that [V ] ⊆ U , and, by the assumption, there exists a set A ∈ α such that
A ⊆ V . Consequently, [A] ⊆ [V ] ⊆ N which proves σ ⊆ T .

(4) The proof is completely the same as the proof of [4, Proposition 4.28].
Observe that from condition (b*) it follows that the group topology, determined
by the sets [(An)], is also balanced. �

4.1 The structure of the free NA topological groups. Let (X,U) be a
non-archimedean uniform space, Eq(U) be the set of equivalence relations from
U . Denote by j2 the mapping (x, y) 7→ x−1y from X2 to either F (X), A(X) or
B(X) and by j∗2 the mapping (x, y) 7→ xy−1.

Lemma 4.7. Let (X,U) be non-archimedean and let B ⊆ Eq(U) be a base of U .

(1) The topology of FNA is the strongest among all non-archimedean Haus-
dorff group topologies on F (X) in which the filter base

F = {j2(V ) ∪ j∗2 (V )| V ∈ B}

converges to e.
(2) For

Ω ∈ {NAb,NA ∩Prec,AbNA,BoolNA}

the topology of FΩ is 〈F〉Ω where

F = {j2(V )| V ∈ B}.

Proof: (1) First recall that FNA is algebraically the abstract free group F (X)
(see Theorem 3.9.2). Let τ be a non-archimedean group topology on F (X). We
show that Id : (X,U) → (F (X), τ) is uniformly continuous if and only if F
converges to e with respect to τ .
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The map Id : (X,U) → (F (X), τ) is uniformly continuous if and only if for
every U ∈ Ne(F (X), τ) there exists V ∈ B such that

V ⊆ Ũ = {(x, y) : x−1y ∈ U ∧ xy−1 ∈ U}.

The latter is equivalent to the following condition: there exists V ∈ B such that

j2(V ) ∪ j∗2 (V ) ⊆ U.

Thus, Id : (X,U)→ (F (X), τ) is uniformly continuous if and only if F converges
to e with respect to τ . Clearly, the topology of FNA is a non-archimedean Haus-
dorff group topology on F (X) in which the filter base F converges to e. Moreover,
for every non-archimedean Hausdorff group topology τ on F (X) in which F con-
verges to e, the map Id : (X,U)→ (F (X), τ) is uniformly continuous. Therefore
Id : FNA → (F (X), τ) is uniformly continuous. This completes the proof of (1).

(2) The proof is very similar to the previous case. This time we can consider
the filter base {j2(V )| V ∈ B} instead of {j2(V ) ∪ j∗2 (V )| V ∈ B} since all the
groups FΩ are balanced. �

Lemma 4.8. Let (X,U) be a uniform space. For Ω = SIN the topology of FΩ

is 〈F〉Ω where

F = {j2(V )| V ∈ B}.

Proof: Use the same arguments as those appearing in the proof of Lemma 4.7.2.
�

Definition 4.9. (1) Following [40], for every ψ ∈ UF (X) let

Vψ :=
⋃

w∈F (X)

w(j2(ψ(w)) ∪ j
∗
2 (ψ(w)))w

−1 .

(2) As a particular case in which every ψ is a constant function we obtain the
set

ε̃ :=
⋃

w∈F (X)

w(j2(ε) ∪ j
∗
2 (ε))w

−1.

Remark 4.10. Note that if ε ∈ Eq(U) then (j2(ε))
−1 = j2(ε), (j

∗
2 (ε))

−1 = (j∗2 (ε))
and

ε̃ =
⋃

w∈F (X)

w(j2(ε) ∪ j
∗
2 (ε))w

−1 =
⋃

w∈F (X)

wj2(ε)w
−1.

Indeed, this follows from the equality wts−1w−1 = (ws)s−1t(ws)−1.
Note also that the subgroup [ε̃] (see Remark 4.3) generated by ε is normal

in F (X).

The proof of the following lemma is straightforward.
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Lemma 4.11. Let ε be an equivalent relation on a set X . Consider the function
fε : X → X/ε. Then ker(fε) = [ε̃], where fε : F (X) → F (X/ε) is the induced
onto homomorphism.

Theorem 4.12. Let (X,U) be a uniform space. Then {[(ε̃n)] : εn ∈ U ∀n ∈ N}
is a base of Ne(F

b).

Proof: By Lemma 4.8 the topology of F b is 〈F〉Ω where

F = {j2(ε)| ε ∈ B}

and Ω is the class of all balanced topological groups. According to Lemma 4.5.2
we have 〈F〉Ω = 〈M〉Ω, where

M :=
{ ⋃

w∈F (X)

(wAw−1 ∪wA−1w−1) : A ∈ F
}
.

In particular,

Ne(F
b) = Ne(F (X), 〈M〉Ω).

By the description of the sets ε̃ in Definition 4.9.2 and Remark 4.10 we have
M = {ε̃ : ε ∈ B}. Finally, use Lemma 4.5.2 and Lemma 4.6.4 to complete the
proof. �

Theorem 4.13. Let (X,U) be non-archimedean and let B ⊆ Eq(U) be a base
of U. Then:

(1) The family (of subgroups) {[Vψ] : ψ ∈ B
F (X)} is a base of Ne(FNA).

(2) (a) The family (of normal subgroups) {[ε̃] : ε ∈ B} is a base of Ne(F bNA
).

(b) The topology of F b
NA

is the weak topology generated by the system
of homomorphisms {fε : F (X) → F (X/ε)}ε∈B on discrete groups
F (X/ε).

Proof: (1) By Lemma 4.7.1 the topology of FNA is 〈F〉Ω where

F = {j2(ε) ∪ j
∗
2 (ε)| ε ∈ B}

and Ω is the class of all non-archimedean topological groups. According to
Lemma 4.5.1 〈F〉Ω = 〈L〉Ω where

L :=
{ ⋃

w∈F (X)

(wAww
−1 ∪ wA−1

w w−1) : Aw ∈ F , w ∈ F (X)
}
.

In particular,

Ne(FNA) = Ne(F (X), 〈L〉Ω).

By the description of the sets Vψ in Definition 4.9.1 and Remark 4.10 we have

L = {Vψ : ψ ∈ BF (X)}.

Finally, use Lemma 4.5.1 and Lemma 4.6.1 to conclude the proof.
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(2.a) By Lemma 4.7.2 the topology of F b
NA

is 〈F〉Ω where

F = {j2(ε)| ε ∈ B}

and Ω is the class of all non-archimedean balanced topological groups. According
to Lemma 4.5.2 〈F〉Ω = 〈M〉Ω where

M :=
{ ⋃

w∈F (X)

(wAw−1 ∪wA−1w−1) : A ∈ F
}
.

In particular,

Ne(F
b
NA

) = Ne(F (X), 〈M〉Ω).

By the description of the sets ε̃ in Definition 4.9.2 and Remark 4.10M = {ε̃ : ε ∈
B}. Finally, use Lemma 4.5.2 and Lemma 4.6.2.

(2.b) Use (2.a) and observe that ker(fε) = [ε̃] by Lemma 4.11. �

Theorem 4.14. Let (X,U) be non-archimedean and let B ⊆ Eq(U) be a base
of U .

(1) (Abelian case) For every ε ∈ B denote by 〈ε〉 the subgroup of A(X)
algebraically generated by the set

{x− y ∈ A(X) : (x, y) ∈ ε},

then {〈ε〉}ε∈B is a base of N0(ANA).
(2) (Boolean case) If 〈ε〉 denotes the subgroup of B(X) algebraically gene-

rated by

{x− y ∈ B(X) : (x, y) ∈ ε},

then {〈ε〉}ε∈B is a base of N0(BNA).

Proof: (1) By Lemma 4.7.2 the topology of ANA is 〈F〉NA where

F = {j2(ε)| ε ∈ B}.

Therefore,

N0(ANA) = N0(A(X), 〈F〉NA).

By Remark 4.10 and Lemma 4.6.2 a base of N0(A(X), 〈F〉NA) is formed by the
sets [j2(ε)], where ε ∈ B and [j2(ε)] is the subgroup generated by j2(ε). Since ε
is symmetric we have

j2(ε) = {y − x ∈ A(X) : (x, y) ∈ ε} = {x− y ∈ A(X) : (x, y) ∈ ε}.

The proof of (2) is similar. �
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Remark 4.15. Note that the system B in Theorem 4.13.2 induces a naturally de-
fined inverse limit lim←−ε∈BF (X/ε) (of discrete groups F (X/ε)) which can be identi-

fied with the complete group F̂ b
NA

. Similarly, lim←−ε∈B A(X/ε) and lim←−ε∈B B(X/ε)

can be identified with the groups ÂNA and B̂NA respectively.

Theorem 4.16. Let X := (X,U) be a Hausdorff non-archimedean space and

G ∈ {F b
NA

(X), ANA(X), BNA(X)}.

Then

(1) χ(G) = w(U) and w(G) = w(U) · l(U).
(2) If (X, d) is an ultra-metric space then G is an ultra-normable group of

the same topological weight as X .

Proof: (1) One may assume in Theorems 4.13.2 and 4.14 that B ⊆ Eq(U) is a
base of U of cardinality w(U). This explains χ(G) = w(U). Since lu(G) = l(U)
(Lemma 2.3.3) we can conclude by Lemma 2.3.1 that w(G) = w(U) · l(U).

(2) Combine (1) and Lemma 2.9. �

Remark 4.17. (1) Note that Pestov showed (see [40]) that the set {[(Vψn
)]},

where {ψn} extends over the family of all possible sequences of elements
from UF (X), is a base of Ne(F (X,U)).

(2) Considering only the sequences of constant functions, we obtain the set
{[(ε̃n)] : εn ∈ U ∀n ∈ N} which is a base of Ne(F

b(X,U)) by Theo-
rem 4.12.

(3) Let (X,U) be a non-archimedean uniform space. One may take in (1)
only the constant sequences and obtain the set {[Vψ] : ψ ∈ UF (X)} which
is a base of Ne(FNA) by Theorem 4.13.1.

(4) If, in addition, the functions ψ are all constant we obtain a base of
Ne(F

b
NA

) (see Theorem 4.13.2).
(5) NA is closed under products and subgroups. So NA is a reflective sub-

category (see for example, [54, Section 9]) of TGr. For every topolog-
ical group G there exists a universal arrow f : G → rNA(G), where
rNA(G) ∈ NA. For every uniform space (X,U) the group FNA(X,U) is
in fact rNA(G), where G := F (X,U).

4.2 Noncompleteness of ANA(X,U). In this subsection we show that
ANA(X,U) is never complete for non-discrete U .

Definition 4.18. (1) Let w =
∑n
i=1 kixi be a nonzero element of A(X),

where n ∈ N, and for all 1 ≤ i ≤ n : xi ∈ X and ki ∈ Z \ {0}. Define the
length of w to be

∑n
i=1 |ki| and denote it by lh(w).

(2) The length of the zero element is 0.
(3) For a non-negative integer n we denote by Bn the subset of A(X) con-

sisting of all words of length ≤ n.

Lemma 4.19. For every n ∈ N the set Bn is closed in ANA.
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Proof: It suffices to show that for every word w of length > n there exists ε ∈ U
such that w+ 〈ε〉 ∩Bn = ∅. Since U is Hausdorff there exists ε ∈ U such that for
every x 6= y ∈ supp(w) we have (x, y) /∈ ε. It follows that for every (x, y) ∈ ε we
have either lh(w + (x − y)) = lh(w) or lh(w + (x − y)) = lh(w) + 1. Therefore,
w + 〈ε〉 ∩Bn = ∅. �

Lemma 4.20. Let (X,U) be a non-archimedean non-discrete uniform space.
Then, for every n ∈ N, int(Bn) = ∅.

Proof: Let w ∈ Bn. Since (X,U) is non-discrete and Hausdorff, every symmetric
entourage ε ∈ U contains infinitely many elements of the form (x, y), where x 6= y.
It follows that there exists (x, y) ∈ ε such that x /∈ supp(w). Now, if y /∈ supp(w)
then lh(w+ x− y) = lh(w) + 2. Otherwise, we have lh(w+ x− y) = lh(w) + 2 or
lh(w+y−x) = lh(w)+2, and either one of these cases implies that w+ 〈ε〉 * Bn.
Therefore, by Theorem 4.14.1, int(Bn) = ∅. �

Theorem 4.21. Let (X,U) be a non-archimedean metrizable non-discrete uni-
form space. Then ANA is not complete.

Proof: By Theorem 4.16 ANA is metrizable. This group is indeed non-complete.
Otherwise, by Baire Category Theorem ANA is not the countable union of no-
where-dense closed sets. This contradicts the fact that ANA = ∪n∈NBn, where
the sets Bn are nowhere-dense and closed (see Lemmas 4.19 and 4.20). �

As a contrast recall that A(X,U) is complete for every uniform space (X,U)
(which for U = Umax gives Tkachenko-Uspenskij theorem). See [2, p. 497].

5. Free profinite groups

The free profinite groups (in several subclasses Ω of Pro) play a major role in
several applications [17], [46], [14]. By Lemma 3.5 the free profinite group FPro

can be identified with the completion F̂ Prec

NA
of the free precompact NA group

F Prec

NA
. Its description comes from the following result which for Stone spaces is a

version of a known result in the theory of profinite groups. See for example [46,
Proposition 3.3.2].

Theorem 5.1. Let (X,U) be a non-archimedean precompact uniform space and
let B ⊆ Eq(U) be a base of U of cardinality w(U). Then:

(1) The set S := {H ⊳F (X) : [F (X) : H ] <∞, ∃ ε ∈ B [ε̃] ⊆ H} is a local
base at the identity of F Prec

NA
.

(2) Let G ∈ {FPro, F
Prec

NA
}. Then χ(G) = w(G) = w(U) = w(X). In particu-

lar, G is metrizable for every metrizable U .

Proof: (1) By Lemma 4.7.2 the topology of F Prec

NA
is 〈F〉Ω where

F = {j2(ε)| ε ∈ B}
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and Ω = NA ∩Prec. According to Lemma 4.5.2 the latter coincides with 〈M〉Ω
where

M :=
{ ⋃

w∈F (X)

(wAw−1 ∪wA−1w−1) : A ∈ F
}
.

In particular,

Ne(F
Prec

NA
) = Ne(F (X), 〈M〉Ω).

By the description of the sets ε̃ in Definition 4.9.2 and Remark 4.10, M = {ε̃ :
ε ∈ B}. Finally, use Lemmas 4.5.2 and 4.6.3.

(2) Since U and G are precompact we have w(U) = w(X) and χ(G) = w(G).
So we have only to show that χ(G) = w(U). Assume that |B| = w(U). By the
description of S in (1), it suffices to show that for every ε ∈ B there are countably
many normal finite-index subgroups of F (X) containing [ε̃]. Consider the function
fε : X → X/ε. Note that F (X/ε) is a free group with finite number of generators.
It is well known that the set of all (normal) finite-index subgroups of F (X/ε) is
countable. By the Correspondence Theorem there are countably many normal
finite-index subgroups of F (X) containing ker(fε), where fε : F (X)→ F (X/ε) is
the induced onto homomorphism. Now in order to complete the proof recall that
ker(fε) = [ε̃] by Lemma 4.11. �

Let Ω be an SC-variety of groups. Following [54] let us say that two compact
spaces X and Y are Ω-equivalent if their Ω-free groups FΩ(X) and FΩ(Y ) are
topologically isomorphic. Notation: X ∼=Ω Y . In particular, we have the classical
concepts of M -equivalent (in the honor of Markov) and A-equivalent compact
spaces (for Ω = TGr and Ω = AbGr, respectively). For free compact (abelian)
groups and the corresponding equivalence see [21].

Similarly, we get the concepts of NA-equivalent, AbNA-equivalent and Pro-
equivalent compact spaces. The Pro-equivalence is very rigid as the following
remark demonstrates.

Remark 5.2. From Melnikov’s result (see [46, Proposition 3.5.12]) it follows that
every free profinite group on a compact infinite Stone space X is isomorphic to
the free profinite group of the 1-point compactification of a discrete space with
cardinality w(X). So two infinite Stone spaces X and Y are Pro-equivalent if
and only if w(X) = w(Y ). This implies that there are Pro-equivalent compact
spaces which are not M or A-equivalent.

Note that if X is the converging sequence space and Y is the Cantor set then
X ∼=Pro Y by Remark 5.2. On the other hand, X ≇Ω Y , where Ω = NA∩Prec,
because F Prec

NA
(X) is countable in contrast to F Prec

NA
(Y ). It would be interesting to

compare Ω-equivalences on Stone spaces (with the same weight and cardinality)
for different subclasses Ω of NA.
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5.1 The Heisenberg group associated to a Stone space and free Boolean

profinite groups. To every Stone space X we associate in [35] the natural bi-
additive mapping

(1) w : C(X,Z2)× C(X,Z2)
∗ → Z2

where V := C(X,Z2) can be identified with the discrete group (with respect to
symmetric difference) of all clopen subsets in X . Denote by V ∗ := hom(V,T)
the Pontryagin dual of V . Since V is a Boolean group every character V → T
can be identified with a homomorphism into the unique 2-element subgroup Ω2 =
{1,−1}, a copy of Z2. The same is true for the characters on V ∗, hence the natural
evaluation map w : V × V ∗ → T (w(x, f) = f(x)) can be restricted naturally to
V × V ∗ → Z2. Under this identification V ∗ := hom(V,Z2) is a closed subgroup
of the compact group ZV2 . In particular, V ∗ is a Boolean profinite group. Similar
arguments show that, in general, any Boolean profinite group G is the Pontryagin
dual of the discrete Boolean group G∗.

We prove in [35] that for every Stone space X the associated Heisenberg type
group H = (Z2 × V )⋋ V ∗ is always minimal.

This setting has some additional interesting properties. Note that the natural
evaluation map

δ : X → V ∗, x 7→ δx, δx(f) = f(x)

is a topological embedding into w(V ∗) = w(X). Moreover, if X is a G-space then
the induced action of G on V ∗ is continuous and δ is a G-embedding.

The set δ(X) separates points of V via the biadditive mapping w in (1). Hence
the subgroup generated by δ(X) in V ∗ is dense. We can say more using additional
properties of Pontryagin duality. We thank M. Jibladze and D. Pataraya for the
following observation (presented here after some simplifications).

Remark 5.3 (M. Jibladze and D. Pataraya). The Boolean profinite group V ∗

together with δ : X → V ∗ in fact is the free Boolean profinite group BPro(X)
of X . In order to see this let f : X → G be a continuous homomorphism into a
Boolean profinite group G. Then G is the Pontryagin dual of a discrete Boolean
group H . That is, G = H∗. Now consider the natural inclusion

ν : G∗ = hom(G,Z2) →֒ V = C(X,Z2).

Its dual arrow ν∗ : V ∗ → G∗∗ can be identified with ν∗ : V ∗ → G = G∗∗ such
that ν∗ ◦ δ = f . Such extension ν∗ of f is uniquely defined because the subgroup
generated by δ(X) ⊂ V ∗ is dense.

6. Surjectively universal groups

We already proved in Theorem 4.16 that for metrizable uniformities the cor-
responding free balanced, free abelian and free Boolean non-archimedean groups
are also metrizable. The same is true by Theorem 5.1 for the free profinite group
which can be treated as the free compact NA group over a uniform space. These
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results allow us to unify and strengthen some old and recent results about the
existence and the structure of surjectively universal NA groups.

Let Ω be a class of topological groups. We say that a topological group G is
surjectively universal (or, co-universal) in the class Ω if G ∈ Ω and every H ∈ Ω
is isomorphic to a topological factor group of G.

Remark 6.1. We list some natural classes Ω containing surjectively universal
groups:

(1) (Ding [9]) Polish groups. This result answers a long standing question of
Kechris.

(2) (Shakhmatov-Pelant-Watson [53])
(a) The class of all abelian Polish groups. More generally the class of all

abelian complete groups with weight ≤ κ.
(b) The class of all balanced metrizable complete groups with weight
≤ κ.

(3) (See Gao [15] for (a), (b), (c) and also Gao-Xuan [16] for (b), (c))
(a) NA Polish groups.
(b) NA abelian Polish groups.
(c) NA balanced Polish groups.

(4) (Gildenhuys-Lim [17, Lemma 1.11] (see also [46, Theorem 3.3.16])) Profi-
nite groups of weight ≤ κ.

Lemma 6.2. The Baire space B(κ) = (κℵ0 ,U) is co-universal in the class of all
completely metrizable non-archimedean uniform spaces with topological weight
≤ κ.

Proof: (First proof) By Shakhmatov-Pelant-Watson [53] there exists a Lipschitz-
1 onto open (hence, quotient) map B(κ) → (X, d) for every complete bounded
metric space (X, d) with topological weight ≤ κ.

(Second proof) By Ellis [11] for every complete ultra-metric space X and its
closed subspace Y there exists a uniformly continuous retraction r : X → Y
(which necessarily is a quotient map by Lemma 6.3). �

Lemma 6.3 (see for example [12, Corollary 2.4.5]). If the composition f2 ◦ f1 :
X → Z of continuous maps f1 : X → Y and f2 : Y → Z is a quotient map, then
f2 : Y → Z is a quotient map.

Theorem 6.4. (1) F̂ bNA(κ
ℵ0 ,U) is surjectively universal in the class of all

balanced NA metrizable complete groups with weight ≤ κ.
(2) ÂNA(κ

ℵ0 ,U) is surjectively universal in the class of all abelianNA metriz-
able complete groups with weight ≤ κ.

(3) B̂NA(κ
ℵ0 ,U) is surjectively universal in the class of all Boolean NA me-

trizable complete groups with weight ≤ κ.

Proof: We give a proof only for (1) because cases (2) and (3) are very similar.
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By Theorem 4.16, F bNA := F bNA(κ
ℵ0 ,U) is metrizable. Hence, F̂ bNA is metriz-

able, too. Furthermore, the topological weight of F̂ bNA is κ. Indeed, κℵ0 topo-

logically generates F̂ bNA. So, by Lemma 2.3, we get

w(F̂ bNA) = χ(F̂ bNA) · l
u(F̂ bNA) = ℵ0 · l

u(κℵ0 ,U) = κ.

Let P be a balanced NA metrizable complete group with topological weight
≤ κ. Then its uniformity ρ is both complete (by definition) and non-archimedean
(by Fact 2.6.2). By Lemma 6.2 there exists a uniformly continuous onto map
f : κℵ0 → (P, ρ) which is a quotient map of topological spaces. By the universal

property of F̂ bNA (Lemma 3.5) there exists a unique continuous homomorphism

f̂ : F̂ bNA → P which extends f . That is, f = f̂ ◦ i, where i : κℵ0 → F̂ bNA is the
universal arrow. Since f : κℵ0 → P is a quotient map we obtain by Lemma 6.3

that f̂ is a quotient map. �

If in (1) and (2) we assume that κ = ℵ0 then we in fact deal with Polish
groups. In this case we get very short proofs of the results mentioned in Re-
mark 6.1 (assertions 3.b and 3.c). A new point in this particular case is that the
corresponding universal groups come directly as the free objects. Indeed, recall

that by Lemma 3.5 the complete groups F̂ bNA, ÂNA, B̂NA in Theorem 6.4 are
ΩC -free groups for the corresponding classes.

Result (3) in Theorem 6.4 seems to be new.

Question 6.5. Let κ > ω. Is it true that there exists a co-universal space in
the class of all complete non-archimedean uniform spaces with dw(X,U) ≤ (κ, κ)?

A positive solution for Question 6.5 will imply, by Theorem 4.16 and the ap-
proach of Theorem 6.4, that there exists a co-universal group in the class of all
non-archimedean balanced (abelian, Boolean) groups with topological weight ≤ κ.

The following theorem is known in the theory of profinite groups. Here we
provide a very short proof of the existence of surjectively universal profinite groups
of weight ≤ m using Hulanicki’s theorem. The first assertion can be derived from
[17, Lemma 1.11] (or [46, Theorem 3.3.16]). Its version for the case m = ℵ0 goes
back to Iwasawa. This case was proved also in [16].

Theorem 6.6. (1) For every infinite cardinal m there exists a surjectively
universal group in the class Prom of all profinite groups of weight ≤ m.

(2) Every free profinite group FPro(X) over any infinite Stone space X of
weight m is a surjectively universal group in the class Prom.

Proof: (1) Let X = {0, 1}m. By Theorem 5.1.3, w(FPro(X)) = w(X). So,
FPro(X) ∈ Prom. By the universal property of FPro(X) it is enough to show that
any G ∈ Prom is a continuous image of X . It is obvious for finite G. By a theorem
of Hulanicki (see [20, Theorem 9.15]) every infinite G ∈ Prom is homeomorphic
to {0, 1}χ(G) = {0, 1}w(G). Since w(G) ≤ m, there exists a continuous onto map
φ : {0, 1}m → G.

(2) See Remark 5.2. �
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7. Automorphizable actions and epimorphisms in topological groups

Resolving a longstanding principal problem introduced by K. Hofmann, Uspen-
skij [59] showed that in the category of Hausdorff topological groups epimorphisms
need not have a dense range. Dikranjan and Tholen [5] gave a rather direct proof
of this important result of Uspenskij. Pestov gave a useful criterion [42], [44]
(Fact 7.1) which we use below in Theorem 7.8. This test is closely related to the
concept of the free topological G-group of a (uniform) G-space X introduced in
[31]. We denote it by FG(X). It is a natural G-space version of the usual free
topological group. Similarly to Definition 3.1 one may define Ω-free (uniform)
G-group FG,Ω(X,U).

A topological (uniform) G-space X is said to be automorphizable if X is a
topological (uniform) G-subspace of a G-group Y (with its two-sided uniform
structure). Equivalently, if the universal morphism X → FG(X) of X into the
free topological (uniform) G-group FG(X) of the (uniform) G-space X is an em-
bedding.

Fact 7.1 (Pestov [42], [44]). Let f : M → G be a continuous homomorphism
between Hausdorff topological groups. Denote by X := G/H the left coset G-
space, where H is the closure of the subgroup f(M) in G. The following are
equivalent:

(1) f :M → G is an epimorphism.
(2) The free topological G-group FG(X) of the G-space X is trivial.

Triviality in (2) means ‘as trivial as possible’, that is, FG(X) is isomorphic to
the cyclic discrete group.

Remark 7.2. Let X be the n-dimensional cube [0, 1]n or the n-dimensional sphere
Sn. Then by [31] the free topological G-group FG(X) of the G-space X is trivial
for every n ∈ N, where G = Homeo (X) is the corresponding homeomorphism
group. So, one of the possible examples of an epimorphism which is not dense
can be constructed as the natural embedding H →֒ G where G = Homeo (S1) and
H = Gz is the stabilizer of a point z ∈ S1. The same example serves as the original
counterexample to the epimorphism problem in the paper of Uspenskij [59].

In contrast, for Stone spaces we have:

Fact 7.3 ([35, Lemma 4.3.2]). Every continuous action of a topological group G
on a Stone space X is automorphizable (in NA). Hence the canonical G-map
X → FG(X) is an embedding.

Roughly speaking the action by conjugations of a subgroup H of a non-archi-
medean group G on G reflects all possible difficulties of the Stone actions. Below,
in Theorem 8.2, we extend Fact 7.3 to a much larger class of actions on non-
archimedean uniform spaces, where X need not be compact. This will be used in
Theorem 7.8 which deals with epimorphisms into NA-groups.
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Definition 7.4 ([30], [32]). Let π : G×X → X be an action and U be a uniformity
on X . We say that the action (or, X) is quasibounded if for every ε ∈ U there
exist δ ∈ U and a neighborhood O of e in G such that

(gx, gy) ∈ ε ∀ (x, y) ∈ δ, g ∈ O.

We say that the action on the uniform space (X,U) is π-uniform if the action
is quasibounded and all g-translations are U-uniformly continuous. Equivalently,
for every ε ∈ U and g0 ∈ G there exist δ ∈ U and a neighborhood O of g0 in G
such that

(gx, gy) ∈ ε ∀ (x, y) ∈ δ, g ∈ O.

For a given topological group G denote by UnifG the triples (X,U , π) where
(X,U) is a uniform space and π : G×X → X is a continuous π-uniform action.

It is an easy observation that if the action π : G×X → X is U-quasibounded
and the orbit maps x̃ : G→ X are continuous then π is continuous.

It is a remarkable fact that a topological G-space X is G-compactifiable if and
only if X is U-quasibounded with respect to some compatible uniformity U on X ,
[30], [31]. This was the main motivation to introduce quasibounded actions. This
concept gives a simultaneous generalization of some important classes of actions
on uniform spaces.

Fact 7.5 ([30], [31]). We list here some examples of actions from UnifG.

(1) Continuous isometric actions of G on metric spaces.

(2) CompG ⊂ UnifG. Continuous actions on compact spaces (with their
unique compatible uniformity).

(3) (G/H,Ur) ∈ UnifG. Let X = G/H be the coset G-space and Ur is the
right uniformity on X (which is always compatible with the topology).

(4) Let X be a G-group. Then (X,U) ∈ UnifG for every
U ∈ {Ur,Ul,Ul∨r,Ul∧r}.

Recall that the well known Arens-Eells linearization theorem (cf. [1]) asserts
that every uniform (metric) space can be (isometrically) embedded into a locally
convex vector space (resp., normed space). This theorem on isometric lineariza-
tion of metric spaces can be naturally extended to the case of non-expansive
semigroup actions provided that the metric is bounded [33], or, assuming only
that the orbits are bounded [52].

Furthermore, suppose that an action of a group G on a metric space (X, d) is
only π-uniform in the sense of Definition 7.4 (and not necessarily non-expansive).
Then again such an action admits an isometric G-linearization on a normed space.

Here we give a non-archimedean G-version of Arens-Eells type theorem for
uniform group actions. Note that we will establish an ultra-metric G-version in
Theorem 8.2 below. The assumption (X,U) ∈ UnifG in Theorems 7.6 and 8.2 is
necessary by Fact 7.5.4.
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Theorem 7.6. Let π : G × X → X be a continuous action of a topological
group G on a non-archimedean uniform space (X,U). If (X,U) ∈ UnifG then the
induced action by automorphisms

π : G×BNA(X)→ BNA(X), (g, u) 7→ gu

is continuous and (X,U) is a uniform G-subspace of BNA(X). Hence, (X,U) is
uniformly G-automorphizable (in NA).

Proof: By Theorem 4.14.2 {〈ε〉}ε∈Eq(U) is a base of N0(BNA). By Theorem 3.9,
(X,U) is a uniform subspace of BNA. It is easy to see that (X,U) is in fact a
uniform G-subspace of BNA(X). We show now that the action π of G on BNA(X)
is quasibounded and continuous. The original action on (X,U) is π-quasibounded
and continuous. Thus, for every ε ∈ Eq(U) and g0 ∈ G, there exist δ ∈ Eq(U)
and a neighborhood O(g0) of g0 in G such that for every (x, y) ∈ δ and for every
g ∈ O we have

(gx, gy) ∈ ε.

This implies that

g〈δ〉 ⊆ 〈ε〉 ∀g ∈ O,

which proves that π is quasibounded. The map ι : X →֒ BNA(X), x 7→ {x}
is a topological G-embedding. Together with the fact that ι(X) algebraically
spans BNA(X) this implies that the orbit mappings G → BNA(X), g 7→ gu are
continuous for all u ∈ BNA(X). So we can conclude that π is continuous (see the
remark after Definition 7.4) and BNA(X) is a G-group. �

Remark 7.7. Let (X,µ) be a non-archimedean uniform space and π : G×X → X

be a continuous action such that (X,µ) ∈ UnifG. The lifted action of G on
BNA is continuous as we proved in Theorem 7.6. This implies that BNA is the
free topological G-group of (X,U) in the class Ω of non-archimedean Boolean G-
groups. Similarly, one may verify that the same remains true for F b

NA
, ANA,

F Prec

NA
, FPro. The case of FNA(X,U), however, is unclear.

Recall that the sets

Ũ := {(aH, bH) : bH ⊆ UaH},

where U runs over the neighborhoods of e in G, form a uniformity base on G/H .
This uniformity Ur (called the right uniformity) is compatible with the quotient
topology (see, for instance, [4]).

Theorem 7.8. Let f :M → G be an epimorphism in the category TGr. Denote
byH the closure of the subgroup f(M) in G. Then each of the following conditions
implies that f(M) is dense in G.

(1) The coset uniform space (G/H,Ur) is non-archimedean.
(2) G ∈ NA.
(3) (T.H. Fay [13]) H is open in G.
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Proof: (1) We have to show that H = G. Assuming the contrary consider the
nontrivial Hausdorff coset G-space G/H . By Fact 7.5.3 the natural continuous
left action π : G×G/H → G/H is π-uniform. Hence, we can apply Theorem 7.6
to conclude that the nontrivial G-space X := G/H is G-automorphizable in NA.
In particular, we obtain that there exists a nontrivial equivariant morphism of the
G-space X to a Hausdorff G-group E. This implies that the free topological G-
group FG(X) of the G-space X is not trivial. By the criterion of Pestov (Fact 7.1)
we conclude that f :M → G is not an epimorphism.

(2) By (1) it is enough to show that the right uniformity on G/H is non-
archimedean. Since G is NA there exists a local base B at e consisting of clopen
subgroups. Then it is straightforward to show that B̃ := {Ũ : U ∈ B} is a base
of the right uniformity of G/H such that its elements are equivalence relations
on G/H .

(3) If H is open then (G/H,Ur) is uniformly discrete and hence non-archime-
dean. Applying (1) we conclude the proof. �

Assertion (3) is just the theorem of Fay [13] mentioned above in Subsection 1.4.
In assertion (1) it suffices to assume that the universal non-archimedean image of
the coset uniform space G/H is nontrivial.

Note that if H → G is not an epimorphism in NA then, a fortiori, it is not
an epimorphism in TGr. With a bit more work we can refine assertion (2) of
Theorem 7.8 as follows.

Theorem 7.9. Morphism f :M → G in the category NA is an epimorphism in
NA (if and) only if f(M) is dense in G.

Proof: Assume thatX := G/H is non-trivial whereH := cl(f(M)). It is enough
to show that there exists aNA group P and a pair of morphisms g, h : G→ P such
that g ◦ f and h ◦ f are different. Theorem 7.6 says not only that the (nontrivial)
G-space X = G/H is G-automorphizable but also that it is G-automorphizable
in NA. By Theorem 7.6, BNA(X) ∈ NA is a G-group. Now choose the desired P
as the corresponding semidirect product of BNA(X) and G. Since NA is closed
under semidirect products we obtain that P ∈ NA. According to the approach
of [42] there exists a distinguishing pair of morphisms g, h : G→ P for f . �

8. Group actions on ultra-metric spaces and Graev type ultra-norms

Lemma 8.1. Let f : X → R be a function on an ultra-metric space (X, d). There
exists a one-point ultra-metric extension X ∪{b} of X such that f is the distance
from b if and only if

|f(x)− f(y)| ≤ d(x, y) ≤ max{f(x), f(y)}

for all x, y ∈ X .

Proof: The proof is an ultra-metric modification of the proof in
[45, Lemma 5.1.22] which asserts the following. Let f : X → R be a function
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on a metric space (X, d). There exists a one-point metric extension X ∪ {b} of X
such that f is the distance from b if and only if

|f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y)

for all x, y ∈ X . �

The following result in particular gives a Graev type extension for ultra-metrics
on free Boolean groups B(X). To an ultra-metric space (X, d) we assign the Graev
type group BGr(X, d). The latter (ultra-normable) topological group is in fact
BNA(X,Ud), where Ud is the uniformity of the metric d.

Theorem 8.2. Let (X, d) be an ultra-metric space and G a topological group.

Let π : G×X → X be a continuous action such that (X,Ud) ∈ UnifG. Then there
exists an ultra-normed Boolean G-group (E, ‖ · ‖) and an isometric G-embedding
ι : X →֒ E (with closed ι(X) ⊂ E) such that:

(1) the norm on E comes from the Graev-type ultra-metric extension of d to
B(X);

(2) the topological groups E and BNA(X,Ud) (the free Boolean profinite
group) are naturally isomorphic.

Proof: Consider the free Boolean group (B(X),+) over the set X . The elements
of B(X) are finite subsets of X and the group operation + is the symmetric
difference of subsets. We denote by 0 the zero element of B(X) (represented by
the empty subset of X). Clearly, u = −u for every u ∈ B(X). Consider the
natural set embedding

ι : X →֒ B(X), ι(x) = {x}.

Sometimes we will identify x ∈ X with ι(x) = {x} ∈ B(X).
Fix x0 ∈ X and extend the definition of d from X to X := X ∪ {0} by letting

d(x,0) = max{d(x, x0), 1}.

Claim 1: d : X ×X → R is an ultra-metric extending the original ultra-metric
d on X .

Proof: The proof can be derived from Lemma 8.1, noting that

|f(x)− f(y)| ≤ d(x, y) ≤ max{f(x), f(y)}

for f(x) := max{d(x, x0), 1}. �

For every nonzero u = {x1, x2, x3, · · · , xm} ∈ B(X) define the support of u as
supp(u) := u if m is even, supp(u) := u ∪ {0} if m is odd.

By a configuration we mean a finite subset of X ×X (finite relations). Denote
by Conf the set of all configurations. We can think of ω ∈ Conf as a finite set of
some pairs

ω = {(x1, x2), (x3, x4), · · · , (x2n−1, x2n)},
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where all {xi}2ni=1 are (not necessarily distinct) elements of X. If xi 6= xk for all
distinct 1 ≤ i, k ≤ 2n then ω is said to be normal . For every ω ∈ Conf the sum

u :=

2n∑

i=1

xi =

n∑

i=1

(x2i−1 − x2i)

belongs to B(X) and we say that ω represents u or, that ω is a u-configuration.
Notation: ω ∈ Conf(u). We denote by Norm(u) the set of all normal configura-
tions of u. If ω ∈ Norm(u) then necessarily ω ⊆ supp(u) × supp(u). It follows
that Norm(u) is a finite set for any given u ∈ B(X).

Our aim is to define a Graev type ultra-norm ‖ · ‖ on the Boolean group
(B(X),+) such that d(x, y) = ‖x− y‖, ∀x, y ∈ X . For every configuration ω we
define its d-length by

ϕ(ω) = max
1≤i≤n

d(x2i−1, x2i).

Claim 2: For every nonzero element u ∈ B(X) and every u-configuration

ω = {(x1, x2), (x3, x4), · · · , (x2n−1, x2n)}

define the following elementary reductions:

(1) Deleting a trivial pair (t, t). That is, deleting the pair (x2i−1, x2i) when-
ever x2i−1 = x2i.

(2) Define the trivial inversion at i of ω as the replacement of (x2i−1, x2i) by
the pair in the reverse order (x2i, x2i−1).

(3) Define the basic chain reduction rule as follows. Assume that there exist
distinct i and k such that x2i = x2k−1. We delete in the configuration ω
two pairs (x2i−1, x2i), (x2k−1, x2k) and add the new pair (x2i−1, x2k).

Then, in all three cases, we get again a u-configuration. Reductions (1) and
(2) do not change the d-length of the configuration. Reduction (3) cannot exceed
the d-length.

Proof: Comes directly from the axioms of ultra-metric. In the proof of (3)
observe that

x2i−1 + x2i + x2k−1 + x2k = x2i−1 + x2k

in B(X). This ensures that the new configuration is again a u-configuration. �

Claim 3: For every nonzero element u ∈ B(X) and every u-configuration ω
there exists a normal u-configuration ν such that ϕ(ν) ≤ ϕ(ω).

Proof: Using Claim 2 after finitely many reductions of ω we get a normal u-
configuration ν such that ϕ(ν) ≤ ϕ(ω). �

Now we can define the desired ultra-norm ‖ · ‖. For every u ∈ B(X) define

‖u‖ = inf
ω∈Conf(u)

ϕ(ω).
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Claim 4: For every nonzero u ∈ B(X) we have

‖u‖ = min
ω∈Norm(u)

ϕ(ω).

Proof: By Claim 3 it is enough to compute ‖u‖ via normal u-configurations.
So, since Norm(u) is finite, we may replace inf by min. �

Claim 5: ‖ · ‖ is an ultra-norm on B(X).

Proof: Clearly, ‖u‖ ≥ 0 and ‖u‖ = ‖ − u‖ (even u = −u) for every u ∈ B(X).
For the 0-configuration {(0,0)} we obtain that ‖0‖ ≤ d(0,0) = 0, and so ‖0‖ = 0.
Furthermore, if u 6= 0 then for every ω ∈ Norm(u) and for each (t, s) ∈ ω we have
d(t, s) 6= 0. We can use Claim 4 to conclude that ‖u‖ 6= 0. Finally, we have to
show that

‖u+ v‖ ≤ max{‖u‖, ‖v‖} ∀ u, v ∈ B(X).

Assuming the contrary, there exist configurations {(xi, yi)}ni=1, {(ti, si)}
m
i=1 with

u =
∑n

i=1(xi − yi), v =
∑m

i=1(ti − si) such that

‖u+ v‖ > c := max{ max
1≤i≤n

d(xi, yi), max
1≤i≤m

d(ti, si)}.

Since ω := {(x1, y1), · · · , (xn, yn), (t1, s1), · · · , (tm, sm)} is a configuration of u+v
with ‖u+ v‖ > ϕ(ω) = c, we obtain a contradiction to the definition of ‖ · ‖. �

Claim 6: ι : (X, d) →֒ E := (B(X), ‖ · ‖) is an isometric embedding, i.e.

‖x− y‖ = d(x, y) ∀ x, y ∈ X.

Proof: By Claim 4 we may compute the ultra-norm via normal configurations.
For the element u = x−y 6= 0 the only possible normal configurations are {(x, y)}
or {(y, x)}. So ‖x− y‖ = d(x, y). �

One can prove similarly that d(x,0) = ‖x‖. This observation will be used in
the sequel.

Claim 7: For any given u ∈ B(X) with u 6= 0 we have

‖u‖ ≥ min{d(xi, xk) : xi, xk ∈ supp(u), xi 6= xk}.

Proof: Easily deduced from Claims 3 and 4. �

We have the natural group action

π : G×B(X)→ B(X), (g, u) 7→ gu

induced by the given action G ×X → X . Clearly, g(u + v) = gu + gv for every
(g, u, v) ∈ G×B(X)×B(X). So this action is by automorphisms. Clearly g0 = 0

for every g ∈ G. It follows that ι : X → B(X) is a G-embedding.

Claim 8: The action π of G on B(X) is quasibounded and continuous.
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Proof: The original action on (X, d) is π-quasibounded and continuous. Since
0 is an isolated point in X then the induced action on (X, d) is also continuous
and quasibounded. Thus, for every ε > 0 and g0 ∈ G, there exist 1 ≥ δ > 0 and a
neighborhood O(g0) of g0 in G such that for every (x, y) ∈ X×X with d(x, y) < δ
and for every g ∈ O we have

d(gx, gy) < ε.

By the definition of ‖ · ‖ it is easy to see that

‖gu‖ < ε ∀ ‖u‖ < δ, g ∈ O.

This implies that the action π of G on B(X) is quasibounded. Claim 5 implies
that ι : X →֒ B(X) is a topological G-embedding. Since ι(X) algebraically spans
B(X) and B(X) is a topological group, it easily follows that every orbit mapping
G→ B(X), g 7→ gu is continuous for every u ∈ B(X). Thus we can conclude that
π is continuous (see the remark after Definition 7.4) and B(X) is a G-group. �

By Claims 5 and 6 (see also the remark after Claim 6) ‖ · ‖ is an ultra-norm
on B(X) which extends the ultra-metric d defined on X, and it can be viewed as
a Graev type ultra-norm. To justify this last remark and the assertion (1) of our
theorem observe that ‖ · ‖ satisfies, in addition, the following maximal property.

Claim 9: Let σ be an ultra-norm on B(X) such that

σ(x − y) = d(x, y) ∀x, y ∈ X.

Then ‖ · ‖ ≥ σ.

Proof: Let u be a nonzero element of B(X). By Claim 4 there exists a normal
configuration

ω = {(x1, x2), (x3, x4), · · · , (x2n−1, x2n)},

such that u =
∑n
i=1(x2i−1 − x2i) and ‖u‖ = max1≤i≤n d(x2i−1, x2i).

Now, σ is an ultra-norm and we also have

σ(x − y) = d(x, y) ∀x, y ∈ X.

By induction we obtain that

σ(u) = σ(

n∑

i=1

(x2i−1 − x2i)) ≤ max
1≤i≤n

σ(x2i−1 − x2i) = max
1≤i≤n

d(x2i−1, x2i) = ‖u‖.

�

The proof of assertion (2) in view of the description of BNA(X,Ud) given by
Theorem 4.14, follows from the fact that for every 0 < ε < 1 the subgroup
generated by

{x− y ∈ B(X) : d(x, y) < ε}

is precisely the ε-neighborhood of 0 in E.
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Summing up we finish the proof of Theorem 8.2. �

Remark 8.3. Similarly we can assign for an ultra-metric space (X, d) the Graev
type groups AGr(X, d) and FGr(X, d). Moreover, one may show (making use
of Theorems 4.14.1 and 4.13.2) that AGr(X, d) = ANA(X,Ud) and FGr(X, d) =
F b

NA
(X,Ud).

Corollary 8.4. Every ultra-metric space is isometric to a closed subset of an
ultra-normed Boolean group.

By a theorem of Schikhof [50], every ultra-metric space can be isometrically
embedded into a suitable non-archimedean valued field. Note that every non-
archimedean valued field is an ultra-normed abelian group.

8.1 Continuous actions on Stone spaces. Assigning to every Stone space X
the free profinite group FPro(X) we get a natural functor γ from the category of
Stone G-spaces X to the category of all profinite G-groups P (see Remark 7.7 for
the continuity of the lifted action). This functor preserves the topological weight
and there exists a canonical G-embedding jX : X →֒ γ(X) = FPro(X) where
FPro(X) is metrizable if (and only if) X is metrizable (Theorem 5.1).

This means, in particular, that every Stone G-space is automorphizable in Pro

and the class of (metrizable) profinite G-groups is at least as complex as the class
of (metrizable) Stone G-spaces. In contrast, recall that a compact G-space that
is not a Stone space may not be automorphizable (see Remark 7.2).

By Remark 5.2 the profinite groups j(X) and j(Y ) are topologically isomorphic
for infinite Stone spaces X,Y with the same weight. However, if X and Y are
G-spaces (dynamical systems) then the corresponding G-spaces j(X) and j(Y )
need not be G-isomorphic.

9. Appendix

By Graev’s Extension Theorem (see [18]), for every metric d on X ∪ {e} there
exists a metric δ on F (X) with the following properties:

(1) δ extends d;
(2) δ is a two sided invariant metric on F (X);
(3) δ is maximal among all invariant metrics on F (X) extending d.

Savchenko-Zarichnyi [49] presented an ultra-metrization d̂ of the free group of
an ultra-metric space (X, d) with diam(X) ≤ 1. Gao [15] studied Graev type

ultra-metrics δu. The metrics δu, d̂ satisfy properties (1) and (2) above. As to the
maximal property (3) one may show the following:

Theorem 9.1. Let d be an ultra-metric on X := X ∪X−1 ∪ {e} for which the
following conditions hold for every x, y ∈ X ∪ {e}:

(1) d(x−1, y−1) = d(x, y);
(2) d(x−1, y) = d(x, y−1).

Then:
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(a) The Graev ultra-metric δu is maximal among all invariant ultra-metrics
on F (X) which extend the metric d defined on X.

(b) If, in addition, d(x−1, y) = d(x, y−1) = max{d(x, e), d(y, e)} then δu is
maximal among all invariant ultra-metrics on F (X) which extend the
metric d defined on X ∪ {e}.

(c) If diam(X) ≤ 1 and d(x−1, y) = d(x, y−1) = 1 then δu = d̂.
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