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Abstract. Each of the Diophantine equations A4 ± nB3 = C2 has an infinite number of
integral solutions (A, B,C) for any positive integer n. In this paper, we will show how the
method of infinite ascent could be applied to generate these solutions. We will investigate
the conditions when A, B and C are pair-wise co-prime. As a side result of this investigation,
we will show a method of generating an infinite number of co-prime integral solutions
(A, B, C) of the Diophantine equation aA3+ cB3 = C2 for any co-prime integer pair (a, c).
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1. Introduction

Sometimes we are interested in finding integral solutions of polynomial equations

with integral coefficients. They are called the Diophantine equations, named after

Diophantus of Alexandria, a third century mathematician who studied them exten-

sively. The study of Diophantine equations is one of the most fascinating subjects of

Number Theory, the queen of Mathematics. The paper [2] gives a technique of gener-

ating an infinite number of co-prime integral solutions (A, B, C) of the Diophantine

equations A4 ± nB2 = C3 for any integer n > 1. The Diophantine equation (1.1)

has been studied by Beukers [1] only for n = ±1. But the Diophantine equations

(1.1) are yet to be studied for all integral values of n > 2. Hence, let us consider the

following Diophantine equations:

(1.1) A4 ± nB3 = C2
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We can apply the Method of Infinite Ascent (MIA) to these equations (1.1) to gen-

erate an infinite number of integral solutions (A, B, C) for any positive integer n.

For applying MIA to a Diophantine equation, we have to look for a polynomial alge-

braic identity that resembles the Diophantine equation under study. Hence, we prove

Lemma 1.1, that gives us the base to construct two polynomial identities, (2.5) and

(2.6), to be used later for establishing the main results of this paper.

Lemma 1.1. For any two non-zero integers k and t,

(1.2) k{4(k − t)}3 + t(8k + t)3 = {±(8k2 + 20kt− t2)}2.

P r o o f.

L.H. S. of (1.2) = k{4(k − t)}3 + t(8k + t)3

= 64k{(k)3 + 3(k)2(−t) + 3(k)(−t)2 + (−t)3}

+ t{(8k)3 + 3(8k)2(t) + 3(8k)(t)2 + (t)3}

= 64k{k3 − 3k2t + 3kt2 − t3} + t{512k3 + 192k2t + 24kt2 + t3}

= 64k4 − 192k3t + 192k2t2 − 64kt3 + 512k3t + 192k2t2 + 24kt3 + t4

= 64k4 + (−192 + 512)k3t + (192 + 192)k2t2 + (−64 + 24)kt3 + t4

= 64k4 + 320k3t + 384k2t2 − 40kt3 + t4

= 64k4 + 320k3t + (400 − 16)k2t2 − 40kt3 + t4

= 64k4 + 400k2t2 + t4 + 320k3t − 40kt3 − 16k2t2

= (8k2)2 + (20kt)2 + (−t2)2 + 2(8k2)(20kt) + 2(20kt)(−t2)

+ 2(8k2)(−t2)

= {±(8k2 + 20kt− t2)}2 = R.H. S. of (1.2).

Hence, Lemma 1.1 is established. �

2. Constructing solutions for A4 ± nB3 = C2

Take

(2.1) X = k{4(k − t)}3, Y = t(8k + t)3 and Z = {±(8k2 + 20kt− t2)}2.

Comparing (2.1) with (1.2) we get

(2.2) X + Y = Z.
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We know that

(2.3) {±(X + Y )}2 − 4XY = {±(X − Y )}2.

From (2.2) and (2.3) we get

(2.4) (±Z)2 − 4XY = {±(X − Y )}2.

From (2.4) and (2.1) we get

{±(8k2 + 20kt− t2)}4 − 4k{4(k − t)}3 · t(8k + t)3

= {±(k(4(k − t))3 − t(8k + t)3)}2

=⇒ {±(8k2 + 20kt− t2)}4 − 28 · kt{(k − t)(8k + t)}3

= {±(k(4(k − t))3 − t(8k + t)3)}2

=⇒ {±(8k2 + 20kt− t2)}4 − 28 · kt(8k2 + kt − 8kt − t2)3

= {±(43 · k(k − t)3 − t(8k + t)3)}2

=⇒ {±(8k2 + 20kt− t2)}4 − 28 · kt(8k2 − 7kt − t2)3

= {±(43 · k(k3 − 3k2t + 3kt2 − t3) − t(83k3 + 3 · 82k2t + 3 · 8kt2 + t3))}2

=⇒ {±(8k2 + 20kt− t2)}4 − 28 · kt(8k2 − 7kt − t2)3

= {±(64 · k(k3 − 3k2t + 3kt2 − t3) − t(512k3 + 192k2t + 24kt2 + t3))}2

=⇒ {±(8k2 + 20kt− t2)}4 − 28 · kt(8k2 − 7kt − t2)3

= {±(64k4 − 192k3t + 192k2t2 − 64kt3 − 512k3t − 192k2t2 − 24kt3 − t4)}2

=⇒ {±(8k2 + 20kt− t2)}4 − 28 · kt(8k2 − 7kt − t2)3

= {±(64k4 + (−192 − 512)k3t + (192 − 192)k2t2 + (−64 − 24)kt3 − t4)}2

=⇒ {±(8k2 + 20kt− t2)}4 − 28 · kt(8k2 − 7kt − t2)3

= {±(64k4 − 704k3t − 88kt3 − t4)}2.

Hence, we get an important polynomial algebraic identity (2.5):

(2.5) {±(8k2 + 20kt− t2)}4 − 28 · kt(8k2 − 7kt − t2)3

= {±(64k4 − 704k3t − 88kt3 − t4)}2.

Transforming t to −t, the identity of (2.5) becomes

(2.6) {±(8k2 − 20kt− t2)}4 + 28 · kt(8k2 + 7kt − t2)3

= {±(64k4 + 704k3t + 88kt3 − t4)}2.

Now, we state the following two theorems.
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Theorem 2.1. For any positive integer n, the Diophantine equation A4 + nB3 =

C2 has infinitely many co-prime integral solutions of the form

(A, B, C) = { ± (32n2p6 − 40np3q3 − q6), 8pq(32n2p6 + 14np3q3 − q6),(2.7)

± (1024n4p12 + 5632n3p9q3 + 176np3q9 − q12)},

where npq 6= 0, np and q are co-prime integers such that p takes any integral value

having 3 as a factor and q is odd.

P r o o f. We will prove Theorem 2.1 in two steps.

Step I. According to the statement of Theorem 2.1, if

(2.8) A4 + nB3 = C2,

then, we have to show that

(2.9) {±(32n2p6 − 40np3q3 − q6)}4 + n{8pq(32n2p6 + 14np3q3 − q6)}3

= {±(1024n4p12 + 5632n3p9q3 + 176np3q9 − q12)}2.

Put k = 2np3 and t = q3 in (2.6). We get

{±(8(2np3)2 − 20(2np3)(q3) − (q3)2)}4

+ 28 · (2np3)(q3){8(2np3)2 + 7(2np3)(q3) − (q3)2}3

= {±(64(2np3)4 + 704(2np3)3(q3) + 88(2np3)(q3)3 − (q3)4)}2

=⇒ {±(32n2p6 − 40np3q3 − q6)}4 + 29np3q3(32n2p6 + 14np3q3 − q6)3

= {±(1024n4p12 + 5632n3p9q3 + 176np3q9 − q12)}2

=⇒ {±(32n2p6 − 40np3q3 − q6)}4 + n{8pq(32n2p6 + 14np3q3 − q6)}3

= {±(1024n4p12 + 5632n3p9q3 + 176np3q9 − q12)}2,

which establishes (2.9).

Step II. We have to show that the given integral solutions of (2.8) are pair-wise

co-prime.

A = (32n2p6 − 40np3q3 − q6), which is odd, because q is odd. B = 8pq(32n2p6 +

14np3q3 − q6) is always even and C = (1024n4p12 + 5632n3p9q3 + 176np3q9 − q12) is

always odd. Since np and q are given to be co-prime, also p and q are co-prime.

Now, A = (32n2p6 − 40np3q3 − q6) and 8pq do not have a common factor > 1,

because A does not share a factor with 8, p or q. Take B = 8pqB1, where B1 =

(32n2p6+14np3q3−q6). Hence, to show that B and A are co-prime, we need to prove

that B1 = (32n2p6 + 14np3q3 − q6) and A = (32n2p6 − 40np3q3 − q6) do not have
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a common factor > 1. Suppose that B1 and A share a common factor k > 1. So, k

must be a factor of (B1−A) = {(32n2p6+14np3q3−q6)−(32n2p6−40np3q3−q6)} =

(32n2p6 + 14np3q3 − q6 − 32n2p6 + 40np3q3 + q6) = 54np3q3 = 2 · 33 · p3q3. But k,

being a factor of A, is not divisible by 2. Also 3, being a factor of p, will not appear

as a factor of A because p and q are co-prime. Hence, we see that k has to be a factor

of both A and np3q3, which leads to a contradiction because A and np3q3 do not

have a common factor > 1. So, under the conditions of Theorem 2.1, A and B are

co-prime. Since A and n do not share a common factor > 1, A and nB are co-prime.

Knowing that A and nB are co-prime, from equation (2.8) we see that (A, B, C) are

pair-wise co-prime. Thus, combining Step I and Step II, Theorem 2.1 is proved. �

Theorem 2.2. For any positive integer n, the Diophantine equation A4 −nB3 =

C2 has infinitely many co-prime integral solutions of the form

(A, B, C) = { ± (32n2p6 + 40np3q3 − q6), 8pq(32n2p6 − 14np3q3 − q6),(2.10)

± (1024n4p12 − 5632n3p9q3 − 176np3q9 − q12)},

where npq 6= 0, np and q are co-prime integers such that p takes any integral value

having 3 as a factor and q is odd.

P r o o f. We will prove Theorem 2.2 in two steps.

Step I. According to the statement of Theorem 2.2, if

(2.11) A4 − nB3 = C2,

then we have to show that

{±(32n2p6 + 40np3q3 − q6)}4 − n{8pq(32n2p6 − 14np3q3 − q6)}3(2.12)

= {±(1024n4p12 − 5632n3p9q3 − 176np3q9 − q12)}2.

Put k = 2np3 and t = q3 in (2.5) and proceed as we did for Theorem 2.1 to get the

identity (2.12).

Step II. We can use the same logic as we did for Theorem 2.1 to prove that the

solutions (A, B, C) of the Diophantine equation (2.11) are be pair-wise co-prime.

Hence, combining Step I and Step II, Theorem 2.2 is proved completely. �

3. Conclusion

The algebraic identity (1.2) is a Corollary of a Theorem given in [3]. It can be

used to give a new result relating to the Diophantine equation aA3 + cB3 = C2 as

follows.
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Theorem 3.1. For any two non-zero co-prime integers a and c, the Diophantine

equation aA3 + cB3 = C2 has infinitely many co-prime integral solutions of the form

(3.1) (A, B, C) = {4b(ab3 − cd3), d(8ab3 + cd3), (8a2b6 + 20acb3d3 − c2d6)},

where b and d take non-zero integral values such that 3 | b, ab3 6= cd3, ab and cd are

co-prime, with cd having an odd value.

P r o o f. We will prove Theorem 3.1 in two steps.

Step I. According to the statement of Theorem 3.1, if

(3.2) aA3 + cB3 = C2,

then we have to show that

(3.3) a{4b(ab3 − cd3)}3 + c{d(8ab3 + cd3)}3 = (8a2b6 + 20acb3d3 − c2d6)2.

We can easily obtain the identity (3.3) if we substitute k = ab3 and t = cd3 in (1.2).

Now, for any pair of integers (a, c), we change the values for b and d in accordance

with the given conditions to generate an infinite number of solutions for (A, B, C).

This proves one part of the Theorem 3.1.

Step II. To ensure that the Diophantine equation (3.2) has co-prime solutions

(A, B, C) we note that A = 4b(ab3− cd3). Since ab3 6= cd3, A is always non-zero and

even. Similarly, B = d(8ab3 + cd3) is odd because cd is odd, and hence, non-zero.

Since ab and cd are co-prime, the factor 4b in A is co-prime to B. The other factor

in A is (ab3 − cd3), which is co-prime to d.

Since 3 | b, 3 is neither a factor of (ab3 − cd3) nor (8ab3 + cd3) because ab and cd

are co-prime. The sum of (ab3− cd3) and (8ab3 + cd3) is 9ab3, which contains factors

different from (ab3− cd3) as well as (8ab3 + cd3). So, we observe that the constituent

factors of A are co-prime to the constituent factors of B. Thus, A and B are proved

to be co-prime. Noting that aA3 and cB3 are co-prime, from equation (3.2) we see

that (A, B, C) are pair-wise co-prime.

Combining Step I and Step II, Theorem 3.1 is fully established. �
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