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TAUBERIAN THEOREM
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Abstract. We provide several general versions of Littlewood’s Tauberian theorem. These
versions are applicable to Laplace transforms of Schwartz distributions. We employ two
types of Tauberian hypotheses; the first kind involves distributional boundedness, while the
second type imposes a one-sided assumption on the Cesàro behavior of the distribution.
We apply these Tauberian results to deduce a number of Tauberian theorems for power
series and Stieltjes integrals where Cesàro summability follows from Abel summability. We
also use our general results to give a new simple proof of the classical Littlewood one-sided
Tauberian theorem for power series.
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1. Introduction

A century ago, Littlewood obtained his celebrated extension of Tauber’s theorem

[15], [23]. Littlewood’s Tauberian theorem states that if the series
∞
∑

n=0
cn is Abel

summable to a number a, namely, the power series
∞
∑

n=0
cnrn has radius of convergence

at least 1 and

(1.1) lim
r→1−

∞
∑

n=0

rncn = a,
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and if the Tauberian hypothesis

(1.2) cn = O
( 1

n

)

is satisfied, then the series is actually convergent,
∞
∑

n=0
cn = a.

The result was later strengthened by Hardy and Littlewood in [10], [11] to an one-

sided version. They showed that the condition (1.2) can be relaxed to the weaker

one ncn = OL(1), i.e., there exists C > 0 such that −C < ncn.

The aim of this article is to provide several distributional versions of this Hardy-

Littlewood Tauberian theorem, our versions shall include it as a particular case. Our

general results are in terms of Laplace transforms of distributions, and they have

interesting consequences when applied to Stieltjes integrals and numerical series.

In particular, we shall provide various Tauberian theorems where the conclusion is

Cesàro (or Riesz) summability rather than convergence.

We state a sample of our results. The ensuing theorem will be derived in Subsec-

tion 4.3 (cf. Corollary 4.4). In order to state it, we need to introduce some notation.

We shall write

bn = OL(1) (C, m)

if the Cesàro means of order m > 1 of a sequence {bn}
∞

n=0 (not to be confused with

the ones of a series) are bounded from below, that is, there is a constant K > 0 such

that

−K <
m!

nm

n
∑

k=0

(

k + m − 1

m − 1

)

bn−k.

Theorem 1.1. If
∞
∑

n=0
cn = a (A), then the Tauberian condition

(1.3) ncn = OL(1) (C, m)

implies the (C, m) summability of the series,
∞
∑

n=0
cn = a (C, m).

Tauberian theorems in which Cesàro summability follows from Abel summability

have a long tradition, which goes back to Hardy and Littlewood [15], [12]. Such

results have also received much attention in recent times, e.g., [1], [16]. Actually,

Pati and Çanak et al. have made extensive use of Tauberian conditions involving

the Cesàro means of ncn, such as (1.3), in the study of Tauberian theorems for the

so called (A)(C, α) summability.

We would like to point out that there is an extensive literature in Tauberian theo-

rems for Schwartz distributions, an overview can be found in [20], [28]. Extensions of
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the Wiener Tauberian theorem have been obtained in [17], [18], [19] (cf. [20]). Recent

applications to the theory of Fourier and conjugate series are considered in [7]. We

also mention that the results of this article are closely related to those from [8], [25],

though with a different approach.

For future purposes, it is convenient to restate Hardy-Littlewood theorem in a form

which is invariant under addition of terms of the form n−1M . Set b0 = c0, write

bn = cn + C/n, for n > 0, and r = e−y. Then (1.1) transforms into

∞
∑

n=0

bne−ny = −C log(1 − e−y) +

∞
∑

n=0

cne−ny = a + C log
(1

y

)

+ o(1),

while the convergence conclusion translates into
N
∑

n=0
bn = a + Cγ + C log N + o(1),

N → ∞, where γ is the Euler gamma constant. Therefore, Hardy-Littlewood theo-

rem might be formulated as follows.

Theorem 1.2. Let
∞
∑

n=0
cne−ny be convergent for y > 0. Suppose that

(1.4) lim
y→0+

∞
∑

n=0

cne−ny − b log
(1

y

)

= a.

Then the Tauberian hypothesis ncn = OL(1) implies that

(1.5)

N
∑

n=0

cn = a + bγ + b log N + o(1), N → ∞.

Theorem 1.2 is precisely the form of Littlewood’s theorem which we will generalize

to distributions. The plan of this article is as follows. In Section 2 we explain the

notions from distribution theory to be used in this paper. Section 3 provides a two-

sided distributional version of Littlewood’s theorem. We shall use such a version

to produce a simple proof of the classical Littlewood one-sided theorem. We give

a one-sided Tauberian theorem for Laplace transforms of distributions in Section 4

and then discuss some applications to Stieltjes integrals and numerical series; as an

example we extend a classical theorem of Szász [22].
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2. Preliminaries and notation

2.1. Distributions. The spaces of test functions and distributions D(R), S (R),

D ′(R), and S ′(R) are well known for most analysts, we refer to [21], [27] for their

properties. We denote by S [0,∞) the space of restrictions of test functions from

S (R) to the interval [0,∞); its dual space S ′[0,∞) is canonically isomorphic [27]

to the subspace of distributions from S ′(R) having supports in [0,∞).

We shall employ several special distributions, we follow the notation exactly as

in [6]. For instance, δ is as usual the Dirac delta, H is the Heaviside function,

i.e., the characteristic function of [0,∞), the distributions xβ−1
+ are simply given by

xβ−1H(x) whenever Re β > 0, and Pf(H(x)/x) is defined via Hadamard finite part

regularization, i.e.,

〈

Pf
(H(x)

x

)

, ϕ(x)
〉

= F.p.

∫

∞

0

ϕ(x)

x
dx =

∫ 1

0

ϕ(x) − ϕ(0)

x
dx +

∫

∞

1

ϕ(x)

x
dx.

2.2. Cesàro limits. We refer to [4], [6] for the Cesàro behavior of distributions.

We will only consider Cesàro limits. Given f ∈ D ′(R) with support bounded at the

left, we write

(2.1) lim
x→∞

f(x) = l (C, m)

if f (−m), the m-primitive of f with support bounded at the left, is an ordinary

function for large arguments and

f (−m)(x) ∼
lxm

m!
, x → ∞.

Observe that f (−m) is given by the convolution [27]

f (−m) = f ∗
xm−1

+

(m − 1)!
.

If we do not want to make any reference to m in (2.1), we simply write (C). In the

special case when f = s is a function of local bounded variation with s(x) = 0 for

x < 0, then (2.1) reads as

lim
x→∞

∫ x

0

(

1 −
t

x

)m

ds(t) = s(0) + l.

Thus, if s is given by the partial sums of a series
∞
∑

n=0

cn, this notion amounts to the

same as
∞
∑

n=0
cn = l (C, m), as shown by the equivalence between Cesàro and Riesz

summability [9], [13].
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2.3. Laplace transforms. Let f ∈ D ′(R) be supported in [0,∞), it is said to be

Laplace transformable [21] on Re z > 0 if e−yxf ∈ S ′(R) is a tempered distribution

for all y > 0. In such a case its Laplace transform is well defined on the half-plane

Re z > 0 and it is given by the evaluation

L {f ; z} = 〈f(x), e−zx〉.

If f = s is a function of local bounded variation, then one readily verifies that it is

Laplace transformable on Re z > 0 in the distributional sense if and only if

(2.2) L {ds; y} :=

∫

∞

0

e−yx ds(x) (C) exists for each y > 0.

Thus, Laplace transformability in this context is much more general than the mere

existence of Laplace-Stieltjes improper integrals. Observe also that the order of (C)

summability might quickly change in (2.2) with each y.

2.4. Distributional asymptotics. We shall make use of the theory of asymp-

totic expansions of distributions, explained for example in [6], [20], [24], [26], [28].

For instance, let f, g1, g2 ∈ S ′(R) and let c1 and c2 be two positive functions such

that c2(λ) = o(c1(λ)), λ → ∞. The asymptotic formula

(2.3) f(λx) = c1(λ)g1(x) + c2(λ)g2(x) + o(c2(λ)) as λ → ∞ in S
′(R),

is interpreted in the distributional sense, namely, it means that for all test functions

ϕ ∈ S (R)

〈f(λx), ϕ(x)〉 = c1(λ)〈g1(x), ϕ(x)〉 + c2(λ)〈g2(x), ϕ(x)〉 + o(c2(λ)).

Observe that if (2.3) holds, then we have

(2.4) f(λx) ∼ c1(λ)g1(x) as λ → ∞ in S
′(R).

The asymptotic relation (2.4) is known as the quasiasymptotic behavior of distribu-

tions and it has been extensively studied in connection with Tauberian theorems for

generalized functions [3], [20], [28]. If g1 6= 0, one can show [28] that the compari-

son function c1 must be regularly varying in the sense of Karamata and g1 must be

a homogeneous distribution.
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3. Distributional Littlewood two-sided Tauberian theorem

We want to find a distributional analog to (1.5). Set s(x) =
∑

n<x
cn, then (1.5)

gives s(x) = a + bγ + b log x + o(1). It is now easy to prove [6, Lemma 3.9.2] that

the previous ordinary expansion implies the distributional expansion

s(λx) = (a + bγ)H(x) + bH(x) log(λx) + o(1) as λ → ∞ in S
′(R);

differentiating [6], we obtain

s′(λx) = (a + bγ + b logλ)
δ(x)

λ
+

b

λ
Pf

(H(x)

x

)

+ o
( 1

λ

)

as λ → ∞ in S
′(R).

The above distributional asymptotic relation is the one which we will mostly study

in this article. In Subsection 3.1 we give an Abelian theorem related to it. We give

a two-sided Tauberian converse in Subsection 3.3 that will be used to produce a new

proof of Hardy-Littlewood theorem in the form of Theorem 1.2. The study of more

general one-sided Tauberian conditions will be postponed to Section 4.

3.1. The Abelian theorem. We begin with the following Abelian theorem for

Laplace transforms of distributions.

Theorem 3.1. Let g ∈ S ′(R) be supported in [0,∞) and have the distributional

asymptotic behavior

(3.1) g(λx) = a
δ(x)

λ
+ b

log λ

λ
δ(x) +

b

λ
Pf

(H(x)

x

)

+ o
( 1

λ

)

as λ → ∞ in S
′(R).

Then,

(3.2) L {g; y} = a − bγ + b log
(1

y

)

+ o(1), y → 0+.

P r o o f. Writing λ = y−1, we have, as λ → ∞,

L {g; λ−1} = λ〈g(λx), e−x〉

= (a + b logλ)〈δ(x), e−x〉 + b
〈

Pf
(H(x)

x

)

, e−x
〉

+ o(1)

= a + b log λ + b F.p.

∫

∞

0

e−x

x
dx + o(1) = a + b logλ − bγ + o(1).

�
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Corollary 3.1. Let s be a function of local bonded variation such that s(x) = 0

for x 6 0. If

(3.3) lim
x→∞

(s(x) − b logx) = a (C),

then L {ds; y} :=
∫

∞

0 e−yx ds(x) is (C) summable for each y > 0, and

(3.4) L {ds; y} = a − bγ + b log
(1

y

)

+ o(1), y → 0+.

P r o o f. Set g = s′. The Cesàro limit (3.3) implies [6] that s(λx) = aH(x) +

bH(x) log(λx)+o(1) as λ → ∞ inS ′(R). Differentiating, we conclude that g satisfies

(3.1), and so, by Theorem 3.1, we deduce (3.4). �

In particular if we consider s(x) =
∑

n<x
cn, we obtain that (1.5) implies (1.4), the

Abelian counterpart of Theorem 1.2.

We end this subsection by pointing out that (3.1) is the most general asymptotic

separation of variables we could have in the situation that we are studying. The

proof of the following proposition follows from the general results from [5].

Proposition 3.1. Let g ∈ S ′(R) be supported in [0,∞). If there are g1, g2 ∈

S ′(R) such that

g(λx) =
log λ

λ
g1(x) +

1

λ
g2(x) + o

( 1

λ

)

as λ → ∞ in S
′(R),

then g1(x) = bδ(x) and g2(x) = aδ(x) + b Pf(H(x)/x), for some constants a and b.

Consequently, g has the distributional asymptotic behavior (3.1).

3.2. Functions and the distributional asymptotics (3.1). We shall prove

that if s is non-decreasing and s′ has the distributional asymptotic behavior (3.1),

then one recovers the asymptotic behavior (3.3) in the ordinary sense.

Proposition 3.2. Let s ∈ L1
loc(R) be supported in [0,∞). If there exist A, B > 0

such that s(x) + A log x is non-decreasing on the interval [B,∞) and

(3.5) s′(λx) = a
δ(x)

λ
+ b

log λ

λ
δ(x) +

b

λ
Pf

(H(x)

x

)

+ o
( 1

λ

)

,

as λ → ∞ in S ′(R), then

(3.6) lim
x→∞

(s(x) − b log x) = a.
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P r o o f. We may assume that s(0) = 0 and that s is non-decreasing on the whole

R. Let ε be an arbitrarily small number. Pick ϕ1, ϕ2 ∈ D(R) such that 0 6 ϕj 6 1,

suppϕ2 ⊆ [−1, 1 + ε], ϕ2(x) = 1 for x ∈ [0, 1], suppϕ1 ⊆ [−1, 1] and ϕ1(x) = 1 for

x ∈ [−1, 1 − ε]. Evaluating (3.5) at ϕ2 we have

lim sup
λ→∞

(s(λ) − b log λ) 6 lim
λ→∞

(
∫

∞

0

ϕ2

(x

λ

)

ds(x) − b log λ

)

= a + b F.p.

∫ ε+1

0

ϕ2(x)
dx

x
= a + b

∫ ε+1

1

ϕ2(x)
dx

x

6 a + bε.

Likewise, evaluation at ϕ1 yields

lim inf
λ→∞

(s(λ) − b log λ) > a + b F.p.

∫

∞

0

ϕ1(x)
dx

x
= a + b

∫ 1

1−ε

ϕ1(x) − 1

x
dx

> a + b log(1 − ε).

Since ε was arbitrary, we conclude (3.6). �

3.3. Distributional two-sided Tauberian theorem. We now show our first

distributional version of Littlewood Tauberian theorem. It is the Tauberian converse

of Theorem 3.1. Since we use the big O symbol in the Tauberian hypothesis, we

denominate it a two-sided Tauberian theorem.

Theorem 3.2. Let g ∈ S ′(R) be supported on [0,∞). Suppose that, as y → 0+,

(3.7) L {g; y} = a + b log
(1

y

)

+ o(1).

Then the Tauberian hypothesis

(3.8) g(λx) − b log λ
δ(x)

λ
= O

( 1

λ

)

,

implies the distributional asymptotic behavior

(3.9) g(λx) = (a + bγ)
δ(x)

λ
+ b

log λ

λ
δ(x) +

b

λ
Pf

(H(x)

x

)

+ o
( 1

λ

)

.

P r o o f. Let gλ(x) = λg(λx) − b log λδ(x). Let B be the linear span of

{e−τx}τ∈R+
. Observe that B is dense in S [0,∞), due to the Hahn-Banach the-

orem and the fact that the Laplace transform is injective. Next, we verify that

lim
λ→∞

〈gλ(x), ϕ(x)〉 =
〈

(a + bγ)δ(x) + b Pf
(H(x)

x

)

, ϕ(x)
〉

, ϕ ∈ B.
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Indeed, it is enough for ϕ(x) = e−τx; by (3.7), as λ → ∞,

〈gλ(x), e−τx〉 = L

{

g,
τ

λ

}

− b log λ = a + b log
(λ

τ

)

− b logλ + o(1)

=
〈

(a + bγ)δ(x) + b Pf
(H(x)

x

)

, e−τx
〉

+ o(1).

Now, the Tauberian hypothesis (3.8) implies that {gλ}λ∈[1,∞) is weakly bounded in

S ′[0,∞), and so, by the Banach-Steinhaus theorem, it is equicontinuous. Since an

equicontinuous family of linear functionals converging over a dense subset must be

convergent, we obtain that

lim
λ→∞

gλ(x) = (a + bγ)δ(x) + b Pf(H(x)/x) in S
′(R),

which is precisely (3.9). �

3.4. Classical Littlewood’s one-sided theorem. Let us show how our two-

sided Tauberian theorem can be used to give a simple proof of Hardy-Littlewood

theorem in the form of Theorem 1.2. We actually give a more general version for

Stieltjes integrals.

Remark 3.1. In many proofs of Littlewood’s one-sided theorem, such as the one

based in Wiener’s method, one needs to establish first the boundedness of s(x) =
∑

n<x
cn, which is not an easy task [9], [14], [29]. The method that we develop in the

proof of Theorem 3.3 rather estimates the second order Riesz means, which turns

out to be much simpler.

Theorem 3.3. Let s be of local bounded variation and supported in [0,∞).

Suppose that (2.2) holds. Furthermore, assume that there exist A, B > 0 such that

s(x) + A log x is non-decreasing on [B,∞). Then

(3.10) L {ds; y} = a + b log
(1

y

)

+ o(1), y → 0+,

if and only if

(3.11) s(x) = s(0) + a + bγ + b logx + o(1), x → ∞.

P r o o f. One direction is implied by Corollary 3.1. For the other part, we may

assume that s(0) = 0 and that s is non-decreasing over the whole real line. Consider

the second order primitive s(−2)(x) =
∫ x

0 (x− t)s(t) dt. Our strategy will be to show

(3.12) s(−2)(x) = b
x2

2
log x + O(x2).
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Suppose for the moment that we were able to show this claim. Let us deduce (3.11)

from (3.12). By (3.12), we obtain the distributional relation

s(−2)(λx) = b
(λx)2

2
H(x) log λ + O(λ2),

in S ′(R). Differentiating three times, s′(λx) − bλ−1 log λδ(x) = O(1/λ) in S ′(R).

Applying Theorem 3.2 to g = s′, we obtain that s′ has the asymptotic behavior (3.9).

Thus, Proposition 3.2 yields (3.11).

It then remains to show (3.12). We start by looking at s−1(x) =
∫ x

0
s(t) dt. Since

1 − t 6 e−t, we have the easy upper estimate

(3.13)
s(−1)(x)

x
=

∫ x

0

(

1 −
t

x

)

ds(t) 6

∫

∞

0

e−t/x ds(t) = b logx + OR(1).

Notice that (3.13) yields the upper estimate in (3.12). Next, define S(x) = bx log x−

s(−1)(x) + Cx, where the constant C > 0 is chosen so large that S(x) > 0 for all

x > 0. Observe now that the lower estimate in (3.12) will immediately follow if we

show that
∫ x

0

S(t) dt = O(x2).

Finally, because of (3.10), we have

lim
y→0+

y2

∫

∞

0

S(t)e−yt dt = b − γb − a + C,

and hence

0 6

∫ x

0

S(t) dt 6 e

∫ x

0

S(t)e−t/x dt = O(x2).

The claim has been established and this completes the proof. �

4. Littlewood one-sided Tauberian theorems

We want one-sided generalizations of Theorem 3.3 in which the conclusion is

Cesàro limits. The generalization is in terms of Cesàro one-sided boundedness as

explained in the next subsection. We shall show below first a Tauberian theorem for

Laplace transforms of distributions. In Subsection 4.2 we study Stieltjes integrals

and generalize a result of Szász [22]. Finally, we give applications to numerical series

in Subsection 4.3; in particular, we prove Theorem 1.1.

4.1. Distributional Littlewood one-sided Tauberian theorem. For the dis-

tributional generalization, let us rewrite the Tauberian hypothesis of Theorem 3.3
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is a more suitable way for our purposes. Recall a distribution g is said to be non-

negative on an interval (B1, B2) if it coincides with a non-negative measure on that

interval. In such case we may write g(x) > 0 on (B1, B2). With this notation the

Tauberian hypothesis of Theorem 3.3 becomes s′(x) + A/x > 0 on (B,∞), for some

A, B > 0 or, multiplying by x, xs′(x) = OL(1) on (B,∞). We can also generalize

these ideas by using the symbol OL(1) in the Cesàro sense.

Definition 4.1. Let g ∈ D ′(R). Given m ∈ N, we say that

g(x) = OL(1) (C, m), x → ∞,

if there exist A, B > 0 and a non-negative measure µ such that g(x) + A = µ(m) on

(B,∞).

Definition 4.1 makes it possible to give sense to the relation xf ′(x) = OL(1) in the

Cesàro sense.

We need also to introduce some notation in order to move further. For eachm ∈ N,

let lm be the m-primitive of H(x) log x with support in [0,∞). It can be verified by

induction that for m > 1

(4.1) lm(x) =
1

(m − 1)!

∫ x

0

(x − t)m−1 log t dt =
xm

+

m!
log x −

xm
+

m!

m
∑

k=1

1

k
.

Let f be supported on [0,∞). We now study the asymptotic behavior f(x) =

a + b log x + o(1) (C, m), which in view of (4.1) means that

(4.2) f (−m)(x) = b
xm

+

m!
log x +

xm
+

m!

(

a − b

m
∑

k=1

1

k

)

+ o(xm),

x → ∞, in the ordinary sense. The ensuing Tauberian theorem is a natural distri-

butional version of Littlewood’s Tauberian theorem, in the context of Cesàro limits.

Theorem 4.1. Let f ∈ D ′(R) be such that supp f ⊆ [0,∞) and let m ∈ N.

Assume that

(4.3) xf ′(x) = OL(1) (C, m), x → ∞.

Suppose that f is Laplace transformable on Re z = y > 0. Then,

(4.4) L {f ′, y} = a + b log
(1

y

)

+ o(1), y → 0+
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if and only if

(4.5) lim
x→∞

f(x) − b logx = a + bγ (C, m), x → ∞.

P r o o f. We shall show that f (−m) is locally integrable for large arguments and

f (−m)(x) = (a + bγ)
xm

m!
+ lm(x) + o(xm), x → ∞.

Setting τ(x) = x−mf (−m), the above asymptotic formula is the same as

(4.6) τ(x) =
a

m!
+

bγ

m!
−

b

m!

m
∑

k=1

1

k
+

b

m!
log x + o(1), x → ∞.

By adding a term of the form AH(x) log x to f and removing a compactly supported

distribution, we may assume that (xf ′)(−m) is a non-negative measure. It is clear

that we can also assume that f , and hence f (−m), is zero in a neighborhood of the

origin. Next, it is easy to verify that (xf ′)(−m) = xf (−m+1) − mf (−m); multiplying

by x−m−1, we obtain that τ ′ = x−mf (−m+1) − mx−m−1f (−m) is a non-negative

measure. We now look at the Laplace transform of τ ′. Set

F (y) = L {f ′; y} and T (y) = L {τ ′; y}.

We then have,

(T (y)

y

)(m)

=
dm

dym

(
∫

∞

0

f (−m)(x)

xm
e−yx dx

)

= (−1)m

∫

∞

0

f (−m)(x)e−yx dx

= (−1)m F (y)

ym+1
= (−1)m a

ym+1
+ (−1)m b log

(

1/y
)

ym+1
+ o

( 1

ym+1

)

,

as y → 0+. Integrating m-times the above asymptotic formula and multiplying by y

we get

T (y) =
a

m!
−

b

m!

m
∑

k=1

1

k
+

b

m!
log

(1

y

)

+ o(1), y → 0+.

Thus, τ satisfies the hypothesis of Theorem 3.3, and (4.6) follows at once. �

We also have,
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Corollary 4.1. Let f ∈ D ′(R) be supported in [0,∞). Suppose that f ′ has the

distributional asymptotic behavior

f ′(λx) = a
δ(x)

λ
+ b

logλ

λ
δ(x) +

b

λ
Pf

(H(x)

x

)

+ o
( 1

λ

)

.

If (4.3) holds, then f(x) = a + b log x + o(1) (C, m), x → ∞.

P r o o f. This follows immediately from Theorem 3.1 and Theorem 4.1. �

4.2. Stieltjes integrals. When the distribution s = f is a function of local

bounded variation, then (4.3) can be written as

(4.7)

∫ x

0

t

x

(

1 −
t

x

)m−1

ds(t) = OL(1),

for m > 1. So we obtain at once the ensuing corollary of Theorem 4.1, it generalizes

a classical result of Szász [22, Theorem 1].

Corollary 4.2. Let s be a function of bounded variation on each finite interval

such that s(x) = 0 for x < 0. Furthermore, assume that

(4.8) L {ds; y} =

∫

∞

0

e−yx ds(x) (C)

is summable for each y > 0. If

(4.9) L {ds; y} = a + b log
(1

y

)

+ o(1), y → 0+,

then the Tauberian condition (4.7), with m > 1, implies that

(4.10) lim
x→∞

s(x) − b log x = s(0) + a + bγ (C, m),

i.e.,

(4.11) lim
x→∞

∫ x

0

(

1 −
t

x

)m

ds(t) − b log x = s(0) + a + b

(

γ −

m
∑

k=1

1

k

)

.

Remark 4.1. Observe that (4.8) has a general character. We emphasize that it

means that for each y there exists ky ∈ N such that

L {ds; y} =

∫

∞

0

e−yx ds(x) (C, ky),

and the ky is allowed to become arbitrarily large as y decreases to 0.
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Remark 4.2. Integration by parts in (4.7) shows that it is equivalent to

∫ x

0

(

1 −
t

x

)m−1

ds(t) =

∫ x

0

(

1 −
t

x

)m

ds(t) + OL(1).

We can specialize Corollary 4.2 to numerical series and obtain the following result

about the Riesz means [2] of the series. The meaning of (R, {λn}) in the following

theorem is (R, {λn}, k) for some k. In particular, k may depend on y in the relation

(4.12) below.

Corollary 4.3. Let {λn}
∞

n=0 be a non-decreasing sequence of non-negative num-

bers tending to infinity. Assume that

(4.12) F (y) =
∞
∑

n=0

cne−yλn (R, {λn})

is summable for each y > 0. If

(4.13) F (y) = a + b log
(1

y

)

+ o(1), y → 0+,

then the Tauberian condition

(4.14)
∑

λn6x

cnλn

(

1 −
λn

x

)m−1

= OL(x),

implies that

(4.15) lim
x→∞

∑

λn6x

cn

(

1 −
λn

x

)m

− b logx = a + b

(

γ −

m
∑

k=1

1

k

)

.

4.3. Applications to Cesàro summability of numerical series. We end this

article by showing that when λn = n in Corollary 4.3, the Riesz means may be

replaced everywhere by Cesàro means. We begin by observing that (4.12) gives

nothing new for λn = n, that is, it simply reduces to convergence of the power series
∞
∑

n=0
cnrn for |r| < 1.

The Cesàro means of order m > 1 of a sequence {bn}
∞

n=0 are given by

(4.16) Cm{bk; n} :=
m!

nm

n
∑

k=0

(

k + m − 1

m − 1

)

bn−k.
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So, if λn = n, then (4.15) is equivalent to

lim
n→∞

Cm{sk − b log k; n} = a + bγ,

with sk =
k
∑

j=0

cj , as shown by the equivalence theorem for Riesz and Cesàro summa-

bility [9], [13].

Thus, we only need to show that (4.14) is implied by Cesàro one-sided boundedness

in the sense already defined in the Introduction. Recall we write

(4.17) bn = OL(1) (C, m)

if Cm{bk; n} = OL(1). So, we have the following lemma.

Lemma 4.1. Let m ∈ N. If (4.17) is satisfied, then

∑

n6x

bn

(

1 −
n

x

)m−1

= OL(x).

P r o o f. We closely follow the proof of [9, Thm. 58, p. 113] and add new

information. Set Bm(n) = nmCm{bk; n}. Write x = n + ϑ with 0 6 ϑ < 1 and

Tm−1(x) =
∑

06n6x

(n − k + ϑ)m−1bk. We have to show that

(4.18) Tm−1(x) = OL(xm).

As in [9, p. 113], one shows that

Tm−1(x) =

m−1
∑

k=0

pm−1
k (ϑ)Bm(n − k),

where each pm−1
k is a polynomial, and they are determined by

Pm−1(z, ϑ) = (1 − z)mz−ϑ
(

z
d

dz

)m−1( zϑ

1 − z

)

=

m−1
∑

k=0

pm−1
k (ϑ)zk.

Observe that if we show that pm−1
k (ϑ) > 0 for all ϑ ∈ [0, 1] and 0 6 k 6 m − 1,

then (4.18) will follow immediately. Let us show the latter. We proceed by induction
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over m. The statement is clear for m = 1 since p0
0(ϑ) = 1. Assume it for m− 1. We

then have

Pm(z, ϑ) = (1 − z)m+1z−ϑ
(

z
d

dz

)m( zϑ

1 − z

)

= (1 − z)m+1z1−ϑ
( zϑ

(1 − z)m
Pm−1(z, ϑ)

)′

= (1 − z)zP ′

m−1(z, ϑ) + (ϑ + (m − ϑ)z)Pm−1(z, ϑ)

= ϑpm−1
0 (ϑ) + (1 − ϑ)pm−1

m−1(ϑ)zm

+

m−1
∑

k=1

((k + ϑ)pm−1
k (ϑ) + (m − k + 1 − ϑ)pm−1

k−1 (ϑ))zk,

thus,

pm
0 (ϑ) = ϑpm−1

0 (ϑ), pm
m(ϑ) = (1 − ϑ)pm−1

m−1(ϑ)

and

pm
k (ϑ) = (k + ϑ)pm−1

k (ϑ) + (m − k + 1 − ϑ)pm−1
k−1 (ϑ), for 1 6 k 6 m − 1.

Therefore, we clearly have pm
k (ϑ) > 0 for all ϑ ∈ [0, 1] and 0 6 k 6 m. �

On combining Corollary 4.3 and Lemma 4.1, we obtain the ensuing result. It

includes both Theorem 1.1 and Theorem 1.2.

Corollary 4.4. Suppose that

(4.19) ncn = OL(1) (C, m).

Then

(4.20) F (r) = a + b log
( 1

1 − r

)

+ o(1), r → 1−,

if and only if

(4.21) lim
N→∞

( N
∑

n=0

cn − b log N

)

= a + bγ (C, m).
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