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(Received March 6, 2012)

Abstract. We show that the rings of constants of generic four-variable Lotka-Volterra
derivations are finitely generated polynomial rings. We explicitly determine these rings,
and we give a description of all polynomial first integrals of their corresponding systems
of differential equations. Besides, we characterize cofactors of Darboux polynomials of
arbitrary four-variable Lotka-Volterra systems. These cofactors are linear forms with coef-
ficients in the set of nonnegative integers. Lotka-Volterra systems have various applications
in such branches of science as population biology and plasma physics, among many others.
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1. Introduction

Throughout this paper, k is a field of characteristic zero. By k[X ] we denote

k[x1, . . . , xn], the polynomial ring in n variables. For n 6 3 the ring of constants

of any derivation of k[X ] is finitely generated (see [7]). For n = 4 the ring of con-

stants may not be finitely generated. An example was given in [3]. There is no

general procedure for determining the ring of constants, nor even deciding whether

it is finitely generated. Even for a given specific derivation of k[X ] the problem

may be difficult, see various counterexamples to Hilbert’s fourteenth problem (for

example [3]) and the three-variable Lotka-Volterra derivation (for example [5]). Such

problems are closely linked to the invariant theory, namely for every connected al-

gebraic group G ⊆ Gln(k) there exists a derivation d such that k[X ]G = k[X ]d (see,

for instance, [6]).

It is well known that Lotka-Volterra systems play a significant role in popula-

tion biology. They also have many applications in other branches of science, for
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instance in plasma physics (for more details we refer the reader to [1] and its exten-

sive bibliography). Moreover, they play an important part in the derivation theory

itself. A derivation d : k[X ] → k[X ] is said to be factorizable if d(xi) = xifi, where

the polynomials fi are of degree 1 for i = 1, . . . , n. Examples of such derivations

are Lotka-Volterra derivations. How to associate a factorizable derivation with any

given derivation is shown in [10]. The construction helps to establish new facts on

constants of the initial derivation (see, for instance, [8]). We have thus a special

interest in describing constants of factorizable derivations.

Section 3 provides some facts on Darboux polynomials of Lotka-Volterra deriva-

tions in 4 variables with arbitrary coefficients. Section 4 contains several properties

of Lotka-Volterra derivations for n variables, which supply potential tools for further

studies. In Section 5, we prove Theorem 5.1, which gives a full description of the ring

of polynomial constants of the derivation d : k[x1, . . . , x4] → k[x1, . . . , x4] defined by

d =

4
∑

i=1

xi(xi−1 − Cixi+1)
∂

∂xi

,

for Ci not belonging to the set of positive rationals. It is the main result of the paper.

As a consequence we obtain that a generic four-variable Lotka-Volterra system has

a finitely generated ring of constants.

2. Notation and preliminaries

If R is a commutative k-algebra, then a k-linear map d : R→ R is called a deriva-

tion of R if d(ab) = ad(b) + d(a)b for all a, b ∈ R. We call Rd = kerd the ring of

constants of the derivation d. If f1, . . . , fn ∈ k[X ], then there exists exactly one

derivation d : k[X ] → k[X ] such that d(x1) = f1, . . . , d(xn) = fn. The set k[X ]d \ k

is equal to the set of all polynomial first integrals of the corresponding system of

ordinary differential equations (see [6] for more details).

A derivation d : k[X ] → k[X ] is called homogeneous of degree s if the image of

a homogeneous form of degree t under d is a homogeneous form of degree s + t

for all t ∈ N. Since k is a field of characteristic zero, we have Q ⊆ k. Let Q+

denote the set of positive rationals and N denote the set of nonnegative integers. For

α = (α1, . . . , αn) ∈ Nn, we denote by Xα the monomial xα1

1 . . . xαn
n ∈ k[X ] and by

|α| the sum α1 + . . .+ αn.

Let n > 3. Throughout the rest of this paper, R = k[x1, . . . , xn] and d : R→ R is

a derivation of the form

d(xi) = xi(xi−1 − Cixi+1),
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for i = 1, . . . , n, and we adhere to the convention that xn+1 = x1 and x0 = xn. All

our considerations are in the cyclic sense; for example, {i, i+ 1} admits also {n, 1}.

We write a minus sign before Ci just to simplify further computations. Denote

by R(m) the homogeneous component of R of degree m. Let R
d
(m) = R(m) ∩ Rd.

Since d is homogeneous, we have Rd =
∞
⊕

m=0
Rd

(m) and we need only to determine the

homogeneous constants.

3. Darboux polynomials

A nonzero polynomial f is said to be a Darboux polynomial of a derivation δ : R →

R if δ(f) = Λf for some Λ ∈ R. We will call Λ a cofactor of f . Since R is a domain,

Λ is unique. The product f1f2 of Darboux polynomials is a Darboux polynomial and

its cofactor equals the sum of the cofactors of f1 and f2.

Proposition 3.1 is well known (see [6], Proposition 2.2.1). It is true for k being

any unique factorization domain and any derivation δ of k[x1, . . . , xn].

Proposition 3.1. If f ∈ R is a Darboux polynomial of δ, then all factors of f

are also Darboux polynomials of δ.

We call a polynomial g ∈ R strict if it is nonzero, homogeneous and not divisible

by the variables x1, . . . , xn. Every nonzero homogeneous polynomial f ∈ R has

a unique presentation f = Xαg, where Xα is a monomial and g is strict.

If f is a Darboux polynomial of a homogeneous derivation δ with a cofactor Λ, then

every homogeneous part of f is a Darboux polynomial of δ with the same cofactor

Λ (see [6], Proposition 2.2.3).

If f = Xαg is a Darboux polynomial of the derivation d, then it is easy to compute

the cofactor of the monomial Xα (see the proof of Lemma 3.4). Thus we are going to

characterize cofactors of strict Darboux polynomials (Lemma 3.2 and Corollary 3.3).

Such a characterization for 3 variables was done in [4]. Since d is a homogeneous

derivation of degree 1, the cofactor of any homogeneous Darboux polynomial is

a homogeneous form of degree 1.

Lemma 3.2. Let n = 4. Let g ∈ R(m) be a Darboux polynomial of d with the

cofactor λ1x1 + . . . + λ4x4. Let i ∈ {1, 2, 3, 4}. If g is not divisible by xi, then

λi+1 ∈ N. More precisely, if g(x1, . . . , xi−1, 0, xi+1, . . . , x4) = x
βi+2

i+2 G and xi+2 ∤ G,

then λi+1 = βi+2 and λi+3 = −Ci+2λi+1.
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P r o o f. Without loss of generality we can assume that i = 4. Since g is a Darboux

polynomial, we have

4
∑

i=1

xi(xi−1 − Cixi+1)
∂g

∂xi

= (λ1x1 + . . .+ λ4x4)g.

We put x4 = 0 in the equation above and obtain

−x1C1x2
∂G

∂x1
+ x2(x1 − C2x3)

∂G

∂x2
+ x3x2

∂G

∂x3
= (λ1x1 + λ2x2 + λ3x3)G,

where G = g(x1, x2, x3, 0) 6= 0, since x4 ∤ g.

Let G = xβ2

2 G, where x2 ∤ G and β2 ∈ N. Then

(3.1) −C1x1x2x
β2

2

∂G

∂x1
+ x2(x1 − C2x3)

(

β2x
β2−1
2 G+ xβ2

2

∂G

∂x2

)

+ x3x2x
β2

2

∂G

∂x3

= (λ1x1 + λ2x2 + λ3x3)x
β2

2 G

(if β2 = 0, then we assume that expression β2x
β2−1
2 is equal to 0). We divide both

sides of (3.1) by xβ2

2 , then we add (C2x3 − x1)β2G to both sides of (3.1) and we

obtain

(3.2) −C1x1x2
∂G

∂x1
+ x2(x1 − C2x3)

∂G

∂x2
+ x3x2

∂G

∂x3

= ((λ1 − β2)x1 + λ2x2 + (λ3 + C2β2)x3)G.

The left-hand side of (3.2) is the divisible by x2, so also is the right-hand side of

(3.2). Since x2 ∤ G, we get

x2 | (λ1 − β2)x1 + λ2x2 + (λ3 + C2β2)x3.

Hence λ1 − β2 = 0 and λ3 + C2β2 = 0. Finally, λ1 = β2 and λ3 = −C2β2 = −C2λ1.

�

Corollary 3.3. Let n = 4. If g ∈ R(m) is a strict Darboux polynomial, then its

cofactor is a linear form with coefficients in N.

Lemma 3.4. Let n = 4. If d(f) = 0 and f = Xαg, where g is strict, then

d(Xα) = 0 and d(g) = 0.
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P r o o f. If d(f) = 0, then f is a Darboux polynomial. In view of Proposition 3.1,

also Xα and g are Darboux polynomials. If α = (α1, . . . , α4), then a short com-

putation shows that the cofactor of Xα equals (α2 − α4C4)x1 + (α3 − α1C1)x2 +

(α4 −α2C2)x3 +(α1−α3C3)x4. The polynomial g is strict, therefore by Lemma 3.2,

if λ1x1 + . . . + λ4x4 is the cofactor of g, then λ1, λ2, λ3, λ4 ∈ N and λ1 = −C4λ3,

λ2 = −C1λ4, λ3 = −C2λ1, λ4 = −C3λ2. The cofactor of the product X
αg is the

sum of the cofactors of Xα and g, that is, equals

(α2−α4C4 +λ1)x1 +(α3−α1C1 +λ2)x2 +(α4−α2C2 +λ3)x3 +(α1−α3C3 +λ4)x4.

On the other hand, by assumption, this cofactor is equal to 0. Thus

α2 − α4C4 + λ1 = 0,

α3 − α1C1 + λ2 = 0,

α4 − α2C2 + λ3 = 0,

α1 − α3C3 + λ4 = 0.

Suppose g is not a constant of d. Then λi 6= 0 for some i ∈ {1, . . . , 4}. There is

no loss of generality in assuming that i = 1. Then λ1 = −C4λ3 implies that also

λ3 6= 0. Hence C4 = −λ1/λ3 < 0. Then α2 > 0, −α4C4 > 0 and λ1 > 0. Therefore

α2 − α4C4 + λ1 > 0, which is a contradiction. This proves that d(g) = 0.

If d(Xαg) = 0 and d(g) = 0, then obviously d(Xα) = 0. �

4. Restrictions of polynomials

Let ϕ ∈ R and 1 6 q 6 n. Then for every subset {i1, . . . , iq} ⊆ {1, . . . , n} we

denote by ϕ{i1,...,iq} the sum of terms of ϕ that depend on variables xi1 , . . . , xiq ,

that is, ϕ{i1,...,iq} = ϕ|xj=0 for j /∈{i1,...,iq}
. We noticed that for inductive purposes it

is more convenient to deal with polynomials ϕ such that d(ϕA)A = 0 for a given

A ⊆ {1, . . . , n}, than with the constants themselves.

The first three results, that is 4.1, 4.2 and 4.3, are similar to those for C1 = . . . =

Cn = 1 of our paper [9]. As an obvious consequence of the fact that xi | d(xi), for

i = 1, . . . , n, we obtain the following proposition.

Proposition 4.1. If A ⊆ {1, . . . , n}, then for every homogeneous polynomial

ϕ ∈ R(m), we have d(ϕ
A)A = d(ϕ)A.

Corollary 4.2. If A ⊆ {1, . . . , n}, then for every ϕ ∈ Rd
(m) we have d(ϕ

A)A = 0.
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Lemma 4.3. If B ⊆ A ⊆ {1, . . . , n} and d(ϕA)A = 0, then also d(ϕB)B = 0.

P r o o f. Let ϕA = ϕB +ψ, where each monomial in ψ has xj in a positive power

for some j ∈ A \ B. Then d(ϕA) = d(ϕB) + d(ψ). If d(ϕA)A = 0, then clearly

d(ϕA)B = 0. Therefore 0 = d(ϕA)B = d(ϕB)B + d(ψ)B. Moreover d(ψ)B = 0,

because every monomial in d(ψ) has xj in positive a power for some j ∈ A \ B, by

the definition of d. Finally, d(ϕB)B = 0. �

We formulated Lemma 4.4 in [9] without a proof. Note that there is no assumption

on the coefficients Ci in this lemma.

Lemma 4.4. Let ϕ ∈ R(m) and A = {i, i+ 1} ⊂ {1, . . . , n}. If d(ϕA)A = 0, then

ϕA = a(xi + Cixi+1)
m, for a ∈ k.

P r o o f. Let ϕA =
m
∑

r=0
brx

m−r
i xr

i+1. Then

d(ϕA) =

m
∑

r=0

br(d(x
m−r
i )xr

i+1 + xm−r
i d(xr

i+1))

=

m
∑

r=0

brx
m−r
i xr

i+1((m− r)(xi−1 − Cixi+1) + r(xi − Ci+1xi+2)).

Therefore,

d(ϕA)A =

m
∑

r=0

br(rx
m−r+1
i xr

i+1 − Ci(m− r)xm−r
i xr+1

i+1 )

=

m
∑

r=1

rbrx
m−r+1
i xr

i+1 − Ci

m−1
∑

r=0

(m− r)brx
m−r
i xr+1

i+1

=
m

∑

r=1

rbrx
m−r+1
i xr

i+1 − Ci

m
∑

r=1

(m− r + 1)br−1x
m−r+1
i xr

i+1

=

m
∑

r=1

(rbr − Ci(m− r + 1)br−1)x
m−r+1
i xr

i+1 = 0.

Hence for r = 1, . . . ,m we have rbr = Ci(m− r+1)br−1, that is, br = m−r+1
r

Cibr−1.

Thus an easy induction on r shows that br =
(

m
r

)

Cr
i b0 for r = 0, . . . ,m. Conse-

quently, ϕA = b0(xi + Cixi+1)
m. �

Note that the above a = b0 may be equal to 0. Here and throughout, by the

support of α = (α1, . . . , αn) ∈ Nn we mean the set supp(α) = {i : αi 6= 0}. Observe

that there is an assumption on only one coefficient Ci in Lemma 4.5.

Lemma 4.5. Let n > 4, ϕ ∈ R(m) and A = {i, i + 1, i + 2} ⊂ {1, . . . , n}. If

d(ϕA)A = 0 and Ci /∈ Q+, then ϕ
A ∈ k[xi + Cixi+1 + CiCi+1xi+2].
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P r o o f. Let m = 1. By assumption and Lemma 4.3, d(ϕ{i,i+1}){i,i+1} = 0.

In view of Lemma 4.4, we have ϕ{i,i+1} = a1(xi + Cixi+1). Similarly, we obtain

ϕ{i+1,i+2} = a2(xi+1 + Ci+1xi+2). Thus a2 = a1Ci and ϕ
A = a1(xi + Cixi+1 +

CiCi+1xi+2). Now let m = 2. Since d(ϕ{i,i+1}){i,i+1} = 0, it follows that ϕ{i,i+1} =

a1(xi +Cixi+1)
2. Analogously ϕ{i+1,i+2} = a2(xi+1 +Ci+1xi+2)

2. Hence a2 = a1C
2
i

and ϕ{i+1,i+2} = a1(Cixi+1 + CiCi+1xi+2)
2. Therefore, ϕA = a1(xi + Cixi+1 +

CiCi+1xi+2)
2 + bxixi+2 for some b ∈ k. Applying first d(·) and then (·)A to both

sides of the last equation we get 0 = b(1 − Ci)xixi+1xi+2. Since Ci 6= 1, we have

b = 0.

Assume m > 3. Then ϕA is a linear combination of monomials Xα such that

|α| = m and supp(α) ⊆ {i, i+ 1, i + 2}. We have ϕ{i,i+1} = a1(xi + Cixi+1)
m and

ϕ{i+1,i+2} = a2(xi+1+Ci+1xi+2)
m, for a1, a2 ∈ k. Thus a2 = a1C

m
i and ϕ

{i+1,i+2} =

a1(Cixi+1 + CiCi+1xi+2)
m. The terms of the form xr

ix
m−r
i+1 and x

r
i+1x

m−r
i+2 for r =

0, . . . ,m have the same coefficients in ϕA and in a1(xi + Cixi+1 + CiCi+1xi+2)
m.

Therefore

ϕA = a1(xi+Cixi+1+CiCi+1xi+2)
m+

∑

supp(α)={i,i+2}

bαX
α+

∑

supp(α)={i,i+1,i+2}

bαX
α,

that is, ϕA = a1(xi + Cixi+1 + CiCi+1xi+2)
m + xixi+2ψ, where ψ ∈ R(m−2) and ψ

depends on the variables xi, xi+1, xi+2 only. We show that ψ = 0. First,

d(ϕA) = a1d((xi + Cixi+1 + CiCi+1xi+2)
m) + d(xixi+2)ψ + xixi+2d(ψ)

= a1m(xi + Cixi+1 + CiCi+1xi+2)
m−1(xixi−1 − CiCi+1Ci+2xi+2xi+3)

+ (xi−1 + (1 − Ci)xi+1 − Ci+2xi+3)xixi+2ψ + xixi+2d(ψ).

Obviously, ψA = ψ. Therefore,

0 = d(ϕA)A = (1 − Ci)xixi+1xi+2ψ + xixi+2d(ψ)A.

Hence d(ψ)A = (Ci − 1)xi+1ψ.

Suppose ψ 6= 0. Let s = degxi+1
ψ. Let bxr

ix
s
i+1x

t
i+2 be a term of ψ with b ∈ k\{0}

(we fix one of the terms of ψ that are divisible by xs
i+1). Then the coefficient of the

monomial xr
ix

s+1
i+1x

t
i+2 in the expansion of (Ci − 1)xi+1ψ equals (Ci − 1)b. The

coefficient of xr
i x

s+1
i+1x

t
i+2 in the expansion of d(ψ)A is equal to b(t − rCi) (because

in all terms of the d-image of any term the exponent of only one variable may be

increased). Therefore Ci = (t+ 1)/(r + 1) ∈ Q+. The contradiction obtained proves

that ψ = 0.

Thus ϕA = a1(xi + Cixi+1 + CiCi+1xi+2)
m ∈ k[xi + Cixi+1 + CiCi+1xi+2]. �
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5. Rings of constants

Theorem 5.1. Let R = k[x1, . . . , x4] and C1, . . . , C4 /∈ Q+. Let d : R → R be

a derivation of the form

d(xi) = xi(xi−1 − Cixi+1),

for i = 1, . . . , 4. If C1C2C3C4 = 1, then

Rd = k[x1 + C1x2 + C1C2x3 + C1C2C3x4].

If C1C2C3C4 6= 1, then Rd = k.

P r o o f. First we show thatRd
(m) ⊆ k[x1+C1x2+C1C2x3+C1C2C3x4], for allm >

0. Let A1 = {2, 3, 4}, A2 = {1, 3, 4}, A3 = {1, 2, 4}, A4 = {1, 2, 3} and let ϕ ∈ Rd
(m).

By Corollary 4.2 and Lemma 4.5, ϕAi = ai+1(xi+1 + Ci+1xi+2 + Ci+1Ci+2xi+3)
m,

for i = 1, . . . , 4. Comparison of the coefficients of xm
2 in ϕ

A1 and ϕA4 gives a2 =

a1C
m
1 . Analogously, a3 = a2C

m
2 = a1C

m
1 C

m
2 and a4 = a3C

m
3 = a1C

m
1 C

m
2 C

m
3 . Let

ψ = a1(x1 +C1x2 +C1C2x3 +C1C2C3x4)
m. Then ϕAi = ψAi , for i = 1, . . . , 4. This

means that the polynomials ϕ and ψ have the same terms that depend on at most

three variables. Therefore

ϕ = a1(x1 + C1x2 + C1C2x3 + C1C2C3x4)
m + η,

where each term of the polynomial η has all four variables in positive powers, that

is, η is divisible by x1x2x3x4.

We show that η is a constant of the derivation d. If m < 4, then η = 0, since

x1x2x3x4 | η. Assume, then, that m > 4. If C1C2C3C4 = 1, then ϕ and x1 +C1x2 +

C1C2x3 + C1C2C3x4 are constants of d, so also is η. If C1C2C3C4 6= 1, then

0 = d(ϕ) = a1m(x1 +C1x2 +C1C2x3 +C1C2C3x4)
m−1x1x4(1 −C1C2C3C4) + d(η).

The derivation d is factorizable, hence x1x2x3x4 | η implies x1x2x3x4 | d(η). There-

fore, the coefficient of xm
1 x4 in d(ϕ) equals 0, on the one hand, and is equal to

a1m(1−C1C2C3C4), on the other hand. Thus a1 = 0 and ϕ = η. In particular, η is

a constant of d.

We show that η = 0. Suppose that η is a monomial. Let η = cxr
1x

s
2x

t
3x

u
4 , where

r, s, t, u > 1. Then

0 = d(η) = cxr
1x

s
2x

t
3x

u
4 ((s− uC4)x1 + (t− rC1)x2 + (u− sC2)x3 + (r − tC3)x4).

If c 6= 0, then C4 = s/u ∈ Q+, which is a contradiction. Then c = 0 and η = 0.
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Suppose that η is not a term. Then η = Xαg, where Xα is a monomial and g is

strict. Since η is divisible by x1x2x3x4, the monomial X
α has positive exponents.

Since η is a constant, by Lemma 3.4 also Xα and g are. However, the considerations

above prove that no monomial of positive exponents is a constant of d.

Thus η = 0 and ϕ = a1(x1 + C1x2 + C1C2x3 + C1C2C3x4)
m ∈ k[x1 + C1x2 +

C1C2x3 + C1C2C3x4]. Consequently, R
d ⊆ k[x1 + C1x2 + C1C2x3 + C1C2C3x4].

Case C1C2C3C4 = 1. Since d(x1 + C1x2 + C1C2x3 + C1C2C3x4) = x1x4 −

C1C2C3C4x1x4 = 0, we have k[x1 + C1x2 + C1C2x3 + C1C2C3x4] ⊆ Rd.

Case C1C2C3C4 6= 1. Let a ∈ k \ {0} and m ∈ {1, 2, . . .}. Then

d(a(x1 + C1x2 + C1C2x3 + C1C2C3x4)
m)

= am(x1 + C1x2 + C1C2x3 + C1C2C3x4)
m−1(x1x4 − C1C2C3C4x1x4) 6= 0.

Thus a = 0 or m = 0. Hence, Rd = k. �

Corollary 5.2. If k = R or k = C, then in the generic case a four-variable

Lotka-Volterra derivation has a finitely generated (even trivial) ring of constants.

Lotka-Volterra derivations with positive rational coefficients are investigated for

instance in [4], [5], [9], [11].

Note that if we consider a field k of a positive characteristic p, then all elements

of the form xp
i are constants of any polynomial derivation. For more information on

this case we refer the reader to [2] and its bibliography.
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[7] A.Nowicki, M.Nagata: Rings of constants for k-derivations in k[x1, . . . , xn]. J. Math.
Kyoto Univ. 28 (1988), 111–118.
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