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Abstract. The reflexivity and transitivity of subspaces of Toeplitz operators on the Hardy
space on the upper half-plane are investigated. The dichotomic behavior (transitive or
reflexive) of these subspaces is shown. It refers to the similar dichotomic behavior for
subspaces of Toeplitz operators on the Hardy space on the unit disc. The isomorphism
between the Hardy spaces on the unit disc and the upper half-plane is used. To keep weak*
homeomorphism between L

∞ spaces on the unit circle and the real line we redefine the
classical isomorphism between L

1 spaces.
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1. Introduction

IfH is a Hilbert space, then B(H ) stands for the Banach algebra of all bounded

linear operators on H . The reflexive closure of a subspace S ⊂ B(H ) is given by

ref S = {B ∈ B(H ) : Bh ∈ S h for all h ∈ H }.

The subspace S is said to be reflexive, if refS = S and transitive, if ref S =

B(H ). The theory of Toeplitz operators on the Hardy space on the unit disc

gave exact examples of natural spaces having reflexivity or transitivity property. In

[11] the reflexivity of the algebra of all analytic Toeplitz operators on this space was

proved. Transitivity of the whole space of Toeplitz operators was shown in [1]. In fact,

in [1] there was proved the dichotomic behavior (transitive or reflexive) of subspaces

of Toeplitz operators on the Hardy space on the unit disc. The precise condition
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verifying dichotomy between transitivity and reflexivity was given. It completely

characterized subspaces of Toeplitz operators from the reflexive-transitive point of

view. It is also natural to consider Toeplitz operators on the Hardy space on the

upper half-plane.

The aim of the paper is to investigate reflexivity and transitivity of subspaces of

Toeplitz operators on the upper half-plane. There is an isomorphism between Lp

spaces and the Hardy spaces on the unit disc and Lp spaces and the Hardy spaces

on the upper half-plane (see (3.2), [10, p. 143]). Investigating reflexivity-transitivity

it is convenient to assume weak∗ closedness of subspaces. Thus it is necessary to

redefine (see (3.4)) the classical isomorphism between L1 spaces to obtain a weak∗

homeomorphism between L∞ spaces. Theorem 3.4 shows weak∗ properties of this

isomorphism. Section 4 gives a relation between Toeplitz operators on the Hardy

spaces on the unit disc and the upper half-plane.

Theorem 5.4, which can be regarded as the main result of the paper, shows the

dichotomic behavior (transitive or reflexive) of subspaces of Toeplitz operators on

the Hardy space on the upper half-plane. In Section 6 several examples are given.

2. Preliminaries

2.1. Duality. If X∗ is a Banach space, by X we denote the dual of X∗ and the

dual action is given by 〈·, ·〉. Similarly we have a Banach space Y∗ and its dual Y .

Recall the relation between an operator on spaces X and Y and on the preduals Y∗

and X∗. If T : X → Y is a weak∗ continuous, bounded linear transformation, then

there exists a bounded linear transformation T∗ : Y∗ → X∗ satisfying the following

formula

(2.1) 〈x, T∗y∗〉 = 〈Tx, y∗〉, for all x ∈ X, y∗ ∈ Y∗.

If S ⊂ X then by S⊥ we denote the preannihilator of S .

The dual pair considered in the paper will be the algebra B(H ) and the space of

trace class operators B1(H ). Recall also that the bilinear functional given by

〈A, t〉 := tr(At), A ∈ B(H ), t ∈ B1(H ),

allows us to identify B1(H )∗ with B(H ) i.e. B(H )∗ = B1(H ).

2.2. Reflexivity. For the sake of completeness we establish the following technical

lemma. It will be useful in Section 5.
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Lemma 2.1. Let H , K Hilbert spaces, U : H → K be a unitary operator. If

the operator Ũ : B(H ) → B(K ) is given by Ũ(A) = UAU−1, then

(a) Ũ is an isometric isomorphism,

(b) ref (Ũ(S )) = Ũ(ref S ) for S ⊂ B(H ),

(c) S ⊂ B(H ) is reflexive (respectively transitive) if and only if Ũ(S ) is reflexive

(respectively transitive).

For the proof of (a) see [4, Exercise 2, p. 61], and (c) is a consequence of (b), which

can be proved similarly to [1, Lemma 4.5].

2.3. Hardy spaces. Let D = {w ∈ C : |w| < 1} denote the open unit disc,
T = {ω ∈ C : |ω| = 1} the unit circle and C+ = {z ∈ C : Im z > 0} the upper half-
plane. The Hardy space Hp(D) (1 6 p 6 ∞) is the space of all analytic functions
f : D → C such that ‖f‖p

Hp(D) := sup
06r<1

1
2π

∫ 2π

0
|f(reiθ)|p dθ < ∞ for 1 6 p < ∞ and

‖f‖H∞(D) := sup
z∈D

|f(z)| < ∞ for p = ∞. By [10, Theorem 3.4.1], each function from
Hp(D) has radial and also non-tangential limits on the unit circle T and moreover

the space Hp(D) can be identified with a corresponding subspace of Lp(T).

Definition 2.2. The Hardy space Hp(C+) (1 6 p < ∞) on C+ is the space of

all analytic functions F : C+ → C such that

‖F‖Hp(C+) := sup
y>0

( ∫

R

|F (x + iy)|p dx

)1/p

< ∞.

For p = ∞, by H∞(C+) we denote the space of all bounded analytic functions on

C+ with ‖F‖H∞(C+) := sup
y>0

|F (x + iy)|.

The spaces Hp(C+) (1 6 p 6 ∞) are Banach spaces and H2(C+) is a Hilbert

space. By [9, Theorem p. 153], each function from Hp(C+) has non-tangential limits

on the real line {z ∈ C : z = 0} and moreover the space Hp(C+) can be identified

with a corresponding subspace of Lp(R). For more information about the Hardy

spaces Hp(C+) see [7], [8], [9], [10].

Let γ : C+ → D, γ(z) = (z−i)/(z+i), be the usual conformal mapping of the upper

half-plane onto the unit disc. The function γ(t) = (t − i)/(t + i), then considered as

γ : R → T, gives a one-to-one correspondence between R and T \ {1}. The function
γ will be often used in the whole paper in both contexts.
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3. Isomorphisms between spaces on the unit disc and

the upper half-plane

For 1 6 p 6 ∞, let Lp(T) and Lp(R) denote Lp spaces of complex functions with

the normalized Lebesgue measure m on T and the usual Lebesgue measure on R,

respectively. Firstly let us recall the well-known isomorphism between the spaces

L2(T) and L2(R).

Lemma 3.1. The operator U2 : L2(T) → L2(R) defined by

(3.1) (U2f)(t) =
1√
π

1

t + i
f(γ(t))

is unitary.

Remark. Note that the result above can be extended to Lp spaces. The mapping

(3.2) (Upf)(t) =
( 1

π(t + i)2

)1/p

f(γ(t)), t ∈ R

is an isometric isomorphism of the space Lp(T) onto Lp(R), for 1 6 p < ∞ (see [10,
p. 143]).

The following is well known and easy to prove.

Lemma 3.2. The operator U∞ : L∞(T) → L∞(R) defined by

(3.3) U∞ϕ = ϕ ◦ γ

is an isometric isomorphism.

Let (X, B, µ) be a (positive) measure space. Recall that L∞(X, µ) is the dual space

to L1(X, µ) and this duality is given by 〈ϕ, f〉 =
∫

X ϕf dµ, where ϕ ∈ L∞(X, µ), f ∈
L1(X, µ). We will especially use the duality between L1(T) and L∞(T) and also

between L1(R) and L∞(R). Hence we have to define an isomorphism between L1(T)

and L1(R) differently than (3.2).
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Lemma 3.3. The operator U1 : L1(T) → L1(R) defined by

(3.4) (U1f)(t) =
1

π

1

1 + t2
f(γ(t))

is an isometric isomorphism.

P r o o f. Let f ∈ L1(T). To see that U1 is well defined and that it is, in fact an

isometry, note that

‖U1f‖L1(R) =

∫

R

|(U1f)(t)| dt =
1

π

∫

R

1

1 + t2
|f(γ(t))| dt

=
1

2π

∫ 2π

0

|f(eiτ )| dτ = ‖f‖L1(T),

where (t − i)/(t + i) = eiτ . For the surjectivity of U1 let us take F ∈ L1(R). Now

put f(eiτ ) := π(1 + t2)F (t), where t = γ−1(eiτ ). Then (U1f)(t) = F (t) and

1

2π

∫ 2π

0

|f(eiτ )| dτ =

∫

R

|F (t)| dt < ∞.

Thus f ∈ L1(T). Therefore U1 is surjective and isometric. �

The definition (3.4) of U1 enables to see U∞ given by (3.3) as a dual action to

(U1)
−1 : L1(R) → L1(T). Namely

Theorem 3.4. Let U∞ : L∞(T) → L∞(R) be given by U∞ϕ = ϕ ◦ γ, where

γ : C+ → D with γ(z) = (z − i)/(z + i), and let U1 : L1(T) → L1(R) be given by

(U1f)(t) = (π−1/(1 + t2))f(γ(t)), then

(a) 〈ϕ, f〉 = 〈U∞ϕ, U1f〉, for all ϕ ∈ L∞(T), f ∈ L1(T),

(b) U∞(H∞(D)) = H∞(C+),

(c) U1(H
∞(D)⊥) = H∞(C+)⊥,

(d) U∞ = (U−1
1 )∗,

(e) U∞ is a weak
∗ homeomorphism.

P r o o f. To see (a) we make the direct computation

〈U∞ϕ, U1f〉 =

∫

R

(U∞ϕ)(t)(U1f)(t) dt =
1

π

∫

R

ϕ(γ(t))f(γ(t))
dt

1 + t2

=
1

2π

∫ 2π

0

ϕ(eiτ )f(eiτ ) dτ =

∫

T

ϕf dm = 〈ϕ, f〉.

(b) is an easy consequence of Lemma 3.2 and the definition of γ. Combining (a) with

(b) we get (c). Condition (d) follows from (a) by [3, Proposition 2.5]. It also gives

weak∗ continuity of U∞. Finally, by [3, Theorem 2.7] we get that U∞ is a weak
∗

homeomorphism. �
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By [10, Theorem 6.3.4] we have U2(H
2(D)) = H2(C+) and

‖f‖H2(D) = ‖f‖L2(T) = ‖U2f‖L2(R) = ‖U2f‖H2(C+).

Thus by Lemma 3.1 we have the following.

Lemma 3.5. If f ∈ H2(D), z ∈ C+ and

(3.5) (U2f)(z) :=
1√
π

1

z + i
f(γ(z)),

then U2 : H2(D) → H2(C+) is a unitary operator.

It is known (see [10, Theorem 3.4.1]) that the spaces H∞(D) and L∞(T)∩H2(D)

are isomorphic. By Theorem 3.4 and Lemma 3.5 we obtain the isomorphism between

H∞(C+) and L∞(R) ∩ H2(C+).

4. Toeplitz operators

The following lemma gives relation between multiplication operators on L2(T) and

on L2(R).

Lemma 4.1. If ϕ ∈ L∞(T) and Mϕ is the multiplication operator by ϕ on the

space L2(T) then U2MϕU−1
2 = Mϕ◦γ is the multiplication operator by ϕ ◦ γ on the

space L2(R).

P r o o f. Let f ∈ L2(T). Then for t ∈ R we have

((Mϕ◦γU2)(f))(t) = (Mϕ◦γU2f)(t) = (ϕ ◦ γ)(t)(U2f)(t)

= ϕ(γ(t))
1√
π

1

t + i
f(γ(t)) =

1√
π

1

t + i
(ϕf)(γ(t))

= (U2ϕf)(t) = ((U2Mϕ)(f))(t).

�

Recall that the operator Tϕ with symbol ϕ ∈ L∞(T) given by

Tϕf = PH2(D)(ϕf), f ∈ H2(D),

where PH2(D) is the orthogonal projection of L
2(T) onto H2(D), is called the Toeplitz

operator on H2(D). If ϕ ∈ H∞(D) then Tϕ is called an analytic Toeplitz operator.

By T (D) we denote the space of all Toeplitz operators and by A (D) the algebra of all

analytic Toeplitz operators on H2(D). Let us now introduce the Toeplitz operators

on the Hardy space on the upper half-plane.
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Definition 4.2. For each Φ ∈ L∞(R), the Toeplitz operator on H2(C+) with

symbol Φ is the operator TΦ defined by

TΦF = PH2(C+)(ΦF ), F ∈ H2(C+),

where PH2(C+) is the orthogonal projection of L
2(R) onto H2(C+). If Φ ∈ H∞(C+),

then TΦ is called an analytic Toeplitz operator.

Similarly as above T (C+) denotes the space of all Toeplitz operators and A (C+)

the algebra of all analytic Toeplitz operators on H2(C+).

Definition 4.3. Symbol maps of Toeplitz operators are the functions ξ : L∞(T) →
T (D) ⊂ B(H2(D)) defined by ξ(ϕ) = Tϕ and η : L∞(R) → T (C+) ⊂ B(H2(C+))

defined by η(Φ) = TΦ.

Considering the relation between Toeplitz operators on H2(D) and Toeplitz oper-

ators on H2(C+) let us first observe that the equality PH2(C+)U2 = U2PH2(D) and

Lemma 4.1 give us the following relation for all ϕ ∈ L∞(T):

(4.1) Tϕ◦γU2 = PH2(C+)Mϕ◦γU2 = PH2(C+)U2Mϕ = U2PH2(D)Mϕ = U2Tϕ.

By the observation above the relationship between Toeplitz operators on the Hardy

space on the unit disc and Toeplitz operators on the Hardy space on the upper half-

plane can be characterized as follows.

Theorem 4.4. Let ξ : L∞(T) → T (D) ⊂ B(H2(D)), ξ(ϕ) = Tϕ and η :

L∞(R) → T (C+) ⊂ B(H2(C+)), η(Φ) = TΦ be the symbol maps of the Toeplitz

operators on H2(D) and on H2(C+). If Ũ2 : B(H2(D)) → B(H2(C+)) is given by

(4.2) Ũ2(A) = U2AU−1
2 , A ∈ B(H2(D)),

where U2 is defined by (3.5), then

(a) U2TϕU−1
2 = Tϕ◦γ , for all ϕ ∈ L∞(T),

(b) U2(T (D))U−1
2 = T (C+) and U2(A (D))U−1

2 = A (C+),

(c) Ũ2 is a weak
∗ homeomorphism,

(d) the following diagram commutes

L∞(T)

U∞

��

ξ
// T (D)

Ũ2

��

L∞(R) η
// T (C+),

(e) η is a weak∗ homeomorphism.
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P r o o f. Condition (a) is just the equality (4.1) and (b) follows directly from

this equality and Theorem 3.4. To see (c) note that by Lemma 2.1 we have that Ũ2

is an isomorphism. First observe that Ũ2(B1(H
2(D)) = B1(H

2(C+)) and this yields

(4.3) 〈A, t〉 = 〈Ũ2(A), Ũ2(t)〉, for all A ∈ B(H2(D)), t ∈ B1(H
2(D)).

Note that Ũ−1
2 (B) = U−1

2 BU2 for B ∈ H2(C+), thus by (4.3) we have

(4.4) 〈B, T 〉 = 〈Ũ−1
2 (B), Ũ−1

2 (T )〉, B ∈ B(H2(C+)), T ∈ B1(H
2(C+)).

From the equalities (4.3) and (4.4) it follows that Ũ2 and Ũ−1
2 are weak∗ continuous,

so the proof of the condition (c) is complete.

Let ϕ ∈ L∞(T). Then (d) follows from the equality

(Ũ2 ◦ ξ)(ϕ) = Ũ2(Tϕ) = Tϕ◦γ = η(ϕ ◦ γ) = (η ◦ U∞)(ϕ).

Since ξ : L∞(T) → T (D) is a weak∗ homeomorphism, see [1, Corollary 2.3 (2)], the

condition (e) follows from the conditions (c), (d) and Theorem 3.4. �

The next lemma follows immediately from the similar facts concerning Toeplitz

operators on H2(D) (see [6, Proposition 7.5]) and the condition (a) of Theorem 4.4.

Corollary 4.5. If Φ ∈ L∞(R) and G ∈ H∞(C+), then

(a) T ∗
Φ = TΦ,

(b) TΦTG = TΦG and TGTΦ = TGΦ.

Since B1(H
2(D)) = B(H2(D))∗, T (D) is a weak∗ closed subspace of B(H2(D)).

Similarly B1(H
2(C+)) = B(H2(C+))∗, so T (C+) is also a weak∗ closed subspace

of B(H2(C+)). Hence Corollary 2.2 of [3] implies that

T (D)∗ = B1(H
2(D))/T (D)⊥ and T (C+)∗ = B1(H

2(C+))/T (C+)⊥.

Moreover, since ξ : L∞(T) → T (D) and η : L∞(R) → T (C+) are weak∗ homeomor-

phisms, by [3, Proposition 2.5], there are weak homeomorphisms ξ∗ : T (D)∗ → L1(T)

and η∗ : T (C+)∗ → L1(R) such that 〈Tϕ, ξ−1
∗ (f)〉 = 〈ϕ, f〉 for ϕ ∈ L∞(T), f ∈ L1(T)

and 〈TΦ, η−1
∗ (F )〉 = 〈Φ, F 〉 for Φ ∈ L∞(R), F ∈ L1(R).

The relationship between these spaces is given by the following.
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Theorem 4.6. Let ξ : L∞(T) → T (D) ⊂ B(H2(D)), ξ(ϕ) = Tϕ and η :

L∞(R) → T (C+) ⊂ B(H2(C+)), η(Φ) = TΦ be the symbol maps of the Toeplitz

operators on H2(D) and on H2(C+). If the operator Ũ2 is given by (4.2) and the

operator U1 is given by (3.4) then

(a) 〈Tϕ, ξ−1
∗ (f)〉 = 〈TU∞ϕ, η−1

∗ (U1f)〉 for all ϕ ∈ L∞(T), f ∈ L1(T),

(b) the following diagram commutes

T (C+)∗

Ũ2∗

��

η∗

// L1(R)

U−1

1

��

T (D)∗
ξ∗

// L1(T).

P r o o f. By Theorem 3.4 we have

〈Tϕ, ξ−1
∗ (f)〉 = 〈ϕ, f〉 = 〈U∞ϕ, U1f〉 = 〈TU∞ϕ, η−1

∗ (U1f)〉,

which proves (a). To see (b) by Theorem 4.4(d) we only need to show that U∞∗ =

U−1
1 . Let ϕ ∈ L∞(T) and F ∈ L1(R). Using Theorem 3.4 we get

〈ϕ, U∞∗F 〉 = 〈U∞ϕ, F 〉 = 〈U∞ϕ, U1U
−1
1 F 〉 = 〈ϕ, U−1

1 F 〉.

�

Remark. The theorem above holds since we have defined the operator U1 by the

formula (3.4) instead of (3.2).

It is known (see [6, Exercise 7.3, p. 203] and [10, Theorem 4.1.4]) that A ∈
B(H2(D)) is a Toeplitz operator if and only if A = T ∗

z ATz. Considering Toeplitz

operators on the Hardy space on H2(C+) it was pointed in [10, p. 273] that

Theorem 4.7. Let B ∈ B(H2(C+)). The operator B is a Toeplitz operator on

H2(C+) if and only if B = T ∗

eiλtBTeiλt for all λ > 0.

A proof of the above is an imitation of the proof of the characterization of the

Toeplitz operators onH2(D) (see [10, Theorem 4.1.4]), changing the relation between

the groups T and Z to the relation between R and R.

The following is a useful characterization of the Toeplitz operators on H2(D).
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Theorem 4.8. Let A ∈ B(H2(D)) and ϕλ(ω) := exp(λ(ω + 1)/(ω − 1)) where

ω ∈ T \ {1}, λ > 0. Then the following conditions are equivalent.

(a) A is a Toeplitz operator on H2(D).

(b) A = T ∗
z ATz.

(c) A = T ∗
ϕλ

ATϕλ
for all λ > 0.

P r o o f. Note that ϕλ is an inner function for all λ > 0. Hence for any ϕ ∈ L∞(T)

by [6, Proposition 7.5] we get

T ∗
ϕλ

TϕTϕλ
= Tϕλ

Tϕϕλ
= Tϕλϕϕλ

= Tϕ,

which proves (a)⇒ (c).
For the proof of (c) ⇒ (a) put Φλ := ϕλ ◦ γ and B := U2AU−1

2 , where U2 is

given by (3.5). Then Φλ(t) = eiλt and TΦλ
= U2Tϕλ

U−1
2 by Theorem 4.4. An easy

computation shows that

B = U2AU−1
2 = U2T

∗
ϕλ

ATϕλ
U−1

2 = U2T
∗
ϕλ

U−1
2 BU2Tϕλ

U−1
2 = T ∗

Φλ
BTΦλ

.

Therefore, B ∈ T (C+) by Theorem 4.7 and finally, A ∈ T (D) by Theorem 4.4. So

the proof is complete. �

5. Reflexivity and transitivity results

In [11] Sarason proved that A (D) is reflexive and in [1] it was pointed out that

T (D) is transitive. By Theorem 4.4 we have A (C+) = U2A (D)U−1
2 and T (C+) =

U2T (D)U−1
2 , thus by Lemma 2.1 we obtain the following.

Theorem 5.1. The algebra A (C+) is reflexive and the subspace T (C+) is tran-

sitive.

If F ( T (C+) is a weak∗ closed subspace and A (C+) ⊂ F , then A (D) ⊂
U−1

2 FU2 ( T (D). Thus, by [1, Theorem 1.2] we get

Theorem 5.2. If A (C+) ⊂ F ( T (C+) and F is a weak∗ closed subspace,

then F is reflexive.

A dichotomy between reflexivity and transitivity of subspaces of Toeplitz operators

on the Hardy space on the unit disc was given in [1, Theorem 1.1′]. Namely:
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Theorem 5.3. Suppose that B ⊂ T (D) is a weak∗ closed subspace. Then the

following statements are equivalent.

(1) B is not transitive.

(2) There is a function f : T → C such that f ∈ L1(T), log |f | ∈ L1(T) and∫
T

ϕf dm = 0 for all Tϕ ∈ B.

(3) B is reflexive.

The condition (2) of the above clearly characterizes the dichotomy. Now we will

prove a corresponding dichotomy for subspaces of Toeplitz operators on the Hardy

space on the upper half-plane and we will also give an appropriate condition, which

verifies this dichotomy.

Theorem 5.4. Suppose that F ⊂ T (C+) is a weak∗ closed subspace. Then the

following statements are equivalent.

(1) F is not transitive.

(2) There is a function F : R → C such that F ∈ L1(R), log |F | ∈ L1(R, dt
1+t2 ) and∫

R
ΦF dt = 0 for all TΦ ∈ F .

(3) F is reflexive.

P r o o f. At the beginning let us note that there is a positive constant C such

that

(5.1)

∫

R

log(1 + t2)

1 + t2
dt 6 C < ∞.

Put B := Ũ−1
2 (F ) (Ũ2 is given by (4.2)). Then B ⊂ T (D) and B is weak∗ closed

by Theorem 4.4. To see that (1) ⇒ (2) observe that if F is not transitive we have

that B is not transitive by Lemma 2.1. Therefore there is a function f such that

the condition (2) of Theorem 5.3 holds. Let us denote F := U1f . Then F ∈ L1(R).

Since log |f | ∈ L1(T) and the inequality (5.1) holds, it follows that

∫

R

∣∣log |F (t)|
∣∣ dt

1 + t2
=

∫

R

∣∣∣log
∣∣∣
1

π

1

1 + t2
f(γ(t))

∣∣∣
∣∣∣

dt

1 + t2

< π log π + C +

∫

R

∣∣log |f(γ(t))|
∣∣ dt

1 + t2

= π log π + C + π‖log |f |‖L1(T) < ∞.

Therefore log |F | ∈ L1(R, dt
1+t2 ). To see (2) let us take Φ ∈ η−1(F ) and put ϕ :=

U−1
∞ Φ. From the condition (d) of Theorem 4.4 we have that

Tϕ = ξ(ϕ) = (ξ ◦ U−1
∞ )(Φ) = (ξ ◦ U−1

∞ ◦ η−1)(TΦ) = Ũ−1
2 (TΦ) ∈ B.
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Now by Theorem 3.4

∫

R

ΦF dt = 〈Φ, F 〉 = 〈ϕ, f〉 =

∫

T

ϕf dm = 0.

Hence (2) is shown.

Assume (2) and put f := U−1
1 F . Since log |F | ∈ L1(R, dt

1+t2 ), thus log |π(1+t2)F | ∈
L1(R, dt

1+t2 ) by (5.1). The equality

∫

R

∣∣log |π(1 + t2)F (t)|
∣∣ dt

1 + t2
=

∫

R

∣∣log |f(γ(t))|
∣∣ dt

1 + t2

shows that log |f | ∈ L1(T) and the condition (2) from Theorem 5.3 holds for the

function f . Thus B is reflexive, hence F is reflexive by Lemma 2.1. Finally the

implication (3)⇒ (1) follows from Lemma 2.1 and Theorem 5.3. �

6. Examples

By Theorem 5.4 we have the following examples of reflexive and transitive sub-

spaces consisting of Toeplitz operators on the Hardy space on the upper half-plane.

Example 6.1. If G ∈ L∞(R) and
∫
R

∣∣log |G(t)|
∣∣ dt
1+t2 = ∞, then TGA (C+) is

transitive. Indeed, assuming that TGA (C+) is reflexive, then, by Theorem 5.4,

there is a function F ∈ L1(R) such that log |F | ∈ L1(R, dt
1+t2 ) and

∫
R

ΦGF dt = 0

for all Φ ∈ H∞(C+). Hence GF ∈ H∞(C+)⊥ and by Theorem 3.4 we have that

GF = U1f , where f ∈ H1(D) and f(0) = 0, see [2]. Thus

∫

R

∣∣log |G(t)|
∣∣ dt

1 + t2
=

∫

R

∣∣log |U1f(t)|
∣∣ dt

1 + t2
−

∫

R

∣∣log |F (t)|
∣∣ dt

1 + t2
.

But this leads to the contradiction, since
∫
R

∣∣log |U1f(t)|
∣∣ dt
1+t2 < ∞ by (5.1) and

log |f | ∈ L1(T), see [10, Corollary 3.6.1].

Taking an appropriate function G we get in particular;

(a) if G(t) = exp(−|t|) or G(t) = exp(−t2/2), then TGA (C+) is transitive,

(b) if G is the characteristic function of E ⊂ R with E having finite non-zero

Lebesgue measure, then TGA (C+) is transitive.

Example 6.2. If G ∈ L∞(R) and
∫
R

∣∣log |G(t)|
∣∣ dt
1+t2 < ∞ then TGA (C+) is

reflexive. Note first that TGA (C+) ( T (C+). Suppose now that F ∈ L1(R) is such

that
∫
R

ΦGF dt = 0 for all Φ ∈ H∞(C+). Then GF ∈ H∞(C+)⊥, thus GF = U1f

by Theorem 3.4. As above f ∈ H1(D), f(0) = 0 and log |f | ∈ L1(T), therefore
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log |U1f | ∈ L1(R, dt
1+t2 ). Since log |G| ∈ L1(R, dt

1+t2 ) then log |F | ∈ L1(R, dt
1+t2 ). So,

TGA (C+) is reflexive by Theorem 5.4.

Taking an appropriate function G we get in particular;

(a) the subspace TeiλtA (C+) is reflexive for any λ < 0,

(b) if G is an inner function on C+ (i.e. G ∈ H∞(C+) and |G(t)| = 1 a.e.), then

TGA (C+) is reflexive,

(c) if G(t) = (1 + t2)−1, then TGA (C+) is reflexive.

Example 6.3. Let G ∈ L1(R) and BG := {TΦ ∈ T (C+) :
∫
R

GΦ dt = 0}. Let
F ∈ L1(R) then

∫
R

FΦ dt = 0 for all Φ such that TΦ ∈ BG iff F ∈ span{G}. Hence
the following holds:

(a) if G is the characteristic function of E ⊂ R with E having finite non-zero

Lebesgue measure, then BG is transitive,

(b) if G(t) = exp(−|t|α) and 0 6 α < 1 (α > 1, respectively), then the subspace

BG is reflexive (transitive, respectively),

(c) if G(t) = (1 + t2)−1 (or more generally G(t) = (1 + t2)α, α < − 1
2 ), then BG is

reflexive.

Example 6.4. If F is a weak∗ closed subspace (subalgebra) of A (C+), then F

is reflexive. Indeed, recall that A (D) has the property A1(1), see [5, Definition 59.1,

Proposition 60.5]. Thus A (C+) = Ũ2(A (D)) has this property, since Ũ2 is a weak
∗

homeomorphism. Since A (C+) is reflexive, it is hereditarily reflexive by [1, Propo-

sition 1.7].
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