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Abstract. We deal with several classes of integral transformations of the form

f(x)→ D

∫
R2

+

1

u
(e−u cosh(x+v) + e−u cosh(x−v))h(u)f(v) du dv,

where D is an operator. In case D is the identity operator, we obtain several operator
properties on Lp(R+) with weights for a generalized operator related to the Fourier cosine
and the Kontorovich-Lebedev integral transforms. For a class of differential operators of
infinite order, we prove the unitary property of these transforms on L2(R+) and define the
inversion formula. Further, for an other class of differential operators of finite order, we
apply these transformations to solve a class of integro-differential problems of generalized
convolution type.

Keywords: convolution, Hölder inequality, Young’s theorem, Watson’s theorem, unitary,
Fourier cosine, Kontorovich-Lebedev, transform, integro-differential equation
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1. Introduction

The Fourier cosine integral transform is of the form (see [10], [11])

(1.1) (Fcf)(y) =

√
2

π

∫
∞

0

f(x) cosxy dx

for f ∈ L1(R+), and

(1.2) (Fcf)(y) = lim
N→∞

√
2

π

∫ N

0

f(x) cos yxdx =

√
2

π

d

dx

∫
∞

0

f(x)
sin xy

x
dx
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for f ∈ L2(R+); here the limit is understood in L2(R+) norm mean. These two

definitions are equivalent if f ∈ L1(R+) ∩ L2(R+).

The Kontorovich-Lebedev integral transform was first investigated by M. J.Konto-

rovich and N.N. Lebedev in 1938–1939 and has the form (see [5], [6], [14])

(1.3) K[f ](y) =

∫
∞

0

Kix(y)f(x) dx,

which contains as the kernel the Macdonald function Kν(x) (see [1]) of the pure

imaginary index ν = iy. The function Kν(z) satisfies the differential equation

(1.4) z2 d2u

dz2
+ z

du

dz
− (z2 + ν2)u = 0.

The Macdonald function has the asymptotic behaviour (see [6])

(1.5) Kν(z) =
(

π

2z

)1/2

e−z[1 + O(1/z)], z → ∞,

and near the origin

zνKν(z) = 2ν−1Γ(ν) + o(1), z → 0, ν 6= 0,(1.6)

K0(z) = − log z + O(1), z → 0.(1.7)

The following form for the Macdonald function is very useful (see [1], [6], [14]):

(1.8) Kiy(x) =

∫
∞

0

e−x cosh u cos yu du, x > 0.

The inverse Kontorovich-Lebedev transform (1.3) is of the form (see [5], [6])

(1.9) f(x) = K−1[g](x) =
2

π
2
x sinh(πx)

∫
∞

0

1

y
Kix(y)g(y) dy,

here, g(y) = K[f ](y).

Throughout this paper, we are interested in the Kontorovich-Lebedev trans-

form (1.3). However, note that there is another version of the Kontorovich-Lebedev

integral transform which is of the form (see [1], [6], [16])

(1.10) g(y) = K̃[f ](y) =

∫
∞

0

Kiy(x)f(x) dx.

A generalized convolution for the Fourier cosine and the Kontorovich-Lebedev inte-

gral transforms has been studied in [12]:

(1.11)

(h
γ∗ f)(x) =

1

π
2

∫
∞

0

∫
∞

0

1

u
[e−u cosh(x+v) + e−u cosh(x−v)]h(u)f(v) du dv, x > 0.

474



The existence of the generalized convolution (1.11) for two functions in L1(R+) with

weight and its application to solving integral equations of generalized convolution

type were studied in [12]. Namely, for h ∈ L1(R+, 1/x), f ∈ L1(R+, 1/ sinhx), the

following factorization equality holds (see [12]):

(1.12) Fc(h
γ∗ f)(y) =

1

y sinh πy
K−1[h](y)(Fcf)(y), ∀y > 0.

In any convolution (h∗f) of two functions h and f , if we fix the function h and let

f vary in a certain function space, then one can study convolution transforms of the

type f 7→ D(f ∗ h), where D is an operator. The most famous integral transforms

constructed in this way are the Watson transforms that are related to the Mellin

convolution and the Mellin transform (see [11])

f(x) 7−→ g(x) =

∫
∞

0

k(xy)f(y) dy.

Recently, several authors have been interested in the convolution transforms of this

type (see [3], [4], [13], [15]). In this paper, we are interested in the transform f 7→
D(h

γ∗ f), where (h
γ∗ f) is the generalized convolution (1.11). For the case D is

the identity operator, in Section 2 we study several further operator properties in

the Lebesgue spaces Lp(R+) with weight for the generalized convolution (1.11). In

particular, Young’s theorem and Young’s inequality for this generalized convolution

are obtained. In Section 3, for a class of differential operators D of infinite order, we

obtain the necessary and sufficient condition such that the respective transforms are

unitary on L2(R+), and define the inverse transforms. Finally, in Section 4, for an

other class of differential operator D of finite order, we obtain the solution in closed

form of a class of integro-differential equations.

2. Generalized convolution operator properties

In this section, we will prove several norm properties of the generalized convolution

(1.11). Throughout the paper, we are interested in the following two-parametric

family of Lebesgue spaces.

Definition 1 (see [16]). For α ∈ R, 0 < β 6 1, we denote by Lα,β
p (R+) the space

of all functions f(x) defined in R+ such that

(2.1)

∫
∞

0

|f(x)|pK0(βx)xα dx < ∞.
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The norm of a function in this space is defined by

‖f‖Lα,β
p (R+) =

( ∫
∞

0

|f(x)|pK0(βx)xα dx

)1/p

.

Using the asymptotics of the Macdonald function (1.5), (1.6), (1.7), formula (2.1)

can be expressed in an equivalent form

∫ 1

0

|f(x)|p| log x|xα dx +

∫
∞

1

|f(x)|pxα−1/2e−βx dx < ∞.

The boundedness of the generalized convolution (1.11) on the spaces L1(R+) is given

by the following theorem; here we consider the function h ∈ L−1,β
1 (R+).

Theorem 2.1. Let h ∈ L−1,β
1 (R+) and g ∈ L1(R+), 0 < β 6 1. Then the

generalized convolution (1.11) exists for almost all x > 0, belongs to L1(R+), and

the following estimation holds:

(2.2) ‖h γ∗ g‖L1(R+) 6
2

π
2
‖h‖L−1,β

1
(R+)‖f‖L1(R+).

Moreover, the factorization property (1.12) holds true. Furthermore, if 0 < β < 1,

then the convolution (1.11) belongs to C0(R+), and the Parseval type equality takes

place for all x > 0:

(2.3) (h
γ∗ f)(x) =

√
2

π

∫
∞

0

1

y sinh πy
K−1[h](y)(Fcf)(y) cosxy dy.

P r o o f. Using formula (1.8) we obtain

(2.4)
1

2

∫
∞

0

(e−u cosh(x+v) + e−u cosh(x−v)) dv = K0(u).

Then

‖hγ∗f‖L1(R+) 6
2

π
2

∫
∞

0

∫
∞

0

|h(u)|
u

K0(u)|f(v)| du dv =
2

π
2
‖h‖L−1,β

1
(R+,1/x) ·‖f‖L1(R+).

We now prove the Parseval type equality. Using Fubini’s theorem and the formula

(2.16.48.19) in [9] ∫
∞

0

cos byKiy(u) dy =
π

2
e−u cosh b,
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we have

(h
γ∗ f)(x) =

1

π
2

∫
∞

0

∫
∞

0

1

u
[e−u cosh(x+v) + e−u cosh(x−v)]h(u)f(v) du dv

=
1

π
2

∫
∞

0

∫
∞

0

∫
∞

0

2

π

1

u
h(u)f(v)Kiy(u)(cos(x + v)y + cos(x − v)y) du dv dy

=
4

π
3

∫
∞

0

∫
∞

0

∫
∞

0

1

u
h(u)f(v)Kiy(u) cosxy cos vy du dv dy

=

√
2

π

∫
∞

0

1

y sinh πy

(
2

π
2
y sinh πy

∫
∞

0

1

u
Kiy(u)h(u) du

)

×
(√

2

π

∫
∞

0

f(v) cos vy dv

)
cosxy dy

=

√
2

π

∫
∞

0

1

y sinh πy
K−1[h](y)(Fcf)(y) cosxy dy.

That gives the Parseval identity (2.3), and the proof of the theorem is complete. �

The next theorem draws a parallel with a result studied in [16], namely, the bound-

edness of the generalized convolution (1.11) on spaces Lα,γ
r , 1 < r < ∞, α > −1,

0 < γ 6 1 is given.

Theorem 2.2. Let 1 < p < ∞ be a real number and q its conjugate exponent,

i.e. 1/p + 1/q = 1. Then for any h ∈ L−p,β
p (R+) and f ∈ Lq(R+), the generalized

convolution (h
γ∗ f) (1.11) is well-defined as a bounded continuous function on R+.

Moreover, (h
γ∗ f) belongs to Lα,γ

r (R+), 1 6 r < ∞, α > −1, 0 < γ 6 1, and

(2.5) ‖h γ∗ f‖Lα,γ
r (R+) 6 C1/r

α,γ‖h‖L−p,β
p (R+)‖f‖Lq(R+),

where Cα,γ = (2r+α−1/π
2rγα+1)Γ2((α + 1)/2).

P r o o f. Using the integral representation (2.4) for the function K0(u), the

Hölder inequality, and the fact that e−u cosh(x+v)+e−u cosh(x−v) 6 2e−u for all positive

u, x, v, we get

(2.6) |(h γ∗ f)(x)| 6
1

π
2

∫
∞

0

∫
∞

0

∣∣∣
h(u)

u

∣∣∣|f(v)|[e−u cosh(x+v) + e−u cosh(x−v)] du dv

6
1

π
2

( ∫
∞

0

∫
∞

0

∣∣∣
h(u)

u

∣∣∣
p

[e−u cosh(x+v) + e−u cosh(x−v)] du dv

)1/p

×
( ∫

∞

0

∫
∞

0

|f(v)|q [e−u cosh(x+v) + e−u cosh(x−v)] du dv

)1/q

6
2

π
2

( ∫
∞

0

∣∣∣
h(u)

u

∣∣∣
p

K0(u) du

)1/p

‖f‖Lq(R+).
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Therefore, the generalized convolution is well-defined as a bounded operator and the

estimation (2.6) holds. Moreover, in view of formula (2.16.2.2) in [9] we get

‖h γ∗ f‖Lα,γ
r (R+) 6

2

π
2
‖h‖L−p,β

p (R+)‖f‖Lq(R+)

( ∫
∞

0

xαK0(γx) dx

)1/r

=
2

π
2
(2γ)−1/r

(γ

2

)
−α/r

Γ2/r
(α + 1

2

)
‖h‖L−p,β

p (R+)‖f‖Lq(R+), α > −1.

This yields (2.5) �

For the Fourier convolution (see [10])

(2.7) (h ∗
F

f)(x) =
1√
2π

∫
∞

−∞

h(x − y)f(y) dy,

Young’s theorem and its corollary, the so-called Young inequality, are fundamental

(see [2]). So, it is useful to study similar topics for convolutions and generalized

convolutions for other integral transforms. Next, we will prove Young’s type theorem

for the generalized convolution (1.11).

Theorem 2.3 (Young’s Type Theorem). Let p, q, r be real numbers in (1;∞)

such that 1/p + 1/q + 1/r = 2 and let f ∈ L−p,β
p (R+), 0 < β 6 1, g ∈ Lq(R+),

h ∈ Lr(R+). Then

(2.8)

∣∣∣∣
∫

∞

0

(f
γ∗ g)(x) · h(x) dx

∣∣∣∣ 6
2(p−1)/p

π
2

‖f‖L−p,β
p (R+)‖g‖Lq(R+)‖h‖Lr(R+).

P r o o f. Let p1, q1, r1 be the conjugate exponentials of p, q, r, respectively, it

means
1

p
+

1

p1
=

1

q
+

1

q1
=

1

r
+

1

r1
= 1.

Then it is obvious that 1/p1 + 1/q1 + 1/r1 = 1. Put

F (x, u, v) = |g(v)|q/p1 |h(x)|r/p1 [e−u cosh(x+v) + e−u cosh(x−v)]1/p1 ,

G(x, u, v) =
∣∣∣
f(u)

u

∣∣∣
p/q1

|h(x)|r/q1 [e−u cosh(x+v) + e−u cosh(x−v)]1/q1 ,

H(x, u, v) =
∣∣∣
f(u)

u

∣∣∣
p/r1

|g(v)|q/r1 [e−u cosh(x+v) + e−u cosh(x−v)]1/r1 .

We have

(2.9) (F · G · H)(x, u, v) =
∣∣∣
f(u)

u

∣∣∣|g(v)||h(x)|[e−u cosh(x+v) + e−u cosh(x−v)].
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On the other hand, in the space Lp1
(R3

+) we have

(2.10)

‖F‖p1

Lp1
(R3

+
)
=

∫
∞

0

∫
∞

0

∫
∞

0

|g(v)|q|h(x)|r [e−u cosh(x+v) + e−u cosh(x−v)] du dv dx

6 2

∫
∞

0

∫
∞

0

∫
∞

0

|g(v)|q|h(x)|re−u du dv dx

= 2‖g‖q
Lq(R+)‖h‖r

Lr(R+).

Further, the fact that K0(u) 6 K0(βu) for 0 < β 6 1 (see [16]) yields

(2.11)

‖G‖p1

Lq1
(R3

+
)
=

∫
∞

0

∫
∞

0

∫
∞

0

∣∣∣
f(u)

u

∣∣∣
p

|h(x)|r [e−u cosh(x+v) + e−u cosh(x−v)] du dv dx

6

∫
∞

0

∫
∞

0

∫
∞

0

∣∣∣
f(u)

u

∣∣∣
p

K0(βu)|h(x)|r du dx

= ‖f‖p

L−p,β
p (R+)

‖h‖r
Lr(R+),

and similarly,

(2.12)

‖H‖r1

Lr1
(R3

+
)
=

∫
∞

0

∫
∞

0

∫
∞

0

∣∣∣
f(u)

u

∣∣∣
p

|g(v)|q[e−u cosh(x+v) + e−u cosh(x−v)] du dv dx

6

∫
∞

0

∫
∞

0

∫
∞

0

∣∣∣
f(u)

u

∣∣∣
p

K0(βu)|g(v)|r du dv

= ‖f‖p

L−p,β
p (R+)

‖g‖q
Lq(R+).

From (2.10), (2.11) and (2.12) we have

‖F‖Lp1
(R3

+
)‖G‖Lq1

(R3
+

)‖H‖Lr1
(R3

+
)(2.13)

6 2(p−1)/p‖f‖L−p,β
p (R+)‖g‖Lq(R+)‖h‖Lr(R+).

From (2.9) and (2.13), by three-function form of the Hölder inequality [2] we have
∣∣∣∣
∫

∞

0

(f
γ∗ g)(x) · h(x) dx

∣∣∣∣

6
1

π
2

∫
∞

0

∫
∞

0

∫
∞

0

∣∣∣
f(u)

u

∣∣∣|g(v)||h(x)|[e−u cosh(x+v) + e−u cosh(x−v)] du dv dx

=
1

π
2

∫
∞

0

∫
∞

0

∫
∞

0

F (x, u, v)G(x, u, v)H(x, u, v) du dv dx

6
1

π
2
‖F‖Lp1

(R3
+

)‖G‖Lq1
(R3

+
)‖H‖Lr1

(R3
+

)

6
2(p−1)/p

π
2

‖f‖L−p,β
p (R+)‖g‖Lq(R+)‖h‖Lr(R+).

The proof is complete. �
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The following Young’s type inequality is the direct corollary of the above theorem

Corollary 2.1 (A Young’s Type Inequality). Let 1 < p < ∞, 1 < q < ∞,
1 < r < ∞ be such that 1/p + 1/q = 1 + 1/r and let f ∈ L−p,β

p (R+), 0 < β 6 1,

g ∈ Lq(R+). Then the generalized convolution (1.11) is well-defined in Lr(R+),

moreover, the following inequality holds:

(2.14) ‖f γ∗ g‖Lr(R+) 6
2(p−1)/p

π
2

‖f‖L−p,β
p (R+)‖g‖Lq(R+).

3. A Watson type theorem

An important part of the integral transforms theory is to study unitary transforms.

In this section, for a class of differential operators of infinite order, we give a condition

on the kernel h such that the convolution transformation (3.3) defines a unitary

operator in L2(R+), and calculate the inverse transformation.

By an argument similar to that in the proof of Theorem 2.1, one can easily prove

the following lemma.

Lemma 3.1. Let h ∈ L−2,β
2 (R+), 0 < β 6 1, and f ∈ L2(R+). Then the gener-

alized convolution (1.11) satisfies the factorization equality (1.12). Furthermore, the

following generalized Parseval identity holds:

(3.1) (h
γ∗ f)(x) =

√
2

π

∫
∞

0

1

y sinh πy
K−1[h](y)(Fcf)(y) cosxy dy,

where the integral is understood in the L2(R+) norm, if necessary.

Theorem 3.1. Let h ∈ L−2,β
2 (R+), 0 < β 6 1. Then the condition

(3.2) |K−1[h](τ)| =
1

cosh(πτ)

is necessary and sufficient for the transformation f 7→ g given by formula

(3.3) g(x) =
d2

π
2 dx2

∞∏

k=0

(
1 − 4 d2

k2 dx2

) ∫
∞

0

∫
∞

0

1

u
(e−u cosh(x+v)

+ e−u cosh(x−v))h(u)f(v) du dv,
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to be unitary on L2(R+). Moreover, the inverse transformation can be written in

the symmetric form

(3.4)

f(x) = lim
N→∞

d2

π
2 dx2

N∏

k=0

(
1 − 4 d2

k2 dx2

) ∫
∞

0

∫
∞

0

1

u
(e−u cosh(x+v)

+ e−u cosh(x−v))h̄(u)f(v) du dv.

Here, the limit is understood in the L2(R+) norm.

P r o o f. Sufficiency. Suppose that the function h satisfies condition (3.2).

Applying Lemma 3.1, it is easy to see that the generalized convolution transform (3.3)

can be written in the form

(3.5)

g(x) =

√
2

π

lim
N→∞

d2

dx2

N∏

k=0

(
1 − 4 d2

k2 dx2

) ∫
∞

0

1

y sinh πy
(Kiy[h])(Fcf)(y) cosxy dy,

or equivalently, g(x) = lim
N→∞

gN(x), where

gN (x) =
d2

dx2

N∏

k=0

(
1 − 4 d2

k2 dx2

)
Fc

( 1

y sinh πy
(Kiy[h])(Fcf)(y)

)
(x).

It is well-known that h(y), yh(y), y2h(y) ∈ L2(R+) if and only if (Fh)(x),

(d(Fh)(x)/dx), (d2(Fh)(x)/dx2) ∈ L2(R+) (Theorem 68, page 92, [11]). Therefore,

h(y), yh(y), y2h(y), . . ., ynh(y) ∈ L2(R+) if and only if (Fh)(x), (d(Fh)(x)/dx),

(d2(Fh)(x)/dx2), . . . , (dn(Fh)(x)/dxn) ∈ L2(R+). Moreover, for each positive inte-

ger n we have
d2n

dx2n
(Fh)(x) = (−1)nF (y2nh(y))(x).

Therefore, if y2
N∏

k=0

(1 + 4y2/k2)h(y) ∈ L2(R+) then the following formula holds:

(3.6)
d2

dx2

N∏

k=0

(
1 − 4 d2

k2 dx2

)
(Fch)(x) = −Fc

[
y2

N∏

k=0

(
1 +

4y2

k2

)
h(y)

]
(x).

From condition (3.2) and the infinite product form of sinh z (see formula (4.5.68)

in [1]) we have

∣∣∣∣y
2

N∏

k=0

(1 + (4y2/k2))(1/y sinh πy)K−1[h](y)

∣∣∣∣ = 1

/ ∞∏

k=N+1

(1 + (4y2/k2)) < 1,
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and hence it is bounded. Therefore

y2
N∏

k=0

(
1 +

4y2

k2

) 1

y sinh πy
K−1[h](y)(Fcf)(y) ∈ L2(R+),

and formula (3.6) yields

gN (x) = Fc

[
y2

N∏

k=0

(
1 +

4y2

k2

) 1

y sinh πy
K−1[h](y)(Fcf)(y)

]
(x) ∈ L2(R+).

This shows that gN belongs to L2(R+). Applying the Fourier cosine transform to

both sides of the above relation, we have

(FcgN )(y) = y2
N∏

k=0

(
1 +

4y2

k2

) 1

y sinh πy
K−1[h](y)(Fcf)(y).

Besides, from the Parseval equality for the Fourier cosine transform ‖Fcf‖L2(R+) =

‖f‖L2(R+), it follows that

‖FcgN − Fcg‖L2(R+) = ‖gN − g‖L2(R+) → 0, N → ∞.

Therefore, using formula (4.5.68) in [1] we conclude that

(Fcg)(y) = y2
∞∏

k=0

(
1 +

4y2

k2

) 1

y sinh πy
K−1[h](y)(Fcf)(y)

= y sinh 2πy
1

2y sinh πy
K−1[h](y)(Fcf)(y)

= cosh πyK−1[h](y)(Fcf)(y).

From condition (3.2), it is easy to see that |(Fcg)(y)| ≡ |(Fcf)(y)|, then ‖f‖L2(R+) =

‖g‖L2(R+), which implies that the transform (3.3) is unitary. Again from condition

(3.2) we obtain

cosh πyK−1[h̄](y)(Fcg)(y) = (Fcf)(y).

Thus, in the same manner as above it corresponds to (3.4) and the inversion formula

of the transform (3.3) follows.

Necessity. Suppose that transform (3.3) is unitary on L2(R+) and the inversion

formula is defined by (3.4). Then using the Parseval type identity (3.1), the Parseval

identity for the Fourier cosine transform, and formula (4.5.68) in [1] we obtain

‖g‖L2(R+) = ‖ coshπyK−1[h](y)(Fcf)(y)‖L2(R+) = ‖Fcf‖L2(R+) = ‖f‖L2(R+).

The middle equality holds for all f ∈ L2(R+) if and only if h satisfies the condi-

tion (3.2). This completes the proof of the theorem. �
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4. A class of integro-differential problems

In spite of having many useful applications (see [7]), not many integro-differential

equations can be solved in closed form. No application of convolution type transforms

of solving integro-differential was presented in recent investigations [3], [4], [13], [15].

In this section, we apply a general class of Fourier cosine and Kontorovich-Lebedev

generalized convolution transforms to solve a class of integro-differential problems,

which seems to be difficult to solve in closed form by using other techniques. Namely,

in case D =
(

d2

dx2

) n−1∏
k=1

(
− d2

dx2 + k2
)
, the transform f 7→ Kh(f) := D(h

γ∗ f) is of the

form

(4.1)

(Khf)(x) =
1

π
2

d2

dx2

n−1∏

k=1

(
− d2

dx2
+ k2

)∫
∞

0

∫
∞

0

1

u
[e−u cosh(x+v)

+ e−u cosh(x−v)]h(u)f(v) du dv.

We consider the integro-differential problem

f(x) + (Khf)(x) = g(x),(4.2)

d2k−1

dx2k−1
f(0) = 0, k = 1, n,

lim
x→∞

f (k)(x) = 0, k = 0, 2n− 1.

Here, h, g are given functions in L1(R+), and f is the unknown function.

In order to give a solution of the above problem, note that, for h ∈ L1(R+) such

that h(0) = 0, lim
x→∞

h′(x) = 0, the Fourier sine and Fourier cosine transforms of h, h′

exist. Furthermore,

(4.3) (Fsh
′)(y) =

1√
2π

∫
∞

0

h′(x) sin xy dx

=
1√
2π

{
h(x) sin xy

∣∣∣
∞

0
− y

∫
∞

0

h(x) cosxy dx

}

= − y(Fch)(y),

and

(4.4) (Fch
′)(y) =

1√
2π

∫
∞

0

h′(x) cos xy dx = y(Fsh)(y).
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Theorem 4.1. Suppose the following condition holds:

(4.5) 1 − (2n − 1)!√
2π · 22n−1

Fc

(
h

γ∗ 1

cosh2n τ/2

)
(y) 6= 0, ∀y > 0.

Then problem (4.2) has a unique solution in L1(R+) whose closed form is

(4.6) f(x) = g(x) + (g ∗
Fc

l)(x),

where l ∈ L1(R+) is defined by

(Fcl)(y) =
((2n − 1)!/

√
2π · 22n−1)Fc(h

γ∗ cosh−2n τ/2)(y)

1 − ((2n − 1)!/
√

2π · 22n−1)Fc(h
γ∗ cosh−2n τ/2)(y)

.

P r o o f. The equation (4.2) can be rewritten in the form

(4.7) f(x) +
d2

dx2

n−1∏

k=1

(
− d2

dx2
+ k2

)
{(h γ∗ f)(x)} = g(x).

Applying the Fourier cosine transform to both sides of (4.7), by original conditions

(4.2) and by virtue of the factorization equality (1.12) and formulas (4.3), (4.4) we

obtain

(4.8) (Fcf)(y) − y2
n−1∏

k=1

(y2 + k2) · 1

y sinh πy
K−1[h](y)(Fcf)(y) = (Fcg)(y).

Using formula (see relation (1.9.3) in [5])

Fc

( 1

cosh2n τ/2

)
(y) =

√
2π · 22n−1y

(2n − 1)! sinh πy

n−1∏

k=1

(y2 + k2),

we have

(Fcf)(y) − (2n − 1)!√
2π · 22n−1

Fc

( 1

cosh2n τ/2

)
(y)K−1[h](y)(Fcf)(y) = (Fcg)(y),

or equivalently,

(Fcf)(y)
[
1 − (2n − 1)!√

2π · 22n−1
Fc

(
h(τ)

γ∗ 1

cosh2n τ/2

)
(y)

]
= (Fcg)(y).
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From condition (4.5) we get

(4.9)

(Fcf)(y) =

(
1 +

((2n − 1)!/
√

2π · 22n−1)Fc(h
γ∗ cosh−2n τ/2)(y)

1 − ((2n − 1)!/
√

2π · 22n−1)Fc(h
γ∗ cosh−2n τ/2)(y)

)
(Fcg)(y).

Recall that the Wiener-Levy theorem [8] states that if f is the Fourier transform of

an L1(R) function, and ϕ is analytic in a neighborhood of the origin that contains

the domain {f(y), ∀y ∈ R}, and ϕ(0) = 0, then ϕ(f) is also the Fourier transform of

an L1(R) function. For the Fourier cosine transform it means that if f is the Fourier

cosine transform of an L1(R+) function, and ϕ is analytic in a neighborhood of the

origin that contains the domain {f(y), ∀y ∈ R+}, and ϕ(0) = 0, then ϕ(f) is also

the Fourier cosine transform of an L1(R+) function.

By the given condition (4.5) the function ϕ(z) = z/(1 + z) satisfies the conditions

of the Wiener-Levy theorem, and therefore, there exists a unique function l ∈ L1(R+)

such that

(Fcl)(y) =
((2n − 1)!/

√
2π · 22n−1)Fc(h

γ∗ cosh−2n τ/2)(y)

1 − ((2n − 1)!/
√

2π · 22n−1)Fc(h
γ∗ cosh−2n τ/2)(y)

.

Therefore the equation (4.9) becomes

(Fcf)(y) = (1 + (Fcl)(y))(Fcg) = Fc(g + g ∗
Fc

l)(y),

which implies f(x) = g(x) + (g ∗
Fc

l)(x). The proof is complete. �
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