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THE INTEGRAL POINTS ON ELLIPTIC CURVES

y2 = x3 + (36n2 − 9)x − 2(36n2 − 5)

Hai Yang, Ruiqin Fu, Xi’an

(Received November 7, 2011)

Abstract. Let n be a positive odd integer. In this paper, combining some properties
of quadratic and quartic diophantine equations with elementary analysis, we prove that
if n > 1 and both 6n2 − 1 and 12n2 + 1 are odd primes, then the general elliptic curve
y2 = x3+(36n2−9)x−2(36n2−5) has only the integral point (x, y) = (2, 0). By this result
we can get that the above elliptic curve has only the trivial integral point for n = 3, 13, 17
etc. Thus it can be seen that the elliptic curve y2 = x3 + 27x − 62 really is an unusual
elliptic curve which has large integral points.
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§1. Introduction

In recent years, the determination of integral points on elliptic curves has been an

interesting problem in number theory and arithmetic algebraic geometry, and many

advanced methods have been used to solve this problem (see [1], [5], [6]).

In [10], D. Zagier asked whether the largest integral point on the elliptic curve

(1) y2 = x3 + 27x − 62

is

(2) (x, y) = (28844402,±154914585540).

This work is supported by N. S. F. (11226038, 11101323) of P.R.China, the Education
Department Foundation of Shaanxi Province (11Jk0472, 11Jk0474) and Scientific Re-
search Foundation for Doctor of Xi’an Polytechnic University (BS1016).
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Recently, using a computational method related to algebraic number theory and

p-adic analysis, H. L. Zhu and J.H.Chen [11] solved the above mentioned problem.

They proved that (1) has only the integral points (x, y) = (2, 0) and (2). Y.F. He

and W.P.Zhang [2] proved the same result by an elementary approach.

Let n be a positive odd integer. In this paper we discuss a general elliptic curve

(3) y2 = x3 + (36n2 − 9)x − 2(36n2 − 5).

Obviously, (1) is the special case of (3) for n = 1. Combining some properties of

quadratic and quartic Diophantine equations with elementary analysis, we prove the

following result:

Theorem. If n > 1, and both 6n2 − 1 and 12n2 + 1 are odd primes, then (3) has

only the integral point (x, y) = (2, 0).

By our result, (3) has only the trivial integral point for n = 3, 13, 17 etc. Thus

it can be seen that (1) really is an unusual elliptic curve which has large integral

points.

§2. Preliminaries

Let N be the set of all positive integers. Let D be a positive integer which is not

a square.

Lemma 1 ([3, Section 8.1]). The equation

(4) u2 − Dv2 = 1, u, v ∈ N

has solutions (u, v), and it has a unique solution (u1, v1) satisfying u1 + v1

√
D 6

u + v
√

D, where (u, v) through all solutions of (4). Such (u1, v1) is called the least

solution of (4). Further, for any positive integer k, let

(5) uk + vk

√
D =

(

u1 + v1

√
D

)k
.

Then (u, v) = (uk, vk) (k = 1, 2, . . .) are all solutions of (1).
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Lemma 2. For any positive integer n, the least solution of the equation

(6) u2 − 12(12n2 + 1)v2 = 1, u, v ∈ N

is (u1, v1) = (24n2 + 1, 2n).

P r o o f. Since (24n2 + 1)2 − 12(12n2 + 1)(2n)2 = 1, (6) has the solution (u, v) =

(24n2 + 1, 2n). By Lemma 1, if (u1, v1) 6= (24n2 + 1, 2n), then we have

2(24n2 + 1) > (24n2 + 1) + 2n
√

12(12n2 + 1) >
(

u1 + v1

√

12(12n2 + 1)
)2

> 12(12n2 + 1)v2
1 > 12(12n2 + 1) > 2(24n2 + 1),

a contradiction. Thus, we get (u1, v1) = (24n2 + 1, 2n). Lemma 2 is proved. �

Lemma 3 ([9]). The equation

(7) X2 − DY 4 = 1, X, Y ∈ N

has at most two solutions (X, Y ). Moreover, if (7) has exactly two solutions (X, Y ) =

(X1, Y1) and (X2, Y2) with X1 < X2, then we have:

(i) D = 1785 · 24r, where r ∈ {0, 1}, (X1, Y1) = (169, 21−r) and (X2, Y2) =

(6525617281, 6214 · 21−r).

(ii) D 6= 1785 · 24r, (X1, Y
2
1 ) = (u1, v1) and (X2, Y

2
2 ) = (u2, v2), where (uj , vj)

(j = 1, 2) are defined as in (5).

Lemma 4. The equation

(8) X2 − 24Y 4 = 1, X, Y ∈ N

has only the solution (X, Y ) = (5, 1).

P r o o f. Since the least solution of the equation

u2 − 24v2 = 1, u, v ∈ N

is (u1, v1) = (5, 1), by (5) we get (u2, v2) = (49, 10). Thus, by Lemma 3, (8) has only

the solution (X, Y ) = (5, 1). Lemma 4 is proved. �

Lemma 5 ([7]). Let (X, Y ) be a solution of (7). Then there exists a positive

integer k such that (X, Y 2) = (uk, vk), where (uk, vk) if defined as in (5). Moreover,

if 2 | k, then we have:

(i) D = 1785 · 24r, where r ∈ {0, 1}, k = 4.

(ii) D 6= 1785 · 24r, k = 2.
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Lemma 6. If n is a positive odd integer with n > 1, then the equation

(9) X2 − 12(12n2 + 1)Y 4 = 1, X, Y ∈ N

has no solution (X, Y ).

P r o o f. We now assume that (X, Y ) is a solution of (9). By Lemma 2, (u1, v1) =

(24n2 + 1, 2n) is the least solution of (6). Hence, using Lemma 1 and Lemma 5, we

have

(10) X + Y 2
√

12(12n2 + 1) =
(

(24n2 + 1) + 2n
√

12(12n2 + 1)
)k

, k ∈ N.

Since 2 ∤ n, we see from (10) that 2 | Y , 4 | Y 2 and 2 | k. Therefore, since

12(12n2 + 1) 6= 1785 · 24r, using Lemma 5 again, we get k = 2. Substituting it into

(10), we have

(11) Y 2 = 4n(24n2 + 1).

Since gcd(4n, 24n2 + 1) = 1, we get from (11) that

(12) n = a2, 24n2 + 1 = b2, Y = 2ab, gcd(a, b) = 1, a, b ∈ N.

By (11), we obtain

(13) b2 − 24a4 = 1.

Since n > 1 and a > 1 by (12), it follows that (8) has a solution (X, Y ) = (b, a) with

Y > 1. But, by Lemma 4, this is impossible. Thus, (9) has no solution. Lemma 6 is

proved. �

Lemma 7 ([4]). For any fixed D with 2 ∤ D there exists exactly one pair

(D1, D2, θ) of positive integers such that

D = D1D2, gcd(D1, D2) = 1, θ ∈ {1, 2}, (D1, D2, θ) 6= (1, D, 1)

and the equation

D1U
2 − D2V

2 = θ, gcd(U, V ) = 1, U, V ∈ N

has solutions (U, V ).
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Lemma 8. For any positive odd integer n, the equations

(14) 3U2 − (12n2 + 1)V 2 = 2, gcd(U, V ) = 1, U, V ∈ N

and

(15) 3(12n2 + 1)U2 − V 2 = 2, gcd(U, V ) = 1, U, V ∈ N

has no solution (U, V ).

P r o o f. Notice that 2 ∤ 3(12n2 + 1), gcd(3, 12n2 + 1) = 1, (12n2 + 1) · 12 −
3 · (2n)2 = 1 and the equation

(16) (12n2 + 1)U2 − 3V 2 = 1, gcd(U, V ) = 1, U, V ∈ N

has solutions (U, V ). By Lemma 7, we obtain Lemma 8 immediately. �

Lemma 9 ([8]). Let D1, D2 be coprime positive integers with min{D1, D2} > 1.

If the equation

(17) D1U
2 − D2V

2 = 1, gcd(U, V ) = 1, U, V ∈ N

has solutions (U, V ), then it has a unique solution (U1, V1) satisfying U1

√
D1 +

V1

√
D2 6 U

√
D1 + V

√
D2, where (U, V ) is any solution of (17). Such (U1, V1) is

called the least solution of (17). Further, for any nonnegative integer s, let

U2s+1

√

D1 + V2s+1

√

D2 =
(

U1

√

D1 + V1

√

D2

)2s+1
.

Then (U, V ) = (U2s+1, V2s+1) (s = 0, 1, 2, . . .) are all solutions of (17).

Lemma 10. All solutions (U, V ) of (16) satisfy 2 | V .

P r o o f. Obviously, (16) has the solution (U, V ) = (1, 2n). If (U1, V1) 6= (1, 2n),

then by Lemma 9 we have

2
√

12n2 + 1 >
√

12n2 + 1 + 2n
√

3 >
(

U1

√

12n2 + 1 + V1

√
3
)3

> (12n2 + 1)
3

2 U3
1 > (12n2 + 1)

3

2 > 2
√

12n2 + 1,

a contradiction. Hence, we get (U1, V1) = (1, 2n). Moreover, by Lemma 9 again,

every solution (U, V ) of (16) can be expressed as

(18) U
√

12n2 + 1 + V
√

3 =
(

√

12n2 + 1 + 2n
√

3
)2s+1

where s is a nonnegative integer. Thus, we see from (18) that 2n | V . Lemma 10 is

proved. �
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§3. Proof of the theorem

Let n be a positive odd integer with n > 1, and let

(19) m = 36n2 − 5, p = 12n2 + 1, q = 6n2 − 1.

Under the hypothesis that p and q are odd primes, by (19) we have

(20) m ≡ 7 (mod 8), p ≡ 5 (mod 8), q ≡ 5 (mod 8).

By (3) and (19) we have

(21) y2 = (x − 2)(x2 + 2x + m).

Since x2 + 2x+ m > 0, we see from (21) that (3) has only the integral point (x, y) =

(2, 0) with y = 0.

We now assume that (x, y) is an integral point of (3) with y 6= 0. Since y2 > 0

and x2 + 2x + m > 0, by (21) we have x − 2 > 0. Let d = gcd(x − 2, x2 + 2x + m).

Since d | (m + 8) and m + 8 = 36n2 + 3 = 3(12n2 + 1) = 3p, where p is an odd prime

with p 6= 3, we get

(22) d ∈ {1, 3, p, 3p}.

By (22) we will prove that the integral point (x, y) does not exist in the following

four cases:

Case I : d = 1.

By (21) we get

(23) x − 2 = a2, x2 + 2x + m = b2, y = ±ab, gcd(a, b) = 1, a, b ∈ N.

By the second equality of (23), we have

(24) b2 − (x + 1)2 = m − 1 = 36n2 − 6.

Since 2 | (36n2−6), we see from (24) that b and x+1 have the same parity. Therefore,

by (24), we get 2 ≡ 36n2 − 6 ≡ b2 − (x + 1)2 ≡ 0 (mod 4), a contradiction.

Case II : d = 3.

By (21) we have

(25) x − 2 = 3a2, x2 + 2x + m = 3b2, y = ±3ab, gcd(a, b) = 1, a, b ∈ N.
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By the first two equalities of (25), we get

(26) 3(a2 + 1)2 + 2q = b2.

Since 2 ∤ q, we see from (26) that both a2 + 1 and b are odd. Therefore, by (20) and

(26), we get 2 ≡ 2q ≡ b2 − 3(a2 + 1)2 ≡ 1 − 3 ≡ 6 (mod 8), a contradiction.

Case III : d = p.

By (21) we get

(27) x − 2 = pa2, x2 + 2x + m = pb2, y = ±pab, gcd(a, b) = 1, a, b ∈ N.

By (19) and (27) we get

(28) 3(a2 + 1)2 + 2qa4 = b2.

If 2 | a, then we have 2 ∤ (a2 + 1)b and 0 ≡ 2qa4 ≡ b2 − 3(a2 + 1)2 ≡ 1 − 3 ≡ 6

(mod 8) by (28), a contradiction. If 2 ∤ a, then both a2 + 1 and b are even, and

2 ≡ 2qa4 ≡ b2 − 3(a2 + 1)2 ≡ 0 (mod 4), a contradiction.

Case IV : d = 3p.

By (21) we have

(29) x − 2 = 3pa2, x2 + 2x + m = 3pb2, y = ±3pab, gcd(a, b) = 1, a, b ∈ N,

whence we get

(30) b2 − (3a2 + 1)2 = 6qa4.

If 2 ∤ a, then both 3a2 + 1 and b are even, and 2 ≡ 6qa4 ≡ b2 − (3a2 + 1)2 ≡ 0

(mod 4) by (30), a contradiction.

If 2 | a, then we have

(31) a = 2c, c ∈ N.

Substituing (31) into (30), we get

(32) b2 − (12c2 + 1)2 = 96qc4.

Since gcd(a, b) = gcd(2c, b) = 1, we see from (32) that gcd(b + (12c2 + 1), b −
(12c2 + 1)) = 2. Hence, by (32), we obtain

b + λ(12c2 + 1) = 2e1f
4, b − λ(12c2 + 1) = 2e2g

4

c = fg, λ ∈ {±1}, gcd(f, g) = 1, f, g ∈ N(33)

381



where

(34) e1e2 = 24q, 2 ∤ e1, gcd(e1, e2) = 1, e1, e2 ∈ N.

By (33), we get

(35) e1f
4 − 12λf2g2 − e2g

4 = λ.

Since q is an odd prime, by (34) we have

(36) (e1, e2) = (1, 24q), (3, 8q), (q, 24), or (3q, 8).

When (e1, e2) = (1, 24q), we get from (19) and (35) that

(37) f4 − 12λf2g2 − 24qg4 = (f2 − 6λg2)2 − (24q + 36)g4

= (f2 − 6λg2)2 − 12(12n2 + 1)g4

= λ.

Further, since λ ∈ {±1}, we see from (37) that 2 ∤ (f2 − 6λg2), λ = 1 and

(38) (f2 − 6g2)2 − 12(12n2 + 1)g4 = 1.

It follows that (9) has the solution (X, Y ) = (|f2 − 6g2|, g). But, since n > 1, by

Lemma 6 this is impossible.

When (e1, e2) = (3, 8q), by (35) we have

(39) 3(f2 − 2λg2)2 − 4(12n2 + 1)g4 = λ.

Further, since λ ∈ {±1}, we see from (39) that 2 ∤ (f2 − 2λg2), λ = −1 and

(40) (12n2 + 1)(2g2)2 − 3(f2 + 2g2)2 = 1.

It follows that (16) has the solution (U, V ) = (2g2, f2 + 2g2) with 2 ∤ V . But, by

Lemma 10, this is impossible.

When (e1, e2) = (q, 24), we have

(41) 3(λf2 + 4g2)2 − (12n2 + 1)f4 = −2λ,

whence we get 2 ∤ f , λ = −1 and

(42) 3(−f2 + 4g2)2 − (12n2 + 1)(f2)2 = 2.
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It follows that (14) has the solution (U, V ) = (| − f2 + 4g2|, f2). But, by Lemma 8,

this is impossible.

When (e1, e2) = (3q, 8), we have

(43) (3λf2 + 4g2)2 − 3(12n2 + 1)f4 = −2λ,

whence we get λ = 1 and

(44) 3(12n2 + 1)(f2)2 − (3f2 + 4g2)2 = 2.

It follows that (15) has the solution (U, V ) = (f2, 3f2 +4g2). But, by Lemma 8, this

is impossible.

To sum up, we conclude that (3) has no integral point (x, y) with y 6= 0. Thus,

the theorem is proved. �
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