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Abstract. In this paper, a class of non-autonomous delayed competitive systems with the
effect of toxic substances and impulses is considered. By using the continuation theorem
of coincidence degree theory, we derive a set of easily verifiable sufficient conditions that
guarantees the existence of at least one positive periodic solution, and by constructing a
suitable Lyapunov functional, the uniqueness and global attractivity of the positive periodic
solution are established.
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1. Introduction

In recent years, the dynamical behavior of a competitive system has been one of

the dominant themes in both ecology and mathematical ecology due to its universal

existence and importance. Most widely studied competitive systems are mainly

continuous or discrete [2], [3], [5], [7], [10], [11], [13], [14], [15]. Recently there has

been a new category of competitive systems, which are neither purely continuous-time

nor purely discrete-time ones; these are called impulsive competitive system. This

category of impulsive competitive systems displays a combination of characteristics

of both the continuous-time and discrete-time systems [4], [8].

This work is supported by National Natural Science Foundation of China (No. 11261010
and No. 10961008), Soft Science and Technology Program of Guizhou Province (No.
2011LKC2030), Natural Science and Technology Foundation of Guizhou Province
(J[2012]2100), Governor Foundation of Guizhou Province ([2012]53) and Doctoral Foun-
dation of Guizhou University of Finance and Economics (2010).
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In 2003, Song and Chen [14] proposed a delay two-species competitive system in

which two species have toxic inhibitory effects on each other:

(1.1)















dx

dt
= x(t)[K1(t) − α1(t)x(t) − β1(t)y(t) − γ1(t)x(t)y(t − τ1(t))],

dy

dt
= y(t)[K2(t) − α2(t)y(t) − β2(t)x(t) − γ2(t)x(t − τ2(t))y(t)],

where x(t), y(t) stand for the population densities of two competing species, re-

spectively. Ki(t) (i = 1, 2) are the intrinsic growth rates of the two compet-

ing species; αi(t) (i = 1, 2) denote the coefficients of interspecific competition;

Ki(t)/αi(t) (i = 1, 2) are the environmental carrying capacities of two competing

species; γ1 and γ2 stand for, respectively, the rates of toxic inhibition of the species

x by the species y and vice versa. For more details about the model, one can see

[12]. By applying the coincidence degree theory, Song and Chen [12] established the

existence of a positive periodic solution for system (1.1).

Considering the impulsive effects and periodic perturbations, Liu et al. [9] in-

vestigated the periodic impulsive delay competitive system with the effect of toxic

substances

(1.2)



































dx

dt
= x(t)[K1(t) − α1(t)x(t) − β1(t)y(t) − γ1(t)x(t)y(t − τ1(t))], t 6= tk,

dy

dt
= y(t)[K2(t) − α2(t)y(t) − β2(t)x(t) − γ2(t)x(t − τ2(t))y(t)], t 6= tk,

x(t+k ) = x(tk) + p, t = tk,

y(t+k ) = (1 + bk)y(tk), t = tk

with an initial condition (x(s), y(s)) = ϕ(s) = (ϕ1(s), ϕ2(s)) for −τ 6 s 6 0, ϕ(0) >

0, ϕ ∈ PC([−τ, 0],R2
+), where τ = max

16i62
max

t∈[0,ω]
{τi(t)}; Ki(t), αi(t), βi(t), γi(t), τi(t)

(i = 1, 2) are continuous ω-periodic functions, and αi(t), β(t), γi(t) (i = 1, 2) are pos-

itive and τi(t) (i = 1, 2) are nonnegative. The intrinsic growth rates Ki(t) (i = 1, 2)

are not necessarily positive and may be negative. Also k ∈ N and N is the set of

positive integers. The jump conditions reflect the possibility of impulsive effects on

the species x and y. p > 0 is the impulsive stocking amount of the species x at time

t = tk, which implies that the populations are subject to impulsive stocking at a

constant rate p. The term bky(tk) < 0 (k ∈ N) represents the impulsive harvest-

ing amount of the species y at time t = tk, while bky(tk) > 0 which represents the

perturbations may stand for the impulsive stocking amount of the species y at time

t = tk. By applying the theory of impulsive differential equations and some analysis

techniques, Liu et al. [9] obtained a set of sufficient conditions for the permanence

and partial extinction of system (1.2).
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Considering that the harvest of many populations is not continuous, the harvest

can be viewed as an annual harvest pulse. To describe a system more accurately, we

should consider using impulsive differential equations. Then system (1.1) is revised

into the following form:

(1.3)



































dx

dt
= x(t)[K1(t) − α1(t)x(t) − β1(t)y(t) − γ1(t)x(t)y(t − τ1(t))], t 6= tk,

dy

dt
= y(t)[K2(t) − α2(t)y(t) − β2(t)x(t) − γ2(t)x(t − τ2(t))y(t)], t 6= tk,

∆x(tk) = x(t+k ) − x(t−k ) = ̺1kx(tk), t = tk,

∆y(tk) = y(t+k ) − y(t−k ) = ̺2ky(tk), t = tk,

where ∆x(tk) = x(t+k ) − x(t−k ) and ∆y(tk) = y(t+k ) − y(t−k ) are the impulses at

moments tk and t1 < t2 < . . . is a strictly increasing sequence such that lim
k→∞

tk =

+∞.

The principal object of this article is by using Mawhin’s continuation theorem

of coincidence degree theory and by constructing Lyapunov functions to investigate

the stability and existence of periodic solutions of (1.3). To the best of the authors’

knowledge, it is the first time one deals with the existence and stability of periodic

solutions of (1.3).

In order to obtain our main results, throughout the paper we always assume that

the following conditions are fulfilled:

(H1) Ki(t), αi(t), βi(t), γi(t) (i = 1, 2), are all continuous ω periodic, i.e.,Ki(t+ω) =

Ki(t), αi(t + ω) = αi(t), βi(t + ω) = βi(t) (i = 1, 2), γi(t + ω) = γi(t) for any

t ∈ R.

(H2) Ki(t), αi(t), βi(t), γi(t) (i = 1, 2) are all positive.

(H3) ̺ik > 0 for all k ∈ N and there exists a positive integer q such that tk+q =

tk + ω, ̺ik+q = ̺ik (i = 1, 2; k = 1, 2, 3, . . .).

(H4) At least one of the following four conditions α1α2 6= β1β2, α1γ2 6= β2γ1, α2γ2 6=

β1γ2, γ2
2 6= γ1γ2 holds.

The organization of the paper is as follows. In Section 2, we introduce some nota-

tion and definitions, and state some preliminary results needed in later sections. We

then establish, in Section 3, some simple criteria for the existence of positive peri-

odic solutions of system (1.3) by using the continuation theorem of the coincidence

degree theory proposed by Gains and Mawhin [6]. In Section 4, the uniqueness and

global attractivity of the positive periodic solution are presented. In Section 5, an

illustrative example is given to demonstrate the correctness of the results obtained.
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2. Preliminaries

We shall introduce some notation and definitions, and state some preliminary

results. Consider the impulsive system

(2.1)

{

ẋ(t) = f(t, x), t 6= tk, k = 1, 2, . . . ,

∆x(t)|t=tk
= Ik(x(t−k )),

where x ∈ R
n, f : R×R

n → R
n is continuous and f(t+ω, x) = f(t, x); Ik : R

n → R
n

are continuous, and there exists a positive integer q such that tk+q = tk+ω, Ik+q(x) =

Ik(x) with tk ∈ R, tk+1 > tk, lim
k→∞

tk = ∞, ∆x(t)|t=tk
= x(t+k ) − x(t−k ). For tk 6= 0

(k = 1, 2, . . .), [0, ω] ∩ {tk} = {t1, t2, . . . , tq}. As we know, {tk} are called the points

of jump.

Let us recall some definitions for the Cauchy problem

(2.2)

{

ẋ(t) = f(t, x), t ∈ [0, ω], t 6= tk,

∆x(t)|t=tk
= Ik(x(t−k )), x(0) = x0.

Definition 1.1. A map x : [0, ω] → R
n is said to be a solution of (2.2), if it

satisfies the following conditions:

(i) x(t) is a piecewise continuous map with first-class discontinuity points at tk ∩

[0, ω], and at each discontinuity point it is continuous from the left;

(ii) x(t) satisfies (2.2).

Definition 1.2. A map x : [0, ω] → R
n is said to be an ω periodic solution of

(2.1), if

(i) x(t) satisfies (i) and (ii) of Definition 1 in the interval [0, ω];

(ii) x(t) satisfies x(t + ω − 0) = x(t − 0), t ∈ R.

Obviously, if x(t) is a solution of (2.2) defined on [0, ω] such that x(0) = x(ω),

then by the periodicity of (2.2) in t, the function x∗(t) defined by

x∗(t) =

{

x(t − jω), t ∈ [jω, (j + 1)ω] \ {tk},

x∗(t) is left continuous at t = tk

is an ω periodic solution of (2.1).
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For system (1.3), finding the periodic solutions is equivalent to finding solutions

of the following boundary value problem:

(2.3)



















































dx

dt
= x(t)[K1(t) − α1(t)x(t) − β1(t)y(t) − γ1(t)x(t)y(t − τ1(t))],

t 6= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

dy

dt
= y(t)[K2(t) − α2(t)y(t) − β2(t)x(t) − γ2(t)x(t − τ2(t))y(t)],

t 6= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

∆x(tk) = x(t+k ) − x(t−k ) = ̺1kx(tk), t = tk, x(0) = x(ω), k = 1, 2, . . . , q,

∆y(tk) = y(t+k ) − y(t−k ) = ̺2ky(tk), t = tk, y(0) = y(ω), k = 1, 2, . . . , q.

3. Existence of positive periodic solutions

In this section, based on Mawhin’s continuation theorem, we shall study the ex-

istence of at least one periodic solution of (1.3). To do so, we shall make some

preparations.

Let X, Y be normed vector spaces, L : DomL ⊂ X → Y a linear mapping, N :

X → Y a continuous mapping. The mapping L will be called a Fredholm mapping

of index zero if dimKerL = codim Im L < +∞ and Im L is closed in Y . If L is a

Fredholm mapping of index zero and there exist continuous projections P : X → X

and Q : Y → Y such that Im P = KerL, Im L = KerQ = Im(I − Q), it follows that

L|Dom L ∩ KerP : (I − P )X → Im L is invertible. We denote the inverse of that

map by KP . If Ω is an open bounded subset of X , the mapping N will be called

L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X is compact. Since

Im Q is isomorphic to KerL, there exist isomorphisms J : Im Q → KerL.

Now we introduce Mawhin’s continuation theorem [6] as follows.

Lemma 3.1 ([6] Continuation Theorem). Let L be a Fredholm mapping of index

zero and let N be L-compact on Ω. Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x /∈ ∂Ω;

(b) QNx 6= 0 for each x ∈ KerL ∩ ∂Ω, and deg{JQN, Ω ∩ KerL, 0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in Dom L ∩ Ω.

For convenience and simplicity of the following discussion, we use the notation

below throughout the paper:

f =
1

ω

∫ ω

0

f(t) dt, fL = min
t∈[0,ω]

f(t), fM = max
t∈[0,ω]

f(t), |f | =
1

ω

∫ ω

0

|f(t)| dt,
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where f(t) is a ω continuous periodic function. For any non-negative integer p, let

C(p)[0, ω; t1, t2, . . . , tq] = {x : [0, ω] → R
m|x(p)(t) exist for t 6= t1, . . . , tq; x

(p)(t+) and

x(p)(t−) exist at t1, t2, . . . , tq; and x(j)(tk) = x(j)(t−k ), k = 1, . . . , m, j = 0, 1, 2, . . . , p}

with the norm ‖x‖p = max
{

sup
t∈[0,ω]

‖x(j)(t)‖
}p

j=1
, where ‖.‖ is any norm in R

m. It is

easy to see that C(p)[0, ω; t1, t2, . . . , tq] is a Banach space.

Now we are in a position to state and prove the existence of periodic solutions of

(2.3).

Theorem 3.1. Let B3 and B9 be defined by (3.12) and (3.20), respectively. In

addition to (H1)–(H4), assume further that

(H5) K2ω +

q
∑

k=1

ln(1 + ̺2k) > max{γ2ω exp(B3), γ2ω exp(B9)},

then the system (1.2) has at least one ω periodic solution.

P r o o f. According to the discussion above in Section 2, we only need to prove

that the boundary value problem (2.3) has a solution. Since the solutions of (2.3)

remain positive for all t > 0, we let u1(t) = ln[x(t)], u2(t) = ln[y(t)]. Then system

(2.3) can be transformed to

(3.1)































































u̇1(t) = K1(t) − α1(t) exp(u1(t)) − β1(t) exp(u2(t))

− γ1(t) exp(u1(t)) exp(u2(t − τ1(t))),

t 6= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

u̇2(t) = K2(t) − α2(t) exp(u2(t)) − β2(t) exp(u1(t))

− γ2(t) exp(u1(t − τ2(t))) exp(u2(t)),

t 6= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

∆ui(tk) = ln(1 + ̺ik), t = tk, k = 1, 2, . . . , q;

u1(0) = u1(ω), u2(0) = u2(ω).

It is easy to see that if system (3.1) has an ω periodic solution (u∗

1(t), u
∗

2(t))
T, then

(x∗(t), y∗(t))T = (eu∗
1
(t), eu∗

2
(t))T is a positive solution of system (1.3). Therefore, to

complete the proof, it suffices to show that system (3.1) has at least one ω periodic

solution.

In order to use the continuation theorem of coincidence degree theory to establish

the existence of a solution of (3.1), we take

X = {u ∈ C[0, ω; t1, t2, . . . , tq]}, Y = X × R
2×(q+1).
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Then X is a Banach space with the norm ‖.‖0, and Y is also a Banach space with

the norm ‖z‖ = ‖x‖0 + ‖y‖, x ∈ X, y ∈ R
2×(q+1).

Let

Dom L = {u = (u1, u2)
T ∈ C[0, ω] ; t1, t2, . . . , tq},

L : DomL ⊂ X → Y, x → (x′, ∆u(t1), ∆u(t2), . . . , ∆u(tq), 0),

N : X → Y,

Nu =

((

K1(t) − α1(t) exp(u1(t)) − β1(t) exp(u2(t)) − γ1(t) exp(u1(t)) exp(u2(t − τ1(t)))

K2(t) − α2(t) exp(u2(t)) − β2(t) exp(u1(t)) − γ2(t) exp(u1(t − τ2(t))) exp(u2(t))

)

,

(

ln(1 + ̺11)

ln(1 + ̺21)

)

,

(

ln(1 + ̺21)

ln(1 + ̺22)

)

, . . . ,

(

ln(1 + ̺31)

ln(1 + ̺32)

)

, 0

)

.

Obviously,

KerL = {u : u(t) = h ∈ R
2, t ∈ [0, ω]},

Im L =

{

z = (f, a1, a2, . . . , aq, d) ∈ Y :

∫ ω

0

f(s) ds +

q
∑

k=1

ak + d = 0

}

= X × R
2×q × {0},

dimKerL = 2 = codim Im L.

So, Im L is closed in Y , L is a Fredholm mapping of index zero. Define two projections

Px =
1

ω

∫ ω

0

x(t) dt,

Qz = Q(f, a1, a2, . . . , aq, d) =

(

1

ω

[ ∫ ω

0

f(s) ds +

q
∑

k=1

ak + d,

]

, 0, 0, . . . , 0

)

.

It is easy to show that P and Q are continuous and satisfy Im P = KerL, ImL =

KerQ = Im(I − Q).

Further, through an easy computation, we can find that the inverse KP of L,

KP : Im L → KerP ∩ Dom L has the following form:

KP (z) =

∫ t

0

f(s) ds +
∑

tk<t

ak −
1

ω

∫ ω

0

∫ t

0

f(s) ds dt −

q
∑

k=1

ak.
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Moreover, it is easy to check that

QNu =





























1

ω

∫ t

0

F1(s) ds +
1

ω

q
∑

k=1

ln(1 + ̺1k)

1

ω

∫ t

0

F2(s) ds +
1

ω

q
∑

k=1

ln(1 + ̺2k)















, 0, 0, . . . , 0















,

KP (I − Q)Nu =















∫ t

0

F1(s) ds +
∑

t>tk

ln(1 + ̺1k)

∫ t

0

F2(s) ds +
∑

t>tk

ln(1 + ̺2k)















−















1

ω

∫ ω

0

∫ t

0

F1(s) ds dt +

q
∑

k=1

ln(1 + ̺1k)

1

ω

∫ ω

0

∫ t

0

F2(s) ds dt +

q
∑

k=1

ln(1 + ̺2k)















−















( t

ω
−

1

2

)

∫ ω

0

F1(s) ds +

q
∑

k=1

ln(1 + ̺1k)

( t

ω
−

1

2

)

∫ ω

0

F2(s) ds +

q
∑

k=1

ln(1 + ̺2k)















,

where

F1(s) = K1(s) − α1(s) exp(u1(s)) − β1(s) exp(u2(s))

− γ1(s) exp(u1(s)) exp(u2(s − τ1(s))),

F2(s) = K2(s) − α2(s) exp(u2(s)) − β2(s) exp(u1(s))

− γ2(s) exp(u1(s − τ2(s))) exp(u2(s)).

Obviously, QN and KP (I − Q)N are continuous. Since X is a finite-dimensional

Banach space, using the Ascoli-Arzela theorem, it is not difficult to show that

KP (I − Q)N(Ω) is compact for any open bounded set Ω ⊂ X . Moreover, QN(Ω) is

bounded. Thus, N is L-compact on Ω with any open bounded set Ω ⊂ X .

Now we are at the point to search for an appropriate open, bounded subset Ω for

the application of the continuation theorem. Corresponding to the operator equation
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Lu = λNu, λ ∈ (0, 1), we have

(3.2)































































u̇1(t) = λ[K1(t) − α1(t) exp(u1(t)) − β1(t) exp(u2(t))

− γ1(t) exp(u1(t)) exp(u2(t − τ1(t)))],

t 6= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

u̇2(t) = λ[K2(t) − α2(t) exp(u2(t)) − β2(t) exp(u1(t))

− γ2(t) exp(u1(t − τ2(t))) exp(u2(t))],

t 6= tk, t ∈ [0, ω], k = 1, 2, . . . , q,

∆ui(tk) = λ ln(1 + ̺ik), i = 1, 2;

k = 1, 2, . . . , q; u1(0) = u1(ω), u2(0) = u2(ω).

Suppose that u(t) = (u1(t), u2(t))
T ∈ X is an arbitrary solution of system (3.2) for a

certain λ ∈ (0, 1). Integrating both sides of (3.2) over the interval [0, ω] with respect

to t, we obtain

(3.3)











∫ ω

0 f1(t) dt =
q
∑

k=1

ln(1 + ̺1k) +
∫ ω

0 K1(t) dt,

∫ ω

0
f2(t) dt =

q
∑

k=1

ln(1 + ̺2k) +
∫ ω

0
K2(t) dt,

where

f1(t) = α1(t) exp(u1(t)) + β1(t) exp(u2(t)) + γ1(t) exp(u1(t)) exp(u2(t − τ1(t))),

f2(t) = α2(t) exp(u2(t)) + β2(t) exp(u1(t)) + γ2(t) exp(u1(t − τ2(t))) exp(u2(t)).

From (3.2) and (3.3), we can obtain

∫ ω

0

|u̇1(t)| dt < 2K1ω +

q
∑

k=1

ln(1 + ̺1k),(3.4)

∫ ω

0

|u̇2(t)| dt < 2K2ω +

q
∑

k=1

ln(1 + ̺2k).(3.5)

Let

(3.6) ui(ξi) = min
t∈[0,ω]

ui(t), ui(ηi) = max
t∈[0,ω]

ui(t), i = 1, 2.

Then, by (3.3), we get

∫ ω

0

f1(t) dt < 2K1ω +

q
∑

k=1

ln(1 + ̺1k),
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which leads to

∫ ω

0

α1(t) exp(u1(ξ1)) dt < 2K1ω +

q
∑

k=1

ln(1 + ̺1k),

∫ ω

0

β1(t) exp(u2(ξ2)) dt < 2K1ω +

q
∑

k=1

ln(1 + ̺1k).

Thus

u1(ξ1) < ln

[

2K1ω +
∑q

k=1 ln(1 + ̺1k)

α1ω

]

,(3.7)

u2(ξ2) < ln

[

2K1ω +
∑q

k=1 ln(1 + ̺1k)

β1ω

]

.(3.8)

In the sequel, we consider two cases.

(a) If u1(η1) > u2(η2), then it follows from (3.3) that

(α1 + β1)ω exp(u1(η1)) + γ1ω exp(2u1(η1)) > K1ω +

q
∑

k=1

ln(1 + ̺1k),

which leads to

(3.9)

u1(η1) > ln

[

−(α1 + β1)ω +
√

[(α1 + β1)ω]2 + 4γ1ω(K1ω +
∑q

k=1 ln(1 + ̺1k))

2γ1ω

]

.

It follows from (3.7) and (3.9) that

(3.10)

u1(t) 6 u1(ξ1) +

∫ ω

0

|u̇1(t)| dt

6 ln

[

2K1ω +
∑q

k=1 ln(1 + ̺1k)

α1ω

]

+ 2K1ω +

q
∑

k=1

ln(1 + ̺1k) := B1,

(3.11)

u1(t) > u1(η1) −

∫ ω

0

|u̇1(t)| dt

> ln

[

−(α1 + β1)ω +
√

[(α1 + β1)ω]2 + 4γ1ω(K1ω +
∑q

k=1 ln(1 + ̺1k))

2γ1ω

]

− 2K1ω −

q
∑

k=1

ln(1 + ̺1k) := B2.
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From (3.10) and (3.11) we have

(3.12) sup
t∈[0,ω]

|u1(t)| < max{|B1|, |B2|} := B3.

From (3.3) we obtain

α2ω exp(u2(η2)) + β2ω exp(B3) + γ2ω exp(B3) exp(u2(η2)) > K2ω +

q
∑

k=1

ln(1 + ̺2k).

Then

(3.13) u2(η2) > ln

[

K2ω +
∑q

k=1 ln(1 + ̺2k) − γ2ω exp(B3)

α2ω + γ2ω exp(B3)

]

.

Thus

u2(t) 6 u2(ξ2) +

∫ ω

0

|u̇2(t)| dt(3.14)

6 ln

[

2K1ω +
∑q

k=1 ln(1 + ̺1k)

β1ω

]

+ 2K2ω

+

q
∑

k=1

ln(1 + ̺1k) := B4,

u2(t) > u2(η2) −

∫ ω

0

|u̇2(t)| dt(3.15)

> ln

[

K2ω +
∑q

k=1 ln(1 + ̺2k) − γ2ω exp(B3)

α2ω + γ2ω exp(B3)

]

− 2K2ω −

q
∑

k=1

ln(1 + ̺2k) := B5.

It follows from (3.14) and (3.15) that

(3.16) sup
t∈[0,ω]

|u2(t)| < max{|B4|, |B5|} := B6.

(b) If u1(η1) < u2(η2), then it follows from (3.3) that

(α1 + β1)ω exp(u2(η2)) + γ1ω exp(2u2(η2)) > K1ω +

q
∑

k=1

ln(1 + ̺1k),

which leads to

(3.17)

u2(η2) > ln

[

−(α1 + β1)ω +
√

[(α1 + β1)ω]2 + 4γ1ω(K1ω +
∑q

k=1 ln(1 + ̺1k))

2γ1ω

]

.
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It follows from (3.7) and (3.9) that

(3.18)

u2(t) 6 u2(ξ1) +

∫ ω

0

|u̇2(t)| dt

6 ln

[

2K2ω +
∑q

k=1 ln(1 + ̺2k)

α2ω

]

+ 2K2ω +

q
∑

k=1

ln(1 + ̺2k) := B7,

(3.19)

u2(t) > u2(η2) −

∫ ω

0

|u̇2(t)| dt

> ln

[

−(α1 + β1)ω +
√

[(α1 + β1)ω]2 + 4γ1ω(K1ω +
∑q

k=1 ln(1 + ̺1k))

2γ1ω

]

− 2K2ω −

q
∑

k=1

ln(1 + ̺2k) := B8.

From (3.10) and (3.11) we derive

(3.20) sup
t∈[0,ω]

|u2(t)| < max{|B7|, |B8|} := B9.

From (3.3) we have

α2ω exp(B9) + β2ω exp(u1(η1)) + γ2ω exp(B9) exp(u1(η1)) > K2ω +

q
∑

k=1

ln(1 + ̺2k).

Then

(3.21) u1(η1) > ln

[

K2ω +
∑q

k=1 ln(1 + ̺2k) − γ2ω exp(B9)

α2ω + γ2ω exp(B9)

]

.

Thus

u1(t) 6 u1(ξ1) +

∫ ω

0

|u̇1(t)| dt(3.22)

6 ln

[

2K1ω +
∑q

k=1 ln(1 + ̺1k)

α1ω

]

+ 2K1ω +

q
∑

k=1

ln(1 + ̺1k) := B10,

u1(t) > u1(η1) −

∫ ω

0

|u̇1(t)| dt(3.23)

> ln

[

K2ω +
∑q

k=1 ln(1 + ̺2k) − γ2ω exp(B9)

α2ω + γ2ω exp(B9)

]

− 2K1ω −

q
∑

k=1

ln(1 + ̺1k) := B11.
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It follows from (3.22) and (3.23) that

(3.24) sup
t∈[0,ω]

|u1(t)| < max{|B10|, |B11|} := B12.

Obviously, Bi (i = 3, 6, 9, 12) are independent of λ ∈ (0, 1). Similarly to the proof of

Theorem 2.1 of [16], we can easily find a sufficiently largeM > 0 so that if we denote

Ω = {u(t) = (u1(t), u2(t))
T ∈ x : ‖u‖ < M, u(t+k ) ∈ Ω, k = 1, 2, . . . , q},

it is clear that Ω satisfies the requirement (a) in Lemma 3.1.

When (u1(t), u2(t))
T ∈ ∂Ω ∩ KerL = ∂Ω∩R2, u = {(u1, u2)

T} is a constant vector

in R
2 with ‖u‖ = ‖(u1(t), u2(t))

T‖ = M , then we have

QNu =

















































K1 − α1 exp(u1) − β1 exp(u2) − γ1 exp(u1) exp(u2)

+
1

ω

q
∑

k=1

ln(1 + ̺1k)

K2 − α2 exp(u2) − β2 exp(u1) − γ2 exp(u1) exp(u2)

+
1

ω

q
∑

k=1

ln(1 + ̺2k)

























, 0, . . . , 0

























6= 0.

Letting J : Im Q → KerL, (r, 0, . . . , 0, 0) → r, by direct calculation we get

deg{JQN(u1, u2)
T ; Ω ∩ kerL; 0}

= signdet

(

−(α1 + γ2e
u2)eu1 −(β1 + γ1e

u1)eu2

−(β2 + γ2e
u2)eu1 −(α2 + γ2e

u1)eu2

)

= sign{(α1α2 − β1β2) + (α1γ2 − β2γ1)e
u1 + (α2γ2 − β1γ2)e

u2

+ (γ2
2 − γ1γ2)e

u1+u2} 6= 0.

This proves that condition (b) in Lemma 3.1 is satisfied. By now, we have proved

that Ω verifies all requirements of Lemma 3.1, hence it follows that Lu = Nu has at

least one solution (u1(t), u2(t))
T in Dom L ∩ Ω, that is to say, (3.1) has at least one

ω periodic solution in Dom L∩Ω. Then we know that (x(t), y(t))T = (eu1(t), eu2(t))T

is an ω periodic solution of system (2.3) with strictly positive components. This

completes the proof. �
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4. Uniqueness and global stability of periodic solutions

Under the hypotheses (H1), (H2), (H3), we consider the following ordinary differ-

ential equation without impulses:

(4.1)



































































ż1(t) = z1(t)

[

K1(t) − α1(t)
∏

0<tk<t

(1 + ̺1k)z1(t) − β1(t)
∏

0<tk<t

(1 + ̺2k)z2(t)

− γ1(t)
∏

0<tk<t

(1 + ̺1k)z1(t)
∏

0<tk<t

(1 + ̺2k)z2(t − τ1(t))

]

,

ż2(t) = z2(t)

[

K2(t) − α2(t)
∏

0<tk<t

(1 + ̺2k)z2(t) − β2(t)
∏

0<tk<t

(1 + ̺1k)z1(t)

− γ2(t)
∏

0<tk<t

(1 + ̺1k)z1(t − τ2(t))
∏

0<tk<t

(1 + ̺2k)z2(t)

]

with the initial conditions zi(0) > 0, i = 1, 2.

Let τ = max
16i62

{ max
t∈[0,ω]

τi(t)}. The following lemmas will be helpful in the proofs of

our results. The proof of Lemma 4.1 is similar to that of Theorem 1 in [17], and will

be omitted.

Lemma 4.1. Assume that (H1), (H2), (H3) hold. Then

(i) if z(t) = (z1(t), z2(t))
T is a solution of (4.1) on [0, +∞),

then xi(t) =
∏

0<tk<t

(1 + ̺ik)zi(t) (i = 1, 2) is a solution of (2.3) on [−τ, +∞);

(ii) if x(t) = (x1(t), x2(t))
T is a solution of (2.3) on [0, +∞),

then zi(t) =
∏

0<tk<t

(1 + ̺ik)−1xi(t) (i = 1, 2) is a solution of (4.1) on [−τ, +∞).

Lemma 4.2. Let z(t) = (z1(t), z2(t))
T denote any positive solution of system

(4.1) with initial conditions zi(0) > 0 (i = 1, 2). Then there exists a T3 > 0 such

that

0 < zi(t) 6 Mi (i = 1, 2) for t > T3,

where

M1 > M∗

1 =
KM

1

αL
1

∏

0<tk<t

(1 + ̺1k)
,

M2 > M∗

2 =
KM

2

αL
2

∏

0<tk<t

(1 + ̺2k)
,
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P r o o f. From the first equation of (4.1), we can obtain

(4.2) ż1(t) 6 z1(t)

[

K1(t) − α1(t)
∏

0<tk<t

(1 + ̺1k)z1(t)

]

,

6 z1(t)

[

KM
1 − αL

1

∏

0<tk<t

(1 + ̺1k)z1(t)

]

.

By (4.2), we can derive

(A1) If z1(0) 6 M1, then z1(t) 6 M1, t > 0.

(A2) If z1(0) > M1, let −θ1 = M1

[

KM
1 −αL

1

∏

0<tk<t

(1+̺1k)M1

]

(θ1 > 0). Then there

exists ε1 > 0 such that t ∈ [0, ε1), then z1(t) > M1, and also we have

ż1(t) < −θ1 < 0.

From what has been discussed above, we can easily conclude that if z1(0) > M1,

then z1(t) is strictly monotone decreasing with speed at least θ1. Therefore there

exists a T1 > 0 such that if t > T1, then z1(t) 6 M1.

From the second equation of (4.1), we can obtain

(4.3) ż2(t) 6 z2(t)

[

K2(t) − α2(t)
∏

0<tk<t

(1 + ̺1k)z2(t)

]

6 z2(t)

[

KM
2 − αL

2

∏

0<tk<t

(1 + ̺2k)z2(t)

]

.

By (4.3), we can derive

(B1) If z2(0) 6 M2, then z2(t) 6 M2, t > 0.

(B2) If z2(0) > M2, let −θ2 = M2

[

KM
2 −αL

2

∏

0<tk<t

(1+̺2k)M2

]

(θ2 > 0). Then there

exists ε2 > 0 such that t ∈ [0, ε2), then z2(t) > M2, and also we have

ż2(t) < −θ2 < 0.

From what has been discussed above, we can easily conclude that if z2(0) > M2,

then z2(t) is strictly monotone decreasing with speed at least θ2. Therefore there

exists a T2 > 0 such that if t > T2, then z2(t) 6 M2. The proof is complete. �
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Lemma 4.3. Let (H1), (H2), (H3) hold. Assume that the following condition

holds.

(H6) KL
1 > βM

1

∏

0<tk<t

(1 + ̺2k)M2, KL
2 − βM

2

∏

0<tk<t

(1 + ̺2k)M1.

Then there exist positive constants T > 0 and mi (i = 1, 2) such that for all t > T ,

mi < zi(t) (i = 1, 2) for t > T,

where

m1 < m∗

1 =

KL
1 − βM

1

∏

0<tk<t

(1 + ̺2k)M2

αM
1

∏

0<tk<t

(1 + ̺1k) + γM
1

∏

0<tk<t

(1 + ̺1k)
∏

0<tk<t

(1 + ̺2k)M2
,

m2 < m∗

2 =

KL
2 − βM

2

∏

0<tk<t

(1 + ̺2k)M1

αM
2

∏

0<tk<t

(1 + ̺2k) + γM
2

∏

0<tk<t

(1 + ̺1k)
∏

0<tk<t

(1 + ̺2k)M1
.

P r o o f. By the first equation of (4.1), It is easy to obtain that for t > T3,

ż1(t) > z1(t)

[

KL
1 − αM

1

∏

0<tk<t

(1 + ̺1k)z1(t) − βM
1

∏

0<tk<t

(1 + ̺2k)M2

− γM
1

∏

0<tk<t

(1 + ̺1k)z1(t)
∏

0<tk<t

(1 + ̺2k)M2

]

,

where T3 is defined in Lemma 4.2.

(C1) If z1(T3) > m1, then z1(t) > m1, t > T3.

(C2) If z1(T3) < m1, let us denote

µ1 = z1(T3)

[

KL
1 − αM

1

∏

0<tk<t

(1 + ̺1k)m1 − βM
1

∏

0<tk<t

(1 + ̺2k)M2

− γM
1

∏

0<tk<t

(1 + ̺1k)m1

∏

0<tk<t

(1 + ̺2k)M2

]

.

Then there exists ε3 > 0 such that if t ∈ [T3, T3 + ε3), then z1(t) > m1, and

also we have

ż2(t) > µ1 > 0.

Then we know that if z1(T3) < m1, z1(t) will strictly monotonically increase with

speed µ1. Thus there exists T4 > T3 such that if t > T4, then z1(t) > m1.
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By the second equation of (4.1), It is easy to obtain that for t > T3,

ż2(t) > z2(t)

[

KL
2 − αM

2

∏

0<tk<t

(1 + ̺2k)z2(t) − βM
2

∏

0<tk<t

(1 + ̺2k)M1

− γM
2

∏

0<tk<t

(1 + ̺1k)M1

∏

0<tk<t

(1 + ̺2k)z2(t)

]

,

where T3 is defined in Lemma 4.2.

(D1) If z2(T3) > m2, then z2(t) > m2, t > T3.

(D2) If z2(T3) < m2, let us denote

µ2 = z2(T3)

[

KL
2 − αM

2

∏

0<tk<t

(1 + ̺2k)m2 − βM
2

∏

0<tk<t

(1 + ̺2k)M1

− γM
2

∏

0<tk<t

(1 + ̺1k)M1

∏

0<tk<t

(1 + ̺2k)m2

]

.

Then there exists ε4 > 0 such that if t ∈ [T3, T3 + ε4), then z2(t) > m1, and

also we have

ż2(t) > µ2 > 0.

Then we know that if z2(T3) < m2, z2(t) will strictly monotonically increase with

speed µ2. Thus there exists T5 > T3 such that if t > T5, then z2(t) > m2.

Set T = max{T4, T5}, then we have

zi(t) > mi (i = 1, 2) for t > T.

�

In the sequel, we formulate the uniqueness and global stability of the ω periodic

solution x∗(t) in Theorem 4.1. It is immediate that if x∗(t) is globally asymptotically

stable, then x∗(t) is in fact unique.

Theorem 4.1. In addition to (H1)–(H6), assume further that

(H7) lim
t→∞

inf Ai(t) > 0,

where

A1 = −α1(t)
∏

0<tk<t

(1+̺1k)−2m2γ1(t)
∏

0<tk<t

(1+̺1k)
∏

0<tk<t

(1+̺2k)+β2(t)
∏

0<tk<t

(1+̺1k),

A2 = −α2(t)
∏

0<tk<t

(1+̺2k)−2m1γ2(t)
∏

0<tk<t

(1+̺1k)
∏

0<tk<t

(1+̺2k)+β1(t)
∏

0<tk<t

(1+̺2k).
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Then system (2.3) has a unique positive ω periodic solution x∗(t) = (x∗

1(t), x
∗

2(t))
T

which is globally asymptotically stable.

P r o o f. According to the conclusion of Theorem 3.1, we only need to show

the global asymptotic stability of the positive periodic solution of (2.3). Let

x∗(t) = (x∗

1(t), x
∗

2(t))
T be a positive ω periodic solution of system (2.3), let x(t) =

(x1(t), x2(t))
T be any positive solution of system (2.3). Then z∗(t) = (z∗1(t), z∗2(t))T,

where (z∗1(t) =
∏

0<tk<t

(1 + ̺1k)x∗

1(t), z
∗

2(t) =
∏

0<tk<t

(1 + ̺2k)x∗

2(t), is the positive ω

periodic solution of (4.1), and z(t) is the positive solution of (4.1). It follows from

Lemma 4.2 and Lemma 4.3 that there exist positive constants T > 0, Mi and mi

(defined by Lemma 4.2 and Lemma 4.2, respectively) such that for all t > T ,

mi < z∗i (t) 6 Mi, mi < zi(t) 6 Mi, i = 1, 2.

Define

(4.4) V (t) = |ln z∗1(t) − ln z1(t)| + |ln z∗2(t) − ln z2(t)|.

Calculating the upper-right derivative of V (t) along the solution of (4.1), it follows

for t > T that

D+V (t) =

2
∑

i=1

(z∗i
′(t)

z∗i (t)
−

zi
′(t)

zi(t)

)

sgn(z∗i (t) − zi(t))

= sgn(z∗1(t) − z1(t))

[

− α1(t)
∏

0<tk<t

(1 + ̺1k)(z∗1(t) − z1(t))

− β1(t)
∏

0<tk<t

(1 + ̺2k)(z∗2(t) − z2(t)) − γ1(t)
∏

0<tk<t

(1 + ̺1k)(z∗1(t) − z1(t))

×
∏

0<tk<t

(1 + ̺2k)(z∗2(t − τ1(t)) − z2(t − τ1(t)))

]

+ sgn(z∗2(t) − z2(t))

[

− α2(t)
∏

0<tk<t

(1 + ̺2k)(z∗2(t) − z2(t))

− β2(t)
∏

0<tk<t

(1 + ̺1k)(z∗1(t) − z1(t)) − γ2(t)
∏

0<tk<t

(1 + ̺1k)

× (z∗1(t − τ1(t)) − z1(t − τ2(t)))
∏

0<tk<t

(1 + ̺2k)(z∗2(t) − z2(t))

]

6

2
∑

i=1

Ai|z
∗

i (t) − zi(t)| (i = 1, 2),
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where

A1 = −α1(t)
∏

0<tk<t

(1+̺1k)−2m2γ1(t)
∏

0<tk<t

(1+̺1k)
∏

0<tk<t

(1+̺2k)+β2(t)
∏

0<tk<t

(1+̺1k),

A2 = −α2(t)
∏

0<tk<t

(1+̺2k)−2m1γ2(t)
∏

0<tk<t

(1+̺1k)
∏

0<tk<t

(1+̺2k)+β1(t)
∏

0<tk<t

(1+̺2k).

By hypothesis (H7) there exist constants αi (i = 1, 2) and T ∗ > T such that

(4.5) Ai(t) > αi > 0 (i = 1, 2) for t > T ∗.

Integrating both sides of (4.11) over the interval [T ∗, t] yields

(4.6) V (t) +
2

∑

i=1

∫ t

T∗

Ai(t)|z
∗

i (t) − zi(t)| ds 6 V (T ∗).

It follows from (4.12) and (4.13) that

(4.7)

2
∑

i=1

∫ t

T∗

Ai(t)|z
∗

i (t) − zi(t)| ds 6 V (T ∗) < ∞ for t > T ∗.

Since z∗i (t) and zi(t) (i = 1, 2) are bounded for t > T ∗, so |z∗i (t) − zi(t)| (i = 1, 2)

are uniformly continuous on [T ∗,∞). By Barbalat’s Lemma [1] we have

lim
t→∞

|z∗i (t) − zi(t)| = lim
t→∞

[

∏

0<tk<t

(1 + ̺ik)−1|x∗

i (t) − xi(t)|

]

= 0 (i = 1, 2).

Thus

(4.8) lim
t→∞

|x∗

i (t) − xi(t)| = 0 (i = 1, 2).

By Theorems 7.4 and 8.2 in [18] we know that the positive periodic solution x∗(t) =

(x∗

1(t), x
∗

2(t))
T of equation (2.3) is uniformly asymptotically stable. The proof of

Theorem 4.1 is complete. �
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