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SOME SURJECTIVITY THEOREMS WITH APPLICATIONS

H. K. Pathak and S. N. Mishra

Abstract. In this paper a new class of mappings, known as locally λ-strongly
φ-accretive mappings, where λ and φ have special meanings, is introduced.
This class of mappings constitutes a generalization of the well-known mo-
notone mappings, accretive mappings and strongly φ-accretive mappings.
Subsequently, the above notion is used to extend the results of Park and
Park, Browder and Ray to locally λ-strongly φ-accretive mappings by using
Caristi-Kirk fixed point theorem. In the sequel, we introduce the notion of
generalized directional contractor and prove a surjectivity theorem which is
used to solve certain functional equations in Banach spaces.

1. Introduction and preliminaries

In the beginning of the last quarter of the 20th century many problems related
to nonlinear operators were studied in the framework of Banach spaces by several
researchers. In this context, the remarkable work of Altman [1]–[3], Ray and Walker
[14] and others is worth mentioning. Altman [1]–[3] obtained some surjectivity
theorems for nonlinear mapings which had a directional contractor. A transfinite
induction argument was applied in his work to prove surjectivity theorems for
nonlinear mappings by using the well-known Caristi-Kirk [8] fixed point theorem as
a tool. On the other hand, Browder [7] initiated the study of φ-accretive mappings
in Banach spaces under appropriate geometric conditions. This class of mappings
has been further studied by Browder [4]–[6], Kirk [11], Ray [13] and many others.

In this paper a new class of mappings, known as locally λ-strongly φ-accretive
mappings, where λ and φ have special meanings, is introduced.

This class of mappings constitutes a generalization of the well-known monotone
mappings, accretive mappings and strongly φ-accretive mappings. Subsequently,
in Section 2, the above notion is used to extend the results of Park and Park
[12], Browder [6] and Ray [13] to locally λ-strongly φ-accretive mappings by using
Caristi-Kirk fixed point theorem (cf. [8, 10, 11]). In the sequel, we introduce the
notion of generalized directional contractor in Section 3 and prove a surjectivity
theorem which is used to solve certain functional equations in Banach spaces.
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Definition 1.1. Let X and Y be Banach spaces with Y ∗ the dual of Y , and let
φ : X → Y ∗ be a mapping satisfying:

(i): φ(X) is dense in Y ∗,
(ii): for each x ∈ X and each α ≥ 0,

‖φ(x)‖ ≤ ‖x‖, ‖φ(αx)‖ = α‖φ(x)‖ .

Then:
A mapping P : X → Y is said to be

(a): φ-accretive if for all u, v ∈ X,
(1.1) 〈Pu− Pv, φ(u− v)〉 ≥ 0 .

(b): strongly φ-accretive if there exists a constant c > 0 such that, for all
u, v ∈ X,

(1.2) 〈Pu− Pv, φ(u− v)〉 ≥ c‖u− v‖2 .

(c): locally strongly φ-accretive if for each y ∈ Y and r > 0, there exists a
constant c > 0 such that: if ‖Px− y‖ ≤ r, then, for all u ∈ X sufficiently
near to x, we have

(1.3) 〈Pu− Px, φ(u− x)〉 ≥ c‖u− x‖2 .

Note that (c) presents a localized version of (b). Historically, φ-accretive mappings
were introduced in an effort to unify the theories for monotone mappings (when
Y = X∗) and for accretive mappings (when Y = X). These mappings have been
studied by Browder [4]–[7], Kirk [11] and Ray [13] among others.

The following result of Browder [7, Theorem 4] is of fundamental importance.
Theorem 1.2. Let X and Y be Banach spaces and P : X → Y a strongly
φ-accretive mapping. If Y ∗ is uniformly convex and P is locally Lipschitzian,
then P (X) = Y .

For a Banach space X, the duality mapping J from X into 2X∗ is given by
J(x) =

{
j ∈ X∗ : 〈x, j〉 = ‖x‖2 = ‖j‖2} (x ∈ X)

where 〈·, ·〉 denotes the duality pairing. It is well known that J is single-valued in
case X is strictly convex, and it is uniformly continuous on bounded subsets of X
whenever X∗ is uniformly convex.

We now introduce the following definition.
Definition 1.3. A Lipschitzian mapping P : X → Y with Lipschitzian constant
M is said to be locally λ-strongly φ-accretive if for each y ∈ Y and r > 0, there
exist constants λ, c with c/2M > λ ≥ 0 such that: if ‖Px− y‖ ≤ r and j ∈ J , the
duality mapping on Y , then, for all u ∈ X sufficiently near to x,

(1.4) 〈Pu− Px, φ(u− x) + λM−1j(Pu− Px)〉 ≥ c‖u− x‖2 .

It may be remarked that a 0-strongly φ-accretive mapping P : X → Y is strongly
φ-accretive as defined in [7].
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Ray [13] extended Browder’s theorem [7] by applying a theorem of Ekeland [9]
and showed that a localized class of strongly φ-accretive mappings must be surjective
under appropriate geometric assumptions on Y and continuity assumptions on P .
Indeed, he proved the following.

Theorem 1.4. Let X and Y be Banach spaces and P : X → Y a locally Lipschit-
zian and locally strongly φ-accretive mapping. If Y ∗ is strictly convex and J is
continuous, and if P (X) is closed in Y , then P (X) = Y .

Park and Park [12] proved the following surjectivity theorem.

Theorem 1.5 ([12, Theorem 2]). Let X and Y be Banach spaces and P : X → Y a
locally Lipschitzian and locally strongly φ-accretive mapping. If the duality mapping
J of Y is strongly upper semicontinuous and P (X) is closed, then P (X) = Y .

Note that if P is strongly φ-accretive, then P (X) is closed in Y . Therefore, as
a consequence of Theorem 1.5, we have the following:

Corollary 1.6 ([12, Theorem 1]). Let X and Y be Banach spaces and P : X → Y
a locally Lipschitzian and strongly φ-accretive mapping. If the duality mapping J
of Y is strongly upper semicontinuous and P (X) is closed, then P (X) = Y .

Throughout, B(x, r) = {w ∈ E : ‖w − x‖ ≤ r} will denote a closed ball in a
Banach space E, where E = X or E = Y in this case.

2. A surjectivity result for λ-strongly φ-accretive mappings

The following is our main result for the above class of mappings.

Theorem 2.1. Let X and Y be Banach spaces and P : X → Y a locally Lipschit-
zian and locally λ-strongly φ-accretive mapping. If the duality mapping J of Y is
strongly upper semicontinuous and P (X) is closed, then P (X) = Y .

The proof of our main result is prefaced by the following lemma of Park and
Park [12].

Lemma 2.2. For any y ∈ Y, y∗ ∈ J(y), and ε > 0, there exists an h ∈ X such
that ‖h‖ ≥ 1 and ‖φ(h)− y∗‖y‖−1‖ < ε.

Notice that for any y∗ ∈ J(y) ∈ 2Y ∗ we have
(2.1) ‖y‖2 ≤ ‖z‖2 − 2〈z − y, y∗〉 for any z ∈ Y .
Proof of Theorem 2.1. As P (X) is closed, to prove the theorem it is just suf-
ficient to show that P (X) is open. It is well known that J(y) 6= ∅ for each
y ∈ Y , so we can choose y∗ ∈ J(y). For a given x0 ∈ X, choose ε1 > 0 so
small that P is Lipschitzian with constant M on B(x0, 2ε1). Choose λ > 0
and ε2 > 0 so that (1.4) holds on B(Px0, 2Mε1) whenever ‖u − x0‖ ≤ 2ε2;
set ε = min{ε1, ε2} and set r = min{cε/(1 +

√
1 + 4cλM−1),Mε}. Now it suf-

fices to show that B(Px0, r) ⊂ P (X). To this end, suppose y ∈ B(Px0, r)
and y /∈ P (X). It follows that dist(y, P (X)) > 0. Let d = dist(y, P (X)) and
D = {x ∈ B(x0, ε) : ‖y − Px‖ ≤ r}. Clearly, x0 ∈ D so that D is nonempty.
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Moreover, D is closed. Therefore, D is complete. For any x ∈ D, by Lemma 2.2,
there exists h ∈ X such that ‖h‖ ≥ 1 and

(2.2) 〈φ(h), (y − Px)∗‖y − Px‖−1〉 ≤ (c/2M − λ) .

Set xt = x+ th, t > o. By (1.4), for t sufficiently small we have

〈Pxt − Px, φ(xt − x) + λM−1j(Pxt − Px)〉 ≥ c‖xt − x‖2 .

Thus

〈Pxt − Px, φ(xt − x)〉 ≥ c‖xt − x‖2 − λM−1〈Pxt − Px, j(Pxt − Px)〉

≥ c‖xt − x‖2 − λM−1‖Pxt − Px‖‖j(Pxt − Px)‖

or

〈Pxt − Px, φ(h)〉 ≥ c t‖h‖2 − λM−1t−1‖Pxt − Px‖‖j(Pxt − Px)‖

≥ c t‖h‖2 − λ‖h‖‖Pxt − Px‖

≥ c t‖h‖ − λ‖Pxt − Px‖

≥ (c/M − λ)‖Pxt − Px‖ .

As P is locally Lipschitzian we have for x, xt ∈ B(x0, 2ε1)

‖Pxt − Px‖ ≤M‖xt − x‖ .

By applying (2.2),

〈Pxt − Px, (y − Px)∗〉 = 〈Pxt − Px, ‖y − Px‖φ(h)− ‖y − Px‖φ(h), (y − Px)∗〉

≥ (c/M − λ)‖Pxt − Px‖ ‖y − Px‖

− (c/2M − λ)‖Pxt − Px‖ ‖y − Px‖

≥ (c/2M)‖Pxt − Px‖ ‖y − Px‖ .(2.3)

From (2.1) and (2.3) we have

‖y − Pxt‖2 ≤ ‖y − Px‖2 − 2〈Pxt − Px, (y − Pxt)∗〉

= ‖y − Px‖2 − 2〈Pxt − Px, (y − Px)∗ − (y − Px)∗ + (y − Pxt)∗〉

= ‖y − Px‖2 − 2〈Pxt − Px, (y − Px)∗〉
+ 2〈Pxt − Px, (y − Px)∗ − (y − Pxt)∗〉

≤ ‖y − Px‖2 − 2〈Pxt − Px, (y − Px)∗〉
+ 2‖Pxt − Px‖‖(y − Px)∗ − (y − Pxt)∗‖

≤ ‖y − Px‖2 − (cd/M)‖Pxt − Px‖
+ 2‖Pxt − Px‖‖(y − Px)∗ − (y − Pxt)∗‖ .
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Since y − Pxt → y − Px as t→ 0 and J is strongly upper semicontinuous we may
select t > 0 so small that ‖(y − Px)∗ − (y − Pxt)∗‖ ≤ (cd/2M). Then it follows
that

‖y − Pxt‖2 ≤ ‖y − Px‖2 − (cd/2M)‖Pxt − Px‖ .
Recall that for sufficiently small t, we have

〈Pxt − Px, φ(xt − x)〉 ≥ c‖xt − x‖2 − λM−1‖Pxt − Px‖‖j(Pxt − Px)‖ .

This yields

‖xt − x‖ ≤
1 +
√

1 + 4cλM−1

2c ‖Pxt − Px‖ .

So

[c2d/M(1 +
√

1 + 4cλM−1)]‖xt − x‖ ≤ ‖y − Px‖2 − ‖y − Pxt‖2 .

Thus we find that ‖y − Px‖2 − ‖y − Pxt‖2 ≥ 0. Hence ‖y − Pxt‖ ≤ ‖y − Px‖ ≤ r
and xt ∈ B(x0, 2ε).

Notice that xt ∈ B(x0, 2ε) and ‖y − Pxt‖ ≤ r imply

‖xt − x‖ ≤
1 +
√

1 + 4cλM−1

2c ‖Pxt − Px‖

≤ 1 +
√

1 + 4cλM−1

2c (‖Pxt − y‖+ ‖y − Px0‖)

≤ r1 +
√

1 + 4cλM−1

c
≤ ε .

Let ψ(x) = [M(1 +
√

1 + 4cλM−1)/c2d]‖y− Px‖2 and define g : D → D such that
gx = xt. Then

‖x− gx‖ ≤ ψ(x)− ψ(gx) .
Observe that D, being a closed subset of X, is complete. Since ψ is the continuous
map from the complete metric space D into nonnegative reals, by the Caristi-Kirk
fixed point theorem (cf. [8, 10, 11]) g has a fixed point in D. Note that ‖xt − x‖ =
t‖h‖ 6= 0, a contradiction. This completes the proof. �

Remark 2.3. We remark that Theorem 2.1 generalizes results of Park and Park
[12] and hence those of Browder [7] and Ray [13]. Further, geometrical structures
of Y ∗ in Theorem 2.1 are not required as opposed to [7] and [13].

Example 2.4. Let X = Y = R. Then Y ∗ = R∗ = R. Define φ : X → Y ∗ implicitly
which satisfy conditions (i) and (ii) and P : X → Y explicitly by

Px = 2c
1 +
√

1 + 4cλM−1
x+ β for all x ∈ X , β ∈ R .

Notice that the condition

〈Pu− Px, φ(u− x) + λM−1j(Pu− Px)〉 ≥ c‖u− x‖2
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for all u ∈ X sufficiently near to x yields

(2.4) ‖u− x‖ ≤ 1 +
√

1 + 4cλM−1

2c ‖Pu− Px‖ .

Indeed, for all u ∈ X sufficiently near to x,

〈Pu− Px, φ(u− x) + λM−1j(Pu− Px)〉 ≥ c‖u− x‖2

implies that

〈Pu− Px, φ(u− x)〉+ 〈Pu− Px, λM−1j(Pu− Px)〉 ≥ c‖u− x‖2 ,

i.e.,

c‖u− x‖2 ≤ ‖Pu− Px‖‖φ(u− x)‖+ λM−1‖Pu− Px‖‖j(Pu− Px)‖ ,

i.e.,
c‖u− x‖2 ≤ ‖Pu− Px‖‖u− x‖+ λM−1‖Pu− Px‖2 .

By solving the above quadratic in d = ‖u−x‖
‖Pu−Px‖ we can easily find (2.4). Clearly,

P satisfies the above condition for all x ∈ X and all u ∈ X sufficiently near to x.
By definition of P , it is evident that P (X) = Y .

3. Generalized directional contractor and its application

In this section, we establish a surjectivity theorem for some nonlinear operators
by using the notion of generalized directional contractor. In the sequel we apply
our result to obtain a solution of certain functional equations.

Altman’s fundamental paper [1] contains the following useful notion of directio-
nal contractor:

Let X and Y be two Banach spaces. Let P : D(P ) ⊂ X → Y be a nonlinear
operator from a linear subspace D(P ) of X to Y , Γ(x) : Y → D(P ) a bounded
linear operator associated with x ∈ D(P ). Suppose there exists a positive number
q = q(P ) < 1 such that for any x ∈ D(P ) and y ∈ Y , there exist ε = ε(x, y) ∈ (0, 1]
satisfying

‖P (x+ εΓ(x)y)− Px− εy‖ ≤ q ε ‖y‖ .
Then Γ(x) is called a directional contractor for P at x ∈ D(P ) and Γ: D(P ) ⊂
X → L(Y,X) is called a directional contractor for P , where L(Y,X) denotes the
set of all linear continuous maps of Y into X. If there exists a constant B(> 0)
such that ‖Γ(x)‖ ≤ B for all x ∈ D(P ), then Γ is called a bounded directional
contractor for P .

We now introduce the concept of generalized contractor as follows:

Definition 3.1. Let X and Y be two Banach spaces. Let P : D(P ) ⊂ X → Y be
a nonlinear operator from a linear subspace D(P ) of X to Y , Γ(x) : Y → D(P )
a bounded linear operator associated with x ∈ D(P ). Suppose there exists a
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positive number q = q(P ) < 1 such that for any x ∈ D(P ) and y ∈ Y , there exist
ε = ε(x, y) ∈ (0, 1] and a nonincreasing function c : [0,∞)→ (0, q−1/2) satisfying

‖P (x+ εΓ(x)y)− Px− εy‖ ≤ q ε c(‖x‖) ‖y‖ .
Then Γ(x) is called a generalized directional contractor for P at x ∈ D(P ) and
Γ: D(P ) ⊂ X → L(Y,X) is called a generalized directional contractor for P , where
L(Y,X) denotes the set of all linear continuous maps of Y into X. If there exists a
constant B(> 0) such that ‖Γ(x)‖ ≤ B for all x ∈ D(P ), then Γ is called a bounded
generalized directional contractor for P . It follows from the above definition that
Γ(x)y = 0 implies y = 0 i.e., Γ(x) is injective.

Notice that every generalized directional contractor is a directional contractor and
an inverse Gâuteaux derivative is a directional contractor. Recall that P : D(P ) ⊂
X → Y is said to have closed graph if xn → x, xn ∈ D(P ) and Pxn → y imply
x ∈ D(P ) and y = Px.

By applying the ideas of Ray and Walker [14], we are now ready to prove a
surjectivity theorem for generalized directional contractor.

Theorem 3.2. Let X and Y be two Banach spaces. A nonlinear map P : D(P ) ⊂
X → Y which has closed graph and a bounded generalized directional contractor Γ
is surjective.

Proof. Define a metric ρ on D(P ) by

ρ(x, y) = max{‖x− y‖, (1 + q1/2)−1‖Px− Py‖} .
As D(P ) has closed graph, (D(P ), ρ) is a complete metric space. Suppose w 6∈ R(P )
(the range of P). For any x ∈ D(P ) we set y = w − Px. Since P has a bounded
generalized directional contractor Γ we have, for some 0 < ε(x, y) ≤ 1,
(3.1) ‖P (x+ εΓ(x)y)− Px− εy‖ ≤ q ε c(‖x‖)‖y‖ .
Set εΓ(x)y = h. Then we have
(3.2) ‖h‖ = ‖εΓ(x)y‖ ≤ εB‖y‖ = εB‖w − Px‖ .
From (3.1) we have

‖P (x+ h)− w + (1− ε)(w − Px)‖ ≤ q ε c(‖x‖)‖w − Px‖
which yields

‖P (x+ h)− w‖ − (1− ε)‖w − Px‖ ≤ q ε c(‖x‖)‖w − Px‖ .
Therefore we have

ε‖w − Px‖ − q ε c(‖x‖)‖w − Px‖ ≤ ‖w − Px‖ − ‖w − P (x+ h)‖ ,
i.e.,
(3.3) ε(1− q c(‖x‖))‖w − Px‖ ≤ ‖w − Px‖ − ‖w − P (x+ h)‖ .
Again from (3.1) we have

‖P (x+ h)− Px‖ − ε‖w − Px‖ ≤ q ε c(‖x‖)‖w − Px‖
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which yields
(3.4) ‖P (x+ h)− Px‖ ≤ ε(1 + q c(‖x‖))‖w − Px‖ .
From (3.3) and (3.4) we have

‖P (x+ h)− Px‖ ≤
(
1 + q c(‖x‖)

)(
1− q c(‖x‖)

)−1(‖w − Px‖ − ‖w − P (x+ h)‖)

≤
(
1 + q1/2)(1− q1/2)−1(‖w − Px‖ − ‖w − P (x+ h)‖) .(3.5)

Using (3.2) again we have
‖h‖ ≤ εB‖w − Px‖

≤ B
(
1− q c(‖x‖)

)−1(‖w − Px‖ − ‖w − P (x+ h)‖)

≤ B
(
1− q1/2)−1(‖w − Px‖ − ‖w − P (x+ h)‖) .(3.6)

Let a = max(B, 1) and ϕ(x) = a
(

1− q1/2
)−1
‖w−Px‖. Then ϕ is continuous with

respect to metric ρ. Therefore if we set fx = x+ h, then fx 6= x. Indeed if h = 0
then from (3.2) we have

ε‖y‖ ≤ qε c(‖x‖)‖y‖ ≤ q1/2ε ‖y‖ < ε ‖y‖ .
But since w /∈ R(P ), y = Px − w 6= 0. Therefore fx 6= x and ρ(x, fx) ≤
ϕ(x) − ϕ(fx). This is a contradiction to Caristi-Kirk fixed point theorem ([4],
see also [6]). Hence we conclude that w ∈ R(P ). �

Let X and Y be two Banach spaces. Let P : D(P ) ⊂ X → Y , and let x ∈ X.
We now consider a special class of generalized directional contractors. Let Γ(x)(P )
be a set of generalized directional contractors for P at x ∈ D(P ) called class (S) if
there exist a positive number q = q(P ) < 1, a constant B > 0 and a nonincreasing
function c : [0,∞)→ (0, q−1/2) with the following property:
For each y ∈ Γ(x)(P ), there exist a positive number ε = ε(x, y) ≤ 1 and an element
x̄ ∈ D(P ) such that:

(S1): ‖Px̄− Px− εy‖ ≤ qεc(‖x‖)‖y‖ and

(S2): ‖x̄− x‖ ≤ εB‖y‖.

Now we apply the above results to obtain a solution of certain functional
equations.

Theorem 3.3. Let X and Y be two Banach spaces. Let P : D(P ) ⊂ X → Y has
closed graph. For x ∈ D(P ), let Γ(x)(P ) denote the class (S). Suppose that y0 is
such that for each x ∈ D(P ), the element y0 − Px belongs to the closure of the set
Γ(x)(P ) defined by (S1) and (S2). Then the equation Px− y0 = 0, x ∈ D(P ) has a
solution.

Proof. Suppose, if possible, Px − y0 = 0, x ∈ D(P ) has no solution. Set
y = y0 − Px 6= 0, then by hypothesis y ∈ Γ(x)(P ). So we can choose y′ in
Γ(x)(P ) and a α > 0 such that ‖y − y′‖ ≤ α‖y‖. Note that α < 1 and does not
depend on x.
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Since y′ ∈ Γ(x)(P ), there exists x̄ such that
(3.7) ‖Px̄− Px− εy′‖ ≤ qε c(‖x‖)‖y′‖ .
From the above inequality we have

‖Px̄− y0 + y0 − Px− εy′‖ ≤ qε c(‖x‖)‖y′‖ .
As y = y0 − Px, we obtain
(3.8) ‖Px̄− y0 + y − εy′‖ ≤ qε c(‖x‖)‖y′‖ .
Choose q′ > 0 such that q < q′ < 1. After having chosen q′ we may choose
α > 0 sufficiently small such that (α + 1) ≤ qq′. Since ‖y − y′‖ ≤ α‖y‖, we have
‖y′‖ ≤ (1 + α)‖y‖. From this and (3.8) we have

‖Px̄− y0 + y − εy′‖ ≤ q′ε c(‖x‖)‖y‖ .
On the other hand, we have

(‖Px̄− y0 + (1− ε)y‖ − ‖Px̄− y0 + y − εy′‖) ≤ ε ‖y − y′‖ ≤ ε α ‖y‖ .
Hence from (3.8) and the above inequalities, we have

‖Px̄− y0 + (1− ε)y‖ − ε α ‖y‖ ≤ q′ε c(‖x‖)‖y‖ .
From this we have

‖Px̄− y0‖ − (1− ε)‖y‖ − ε α ‖y‖ ≤ q′ε c(‖x‖)‖y‖ .
Therefore we obtain

ε(1− q′c(‖x‖)− α)‖y‖ ≤ ‖y‖ − ‖Px̄− y0‖
and which implies that

ε(1− q′−1/2 − α)‖y‖ ≤ ‖y‖ − ‖Px̄− y0‖ .
If we choose α > 0 so that β = 1− q′−1/2 − α > 0, then we obtain

(3.9) ε β‖y0 − Px‖ ≤ ‖Px− y0‖ − ‖Px̄− y0‖ .
But from (3.7) we have

‖Px̄− Px‖ ≤ ε(qc(‖x‖) + 1)‖y′‖
≤ ε(qc(‖x‖) + 1)(α+ 1)‖y‖

or
‖Px̄− Px‖ ≤ ε(q1/2 + 1)(α+ 1)‖y0 − Px‖.

Using (3.9), the above inequality yields

‖Px̄− Px‖ ≤ (q1/2 + 1)(α+ 1)β−1(‖Px− y0‖ − ‖Px̄− y0‖) .
Since ‖x̄− x‖ ≤ εB‖y′‖ ≤ εB(α+ 1)‖y‖ = εB(α+ 1)‖y0 − Px‖ we have

‖x̄− x‖ ≤ B(α+ 1)β−1(‖Px− y0‖ − ‖Px̄− y0‖) .
We now define a metric ρ on D(P ) by

ρ(x, y) = max{‖x− y‖, (1 + q1/2)−1‖Px− Py‖} .
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Set fx = x̄. Since y′ 6= 0(α < 1), we have x 6= x̄. Take a = max{B, 1} and set
ϕ(x) = a(α+ 1)β−1‖Px− y0‖. Then

ρ(x, fx) ≤ ϕ(x)− ϕ(fx) .

This is a contradiction to Caristi-Kirk fixed point theorem (cf. [8, 10, 11]). Hence
we conclude that Px− y0 = 0, x ∈ D(P ) has a solution. �
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