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MEASURING CONSISTENCY AND INCONSISTENCY
OF PAIR COMPARISON SYSTEMS

Jaroslav Raḿık and Milan Vlach

In this paper we deal with mathematical modeling of real processes that are based on pref-
erence relations in the sense that, for every pair of distinct alternatives, the processes are linked
to a value of preference degree of one alternative over the other one. The use of preference
relations is usual in decision making, psychology, economics, knowledge acquisition techniques
for knowledge-based systems, social choice and many other social sciences. For designing useful
mathematical models of such processes, it is very important to adequately represent properties
of preference relations. We are mainly interested in the properties of such representations which
are usually called reciprocity, consistency and transitivity. In decision making processes, the
lack of reciprocity, consistency or transitivity may result in wrong conclusions. That is why it
is so important to study the conditions under which these properties are satisfied. However, the
perfect consistency or transitivity is difficult to obtain in practice, particularly when evaluating
preferences on a set with a large number of alternatives. Under different preference representa-
tion structures, the multiplicative and additive preference representations are incorporated in
the decision problem by means of a transformation function between multiplicative and additive
representations. Some theoretical results on relationships between multiplicative and additive
representations of preferences on finite sets are presented and some possibilities of measuring
their consistency or transitivity are proposed and discussed. Illustrative numerical examples
are provided.

Keywords: multi-criteria optimization, pair-wise comparison matrix, AHP

Classification: 90B50, 90C29, 91B08

1. INTRODUCTION

Decision making in situations with multiple variants is a prominent area of research in
decision theory, particularly, in the multi-criteria decision making when we wish to rank
the variants or criteria, or to select the best one. This topic has been widely studied;
see, for example, [7, 16, 24, 27, 29]. In this paper, we are concerned with methods in
which a decision-maker (DM) is required to compare alternatives in pairs; that is, for
each pair, the DM is required to provide information which of the two alternatives he
or she prefers, or about the degree of this preference. The resulting pair comparison
system (a pairwise comparison matrix in the case of a finite number of alternatives) is
a powerful inference tool that can be also used as a knowledge acquisition technique for
knowledge-based systems. It can also be useful for assessing the relative importance of
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several objects, when this cannot be done by direct rating. In fact, this perspective has
been recently used for measuring the importance ranking of web sites [4]. It can be used
also in coalitional preferences and coalitional domination concepts of coalitional games
[21, 22].

As it is known, most of real decision making processes are based on preference rela-
tions in the sense that, for every pair of distinct alternatives, the processes are linked to
a value of preference degree of one alternative over the other one. The use of preference
relations is usual in decision making [8, 16, 19, 27, 29]. Therefore, to establish properties
to be satisfied by such preference relations is very important for designing good math-
ematical models. Three of these properties we investigate in this paper is the so called
reciprocity, consistency and transitivity property. The lack of these properties in a deci-
sion making process may result in wrong conclusions. Therefore, it is important to study
conditions under which they are satisfied, see [3, 15, 17, 23, 26, 28, 29]. However, in
practice, the perfect consistency or perfect transitivity is difficult to obtain, particularly,
when it is necessary to evaluate preferences on a set with a large or even infinite number
of alternatives. Then it is important to know, whether our preferences are sufficiently
coherent, in other words, we ask whether our preferences are consistent or transitive.
Here, we deal with two types of consistency: multiplicative one, [26], and additive one,
[15, 18]. Our goal here is to derive some simple tools enabling us to measure the grade of
consistency and transitivity of pair comparison systems, or, giving us some information
about inconsistency of our preferences, i. e., how much the consistency or transitivity of
our preferences is damaged. If a calculated inconsistency grade is sufficiently low, then
the corresponding relation deduced from the pair comparison system can be applied to
the DM problem. Otherwise, the system should be reconsidered and newly adjusted.

The paper is structured as follows. In Section 2 we deal with representation of pref-
erences that involves measurement performed by assigning numbers to represent prop-
erties of possibly nonnumerical systems by properties of numerical systems. In fact, this
means assigning numbers to alternatives so that some properties of relation “preferred
to” are preserved in the corresponding numerical system. Two basic problems of these
measurements are investigated: First, finding conditions under which such assignment
is possible, and second, determining the type of uniqueness of the resulting measure.
Here, we present both some results from the literature concerning the set of alternatives
X with arbitrary cardinality and results for a more specific situation where X is a de-
numerable or finite set. In Section 3 general pair comparison systems are dealt with.
We consider a function p, (x, y) 7→ pxy, that maps X ×X into the unit interval [0, 1] of
real numbers. Such functions arise quite naturally in a number of decision making situa-
tions. We define several consistency conditions which are closely related to the standard
notion of transitivity. In Section 4 we define two types of pairwise comparison matrices
as well as the corresponding concepts of reciprocity, consistency and transitivity for the
situation of finite set of alternatives X where the information about preference relations
is represented by a square matrix. In Section 5 we investigate mutual relationships be-
tween consistency and transitivity and derive some necessary and sufficient conditions
for their existence. Section 6 deals with the problem of measuring inconsistency. For
this purpose we define three inconsistency indices. Section 7 provides several illustrative
examples. Finally, in Section 8 some conclusions are presented.
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2. REPRESENTATION OF PREFERENCES

As stated in the Introduction, we are concerned with situations in which a (cardinal)
weighted ranking and the corresponding (ordinal) ordering of a nonempty set of alterna-
tives should be deduced from information provided through pairwise comparisons; that
is, from information provided by a decision-maker about his or her preferences (or their
intensity) by means of a real-valued function on the Cartesian product of the set of
alternatives with itself. Numerous models of various complexity for dealing with this
problem have been proposed and analyzed in various branches of measurement theory,
utility theory, and theory of decision making.

Various abstract models of preference structures differ in assumptions about the sets
of feasible alternatives, individual preferences, types of preference representations, fields
of application, and other features. Nevertheless, all reasonably applicable models sup-
pose that the preference relations satisfy some consistency conditions; for example, the
conditions of asymmetry, transitivity or completeness. Application of such models often
involves measurement which is performed by assigning numbers to represent properties
of possibly nonnumerical systems by properties of numerical systems. In the case of pref-
erence, this means assigning numbers to alternatives so that some properties of relation
“preferred to” are preserved in the corresponding numerical system. Two basic prob-
lems of these measurements are that of finding conditions under which such assignment
is possible, and that of determining the type of uniqueness of the resulting measure.

We begin with a brief reminder of some of the basic representations of preference
structures on a fixed nonempty set X; for details and here undefined terms, see [13, 14,
20] and [25].

2.1. Ordinal measurement

It is well-known that if a binary relation� on a finite or denumerable set X is asymmetric
and negatively transitive, then there is a real-valued function f on X such that

x � y if and only if f(x) > f(y) for all x, y ∈ X. (1)

Moreover, if (1) holds, then [x � y ⇔ g(x) > g(y) for all x, y ∈ X] for a real valued
function g on X if and only if [g(x) > g(y) ⇔ f(x) > f(y) for all x, y ∈ X]. In other
words, the function f in (1) is unique up to an increasing transformation of real numbers.
The triple consisting of the (empirical) system (X,�), (numerical) system (Re,>), and
function f satisfying (1), (which maps X into the set Re of real numbers) is called an
ordinal scale1.

For sets of arbitrary cardinality, we have the following necessary and sufficient con-
ditions of the existence of an ordinal scale: If � is a complete asymmetric transitive
binary relation on X, then there is a real-valued function f on X satisfying (1) if and
only if (X,�) has a countable order-dense subset.

1When the systems (X,�), and (Re, >) are clear from the context, we often refer to f alone as the
scale. We make use of this impreciseness also for other types of scales.
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2.2. Difference measurement

Let D be a quaternary relation on X, and let E and W be quaternary relations on X
defined by2

xyEuv ⇔ [not(xyDuv) and not(uvDxy)],
xyWuv ⇔ [(xyDuv) or (xyEuv)].

In the case of preference, the statement xyDuv may mean that the DM prefers x to
y more than he or she prefers u to v. In practice, the relation D may be obtained by
comparison of pairs of alternatives, or by asking the DM to make numerical estimates
d(x, y) ≥ 0 of absolute differences, and then defining D by

xyDuv if and only if δ(x, y) > δ(u, v) (2)

where

δ(x, y) =

 0 if x = y or x and y are judged equally important,
d(x, y) if x is judged more important than y,
−d(x, y) if y is judged more important than x.

To guarantee that system (X, D) can be represented by a numerical system, one has
to impose some conditions on D. For this purpose we associate with D a binary relation
�D on X ×X defined by

(x, y) �D (u, v) ⇔ xyDuv. (3)

We shall say that (X, D) is an algebraic difference structure if D satisfies the following
five conditions.

C1 The relation �D is asymmetric and negatively transitive.

C2 If xyDuv, then vuDyx for all x, y, u, v from X.

C3 If xyWx′y′ and yzWy′z′, then xzWx′z′ for all x, y, z, x′, y′z′ from X.

C4 If xyWuv holds and uvWzz holds, then there are a, b in X such that xaEuv and
byEuv.

To state the fifth condition we need the notion of the strictly bounded standard
sequence. A sequence (x1, x2, . . .) of elements from X is called standard if xi+1xiEx2x1

holds for all xi, xi+1 in the sequence and x2x1Ex1x1 does not hold. A standard sequence
is called strictly bounded if there exist u, v in X such that, for all xi in the sequence, we
have uvDxix1 and xix1Dvu.

C5 Every strictly bounded standard sequence is finite.

2To support intuition, we write xyRuv instead of (x, y, u, v) ∈ R whenever R is a quaternary relation.
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The following result on representation of algebraic difference structures is proved
in [20]: If a system (X, D) satisfies conditions C1 – C5, then there is a real-valued func-
tion f on X so that, for all x, y, u, v from X,

xyDuv if and only if f(x)− f(y) > f(u)− f(v). (4)

Moreover, if f is a function satisfying (4) for an algebraic difference structure (X, D)
and if ∆ is a quaternary relation on Re defined by

ab∆cd ⇔ a− b > c− d, (5)

then the triple 〈(X, D), (Re,∆), f〉 is an interval scale; that is, f is unique up to a
positive affine transformation of real numbers.

For finite algebraic difference structures, we have the following necessary and sufficient
conditions for the existence of a function f satisfying (4).

If X is a nonempty finite set, then the following three conditions are necessary and
sufficient for there to be a real valued function f on X satisfying (4):

• xyDuv or uvDxy holds for all x, y, u, v from X.

• If xyDuv, then vuDyx for all x, y, u, v from X.

• Let n be a positive integer and π, σ be permutation of {0, 1, . . . , n − 1}. For
all sequences (x0, x1, . . . , xn−1, y0, y1, . . . , yn−1), if xiyiWxπ(i)yσ(i) holds for all
0 < i < n, then xπ(0)yσ(0)Wx0y0.

It is worth noting that the properties C1 – C5 also guarantee the existence of a function
g that maps X into the set of positive real numbers so that, for all x, y, u, v ∈ X,

xyDuv if and only if
g(x)
g(y)

>
g(u)
g(v)

, (6)

and that such function g is unique up to a transformation of real numbers of the form
ξ 7→ αξβ with positive α, β. Such scales are called log-interval.

In addition to the ordinal, interval, and log-interval scales, we shall need also some
other scale types. Namely, the ratio scale, difference scale and absolute scale. The ratio
scale is unique up to a positive linear transformation of real numbers. The difference
scale is unique up to a transformation ξ 7→ ξ +β. The absolute scale is unique up to the
transformation ξ 7→ ξ; that is, the absolute scale is absolute in the sense that the only
permissible transformation is the identity transformation.

Remark 2.1. Notice that the difference scales correspond to ratio scales by transfor-
mation of the latter by logarithmic transformation because if a scale f is unique up to
multiplication by a positive number α, then log f is unique up to addition of β where
β = log α. Similarly, log-interval scales correspond to exponential transformations of
interval scales. Also notice that if f and g are ratio scales with values in the set of
positive numbers, then the derived scale f

g is an absolute scale.
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3. PAIR COMPARISON SYSTEMS

Let p be a function (x, y) 7→ pxy that maps X × X into the unit interval [0, 1] of real
numbers. Such functions may arise quite naturally in a number of situations. For
example, pxy may be the proportion of individuals from a given group who prefer x to
y, or it may be the frequency with which x is preferred to y in repeated experiments, or
it may be a membership function of a fuzzy subset of X×X. Following the terminology
of [25] (which we are doing throughout this section), we call (X, p) a pair comparison
system.

When we are trying to recover a preference relation on X from values of p by requiring
that x is preferred to y whenever pxy > pyx, then the resulting relation can be the empty
relation or it may have no consistency property required from preference relations like,
for example, asymmetry or transitivity. Therefore it is necessary to require from p to
satisfy some properties which would guarantee some kind of consistency.

An obvious desirable property is the requirement that pxy +pyx = 1 for all pairs (x, y)
of distinct elements from X. The pair comparison system (X, p) with this property is
called a forced choice pair comparison system. It would be natural to leave pxx undefined
for all x but, for convenience, it is usually assumed that pxx = 0.5 for all x.

Let (X, p) be a forced choice pair comparison system. We say that (X, p) satisfies

• the weak utility model if there is a real-valued function f on X satisfying

pxy > pyx if and only if f(x) > f(y), (7)

• the strong utility model if there is a real-valued function f on X satisfying

pxy > puv if and only if f(x)− f(y) > f(u)− f(v), (8)

• the strict utility model if there is a real-valued function f on X satisfying

pxy =
f(x)

f(x) + f(y)
. (9)

It can be shown that:

– A forced choice pair comparison system (X, p) with finite or denumerable set X
satisfies the weak utility model if and only if the binary relation R defined by
xRy ⇔ pxy ≥ pyx is transitive and complete.

– If (X, p) is a forced choice pair comparison system and a function f satisfies (7), then
f defines an ordinal scale.

– If the quaternary relation D defined by xyDuv ⇔ pxy > puv is an algebraic difference
structure, then the forced choice pair comparison system (X, p) satisfies the strong
utility model.

– If (X, p) is an algebraic difference structure and a function f satisfies (8), then f
defines an interval scale.
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– A forced choice pair comparison system (X, p) with pxy ∈ (0, 1) satisfies the strict
utility model if and only if

pxypyzpzx = pxzpzypyx for all x, y, z ∈ X. (10)

– If (X, p) with pxy ∈ (0, 1) is a forced choice comparison system satisfying (10) and if
f is a positive function satisfying (9) for (X, p), then f defines a ratio scale.

In the next section we shall need several consistency conditions which are closely
related to the standard notion of transitivity.

A forced choice pair comparison system (X, p) is said to satisfy

• weak transitivity if, for all x, y, z in X,

(pxy ≥ 0.5 and pyz ≥ 0.5) implies pxz ≥ 0.5; (11)

• moderate transitivity if, for all x, y, z in X,

(pxy ≥ 0.5 and pyz ≥ 0.5) implies pxz ≥ min(pxy, pyz); (12)

• strong transitivity if, for all x, y, z in X,

(pxy ≥ 0.5 and pyz ≥ 0.5) implies pxz ≥ max(pxy, pyz). (13)

In [14], these transitivity concepts are called weak (moderate, strong) stochastic tran-
sitivity. As we do not consider here the stochastic context of the relations, the word
“stochastic” is omitted.

4. PAIRWISE COMPARISON MATRICES

From now on, we shall be concerned with pair comparison systems on a finite set X =
{x1, x2, . . . , xn} of n mutually distinct alternatives. In this case, it is natural to represent
a pair comparison systems (X, p) discussed in the previous section by an n × n matrix
P = {pij} with 0 ≤ pij ≤ 1, and apply the results of the measurement theory to problems
we are dealing with. For example, it can be shown (see [14]) that, in the finite case,

strict utility model ⇒ strong transitivity ⇒ moderate transitivity ⇒ weak transitivity
⇔ weak utility model3.

Now we have a number of conditions for deriving weighted ranking of X in ordinal,
interval, or ratio sense from matrices representing forced choice pair comparison systems.
However we take more general view and consider also matrices whose elements are
numbers that are not necessarily in the interval [0, 1]. For example, if the elements are
to represent the preference ratios, then it is natural to allow matrices with elements from
(0,∞) or from some finite subsets of (0,∞), whereas if the elements are to represent
the difference of preference, then it is appropriate to allow elements from (−∞,∞).
Nevertheless, we begin with matrices whose elements are in the interval [0, 1].

3The strong utility model implies strong transitivity even without restriction to finite sets.
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4.1. Additively reciprocal matrices

An n × n matrix whose entries are from the unit interval [0, 1] can be viewed as the
membership function of a fuzzy subsets of X ×X, and it may be interpreted as a fuzzy
preference relation on X4; see, for example, [11, 15, 17, 23, 27]. However, we shall look
at such matrices differently. We shall assume that the DM has a preference relation on
X and such a matrix provides information about the DM preference relation through
the pairwise comparison process.

Let B = {bij} be an n× n matrix with 0 ≤ bij ≤ 1 for all i, j. If the values of entries
of B are interpreted according to the rule that bij = 0.5 indicates indifference between
xi and xj , bij = 1 indicates that xi is absolutely preferred to xj , bij = 0 indicates that
xj is absolutely preferred to xi, and bij > 0.5 indicates that xi is preferred to xj , then
we immediately face the problem of possible inconsistencies. To give a drastic example,
let us consider the case in which bij = bji = 1 for some i different from j. Then we
face an extreme inconsistency: xi is absolutely preferred to xj and at the same time
xj is absolutely preferred to xi. Consequently, to make the interpretation meaningful,
a number of conditions (like those presented in the previous section for not necessarily
finite sets of alternatives) have been proposed and analyzed in the literature; see, for
example, [14, 15, 18, 25, 29, 30].

To avoid obvious inconsistency that could destroy even asymmetry of preference
relation, we confine ourselves to the matrices with 0 ≤ bij ≤ 1 that satisfy the condition

bij + bji = 1 for all i, j. (14)

We shall call such matrices additively reciprocal (a-reciprocal). Notice that if B = {bij} is
an a-reciprocal matrix, then (X, p) with p(xi, xj) = bij is a forced choice pair comparison
system. Consequently, we shall use the following terminology for a-reciprocal matrices.

Weak transitivity

(bij ≥ 0.5 and bjk ≥ 0.5) implies bik ≥ 0.5. (15)

The interpretation of this condition is the following: If xi is preferred or indiffer-
ent to xj and xj is preferred or indifferent to xk, then xi should be preferred or
indifferent to xk. This kind of transitivity is the usual transitivity condition that
a logical and consistent person should use if he or she does not want to express
inconsistent opinions. Therefore, it is the minimum requirement that a consistent
fuzzy preference relation should satisfy. Moreover, because the weak transitiv-
ity implies the weak utility model on finite sets, we know that it guarantees the
existence of weights that provide ranking in the ordinal sense.

Strong transitivity

(bij ≥ 0.5 and bjk ≥ 0.5) implies bik ≥ max(bij , bjk). (16)

When an alternative xi is preferred or indifferent to xj with a value bij and xj

is preferred or indifferent to xk with a value bjk, then xi should be preferred to

4also called a valued relation on X
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xk with at least an intensity of preference bik being equal to the maximum of the
above values. It is clear that this concept is stronger than the concept of weak
transitivity. This concept has been considered by Tanino [29] as a compulsory
condition to be verified by a “consistent” fuzzy preference relation.

Moderate transitivity

(bij ≥ 0.5 and bjk ≥ 0.5) implies bik ≥ min(bij , bjk). (17)

Multiplicative transitivity (m-transitivity)

bijbjkbki = bikbkjbji for all i, j, k. (18)

Notice that this correspond to (10). If bij > 0 for all i and j, then (18) can be
rewritten as

bij

bji
.
bjk

bkj
=

bik

bki
for all i, j, k, (19)

or, equivalently,
bij

bji
.
bjk

bkj
.
bki

bik
= 1 for all i, j, k. (20)

Here, the ratio is interpreted as the preference intensity for xi to that of xj ; that
is, “xi is times as good as xj”. For instance, when comparing xi and xj , and xi

is assigned 60 % of the property and xj is assigned 40 %, and at the same time,
comparing xj and xk, xj is assigned 70 % of the property and xk is assigned 30 %,
then comparing xi and xk, xi is assigned 700

9 % of the property (that is, 77, 8 %)
and xk is assigned 200

9 % of that property (that is, 22, 2 %).

It is easy to prove that if B = {bij} is an m-transitive matrix, then it is strongly
transitive. Evidently, the converse is not true.

Additive transitivity (a-transitivity)

(bij − 0.5) + (bjk − 0.5) = (bik − 0.5) for all i, j, k. (21)

Equivalently, (21) can be rewritten as

bij + bjk + bki = 1.5 for all i, j, k. (22)

The interpretation of the additive transitivity is rather difficult [18]. It is easy
to prove that if B = {bij} is additively transitive, then it is strongly transitive.
Therefore, the additive transitivity is a stronger concept than strong transitivity,
Evidently, there is no inclusion between multiplicatively and additively transitive
relations.
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4.2. Multiplicatively reciprocal matrices

We begin with recalling the classical Saaty’s Analytic Hierarchy Process. The essential
component of Saaty’s method is the extraction of a vector of weights (also called prior-
ities) for a nonempty finite set of alternatives from pairwise comparisons stated in an
absolute scale.

In detail, let X = {x1, x2, . . . , xn} be a finite set of mutually distinct alternatives,
and let us assume that the intensities of DM’s preferences are given by an n× n matrix
A = {aij} with positive elements in such a way that, for all i and j, the entry aij

indicates the ratio of preference intensity for alternative xi to that of xj . In other words,
aij indicates that “xi is aij times as good as xj ”. Saaty [26] suggests to represent
the preference intensities on the absolute scale {1/9, 1/8, . . . , 1/2, 1, 2, . . . , 8, 9} where
aij = 1 indicates equal intensity of preference, aij = 9 indicates extreme intensity of
preference for xi over xj , and aij ∈ {2, 3, . . . , 8} indicates intermediate evaluations, and
the elements of A satisfy the reciprocity condition aijaji = 1 for all i, j. If, for example,
xi is 3 times as good as xj , then the goodness of xj is 1/3 with respect to the goodness
of xi.

In general, for arbitrary positive matrices A = {aij}, we introduce the notions of
multiplicative reciprocity and multiplicative consistency as follows. A positive n × n
matrix A = {aij} is called

• multiplicatively reciprocal (m-reciprocal), if

aijaji = 1 for all i, j, (23)

• multiplicatively consistent (or, m-consistent) [15, 27], if

aij = aikakj for all i, j, k. (24)

Notice that aii = 1 for all i, and that

– every m-consistent matrix is also m-reciprocal (however, not vice-versa);

– the equality (24) can be rewritten equivalently as

aik.akj .aji = 1 for all i, j, k; (25)

– if A with 0 < aij < 1 is m-consistent then A is multiplicatively transitive;

– if A with 0 < aij < 1 is is m-reciprocal, then A is multiplicatively transitive (that is,
a-consistent) if and only if A is m-consistent.

In what follows, we shall investigate mutual relationships between multiplicatively
and additively reciprocal nonnegative n × n matrices with respect to some transitivity
properties.
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5. RELATIONS BETWEEN A-RECIPROCAL AND M-RECIPROCAL MATRICES

In this section we shall investigate some relationships between a-reciprocal and m-
reciprocal pairwise comparison matrices. We start with extending recent results of
E. Herrera-Viedma et al. [18], see also [6] – [10].

For this purpose, given σ > 1, we define the following transformation functions ϕ
and ϕ−1

ϕ(t) =
1
2

(
1 +

ln t

lnσ

)
for t ∈ [

1
σ

, σ], (26)

ϕ−1(t) = σ2t−1 for t ∈ [0, 1]. (27)

We prove that a-transitive matrices and m-consistent matrices are mutually related
in the following way [18].

Proposition 5.1. Let σ > 1 and let A = {aij} be an n×n matrix with 1
σ ≤ aij ≤ σ for

all i and j. Then A = {aij} is an m-consistent if and only if B = {ϕ(aij)} is a-transitive.

P r o o f . Let A = {aij} be an n× n matrix with 1
σ ≤ aij ≤ σ for all i and j.

Suppose that A is m-consistent and set bij = ϕ(aij) for all i and j. Then by (19)

bij + bjk + bki =
1
2

(
3 +

ln aijajkaki

lnσ

)
for all i, j, k. (28)

Hence, by (25) we have aijajkaki = 1 for all i, j, k and then

bij + bjk + bki = 1.5 for all i, j, k. (29)

Now, suppose that B = {ϕ(aij)} is a-transitive. Then

1
2

(
1 +

ln aij

lnσ

)
+

1
2

(
1 +

ln ajk

lnσ

)
+

1
2

(
1 +

ln aki

lnσ

)
=

3
2

for all i, j, k,

which is equivalent to
ln aijajkaki

lnσ
= 0 for all i, j, k.

Therefore, aijajkaki = 1 and by (25), A = {aij} is m-consistent. �

The following “inverse result” will be useful in the next section for measuring the
grade of intransitivity.

Proposition 5.2. Let σ > 1 and let B = {bij} be an a-reciprocal n × n matrix with
0 ≤ bij ≤ 1 for all i and j. Then B = {bij} is an a-transitive matrix if and only if
A = {ϕ−1(bij)} is m-consistent.

P r o o f . Let B = {bij} be additively transitive. Then, by setting aij = ϕ−1(bij), we
obtain

aijajkaki = σ2bij−1σ2bjk−1σ2bki−1 = σ2(bij+bjk+bki)−3 = σ2( 3
2 )−3 = 1 for all i, j, k.
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Therefore, A = {aij} is m-consistent.
On the other hand, if A = {ϕ−1(bij)} is m-consistent, then by (25)

aijajkaki = σ2bij−1σ2bjk−1σ2bki−1 = σ2(bij+bjk+bki)−3 = 1 for all i, j, k.

Hence, 2(bij + bjk + bki)− 3 = 0 for all i, j, k, and thus B = {bij} is a-transitive. �

Propositions 5.1 and 5.2 give a characterization of additive-transitive matrix by some
transformed m-consistent matrix dependent on the given scale [1/σ;σ], where σ > 1.
Usually, for example. in [9, 10, 18], and [27], σ = 9.

In the following proposition we characterize an additive-reciprocal matrix by some
transformed multiplicatively reciprocal matrix using transformations independent of the
scale.

Proposition 5.3. (i) An n × n matrix B = {bij} with 0 < bij < 1 for all i and j is
a-reciprocal if and only if A = {aij} = { bij

1−bij
} is m-reciprocal.

(ii) A positive n × n matrix A = {aij} is m-reciprocal if and only if B = {bij}
= { aij

1+aij
} is a-reciprocal.

P r o o f . (i) Let B be a-reciprocal. Then

aji =
bji

1− bji
=

1− bij

1− (1− bij)
=

1− bij

bij
=

1
aij

,

hence, A = {aij} is m-reciprocal.
Now, assume that A = {aij} = { bij

1−bij
} is m-reciprocal, then

bij

1− bij
=

1− bji

bji
,

hence, bji = 1− bij and B is a-reciprocal.

(ii) Let A = {aij} be m-reciprocal. Then

bji =
aji

1 + aji
=

1
aij

1 + 1
aij

=
1

1 + aij
= 1− aij

1 + aij
= 1− bij ,

hence, B = {bij} is a-reciprocal.
Now, assume that B = {bij} is a-reciprocal, then

aij

1 + aij
= 1− aji

1 + aji
,

hence, aij .aji = 1 and A is m-reciprocal. �

In the following proposition we characterize a multiplicatively transitive matrix by
some transformed multiplicatively consistent matrix using different transformation not
dependent on a scale. In the next section it will be useful for measuring the grade of
intransitivity.
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Proposition 5.4. (i) An a-reciprocal matrix B = {bij} with 0 < bij < 1 for all i and j

is m-transitive if and only if A = {aij} = { bij

1−bij
} is m-consistent.

(ii) A positive m-reciprocal n × n matrix A = {aij} is m-consistent if and only if
B = {bij} = { aij

1+aij
} is m-transitive.

P r o o f . (i) By a-reciprocity of B, (25) and (20) are clearly equivalent.
(ii) We have 0 <

aij

1+aij
< 1 for all i, j. Moreover, B = {bij} = { aij

1+aij
} is a-reciprocal,

as

bji =
aji

1 + aji
=

1
aij

1 + 1
aij

=
1

1 + aij
= 1− aij

1 + aij
= 1− bij .

By (i), B = {bij} = { aij

1+aij
} is m-transitive iff { bij

1−bij
} is m-consistent. However,

bij

1−bij
=

aij
1+aij

1−
aij

1+aij

= aij , hence, A is m-consistent. �

The following result gives a characterization of m-consistent matrix by a vector of
weights, that is, by a positive vector with sum of elements equal to one.

Proposition 5.5. A positive n×n matrix A = {aij} is m-consistent if and only if there
exists a vector w = (w1, w2, . . . , wn) with wi > 0 for all i = 1, 2, . . . , n, and

∑n
i=1 wi = 1

such that
aij =

wi

wj
for all i, j = 1, 2, . . . , n. (30)

P r o o f . (i) A = {aij} be m-consistent. For i = 1, 2, . . . , n, set

vi = (ai1ai2 . . . ain)
1
n . (31)

Moreover, set

S =
n∑

i=1

vi

and, finally, define
wi =

vi

S
for i = 1, 2, . . . , n. (32)

Then, for i, j = 1, 2, . . . , n, by reciprocity (23) and consistency (24) we obtain suc-
cessively

wi

wj
=

( ai1ai2 . . . ain

aj1aj2 . . . ajn

) 1
n

= ((ai1a1j)(ai2a2j) . . . (ainanj))
1
n = (aij · aij . . . aij)

1
n = aij .

Moreover,
∑n

i=1 wi = 1, consequently, (30) is true.
(ii) If (30) holds, then evidently (24) is satisfied, hence, A = {aij} is m-consistent. �

In the following proposition we derive a similar characterization of m-transitive ma-
trices.
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Proposition 5.6. Let B = {bij} be an a-reciprocal n × n matrix with 0 < bij < 1
for all i and j. Then B = {bij} is m-transitive if and only if there exists a vector
v = (v1, v2, . . . , vn) with vi > 0 for all i = 1, 2, . . . , n, and

∑n
i=1 vi = 1 such that

bij =
vi

vi + vj
for all i, j = 1, 2, . . . , n. (33)

P r o o f . By Proposition 5.4 (i), we know that B = {bij} is m-transitive if and only if
A = {aij} = { bij

1−bij
} is m-consistent. By Proposition 5.5, this result is equivalent to the

existence of a vector v = (v1, v2, . . . , vn) with vi > 0 for all i = 1, 2, . . . , n, such that
bij

1−bij
= vi

vj
for all i, j = 1, 2, . . . , n, or, equivalently, bij = vi

vi+vj
for all i, j = 1, 2, . . . , n,

i. e. (33) is true5. �

When considering Propositions 5.3, 5.4 and 5.6, it is clear that the concept of mul-
tiplicative transitivity plays a similar role for a-reciprocal matrices as the concept of
m-consistency does for m-reciprocal matrices. That is why it is reasonable to introduce
the following definition.

Definition 5.7. Any n × n nonnegative a-reciprocal matrix B = {bij} which is m-
transitive is called additively consistent (a-consistent).

Proposition 5.6 can be then reformulated as follows.

Proposition 5.8. Let B = {bij} be an a-reciprocal n × n matrix with 0 < bij < 1
for all i and j. Then B = {bij} is a-consistent if and only if there exists a vector
v = (v1, v2, . . . , vn) with vi > 0 for all i = 1, 2, . . . , n, and such that (33) is true.

Propositions 5.1 to 5.4 can be also similarly reformulated according to Definition 5.7,
however, we leave it to the reader.

In practice, perfect consistency or transitivity is difficult to obtain, particularly when
measuring preferences on a set with a large number of alternatives. In the following
section we deal with the problem of measuring consistency/transitivity, or, inconsis-
tency/intransitivity of such pairwise comparison matrices.

6. INCONSISTENCY/INTRANSITIVITY OF PAIRWISE COMPARISON
MATRICES

If, for some positive n× n matrix A = {aij} and for some i, j, k = 1, 2, . . . , n, the multi-
plicative consistency condition (24) does not hold, then A is said to be multiplicatively
inconsistent (or, m-inconsistent). Furthermore if, for some n×n matrix B = {bij} with
0 ≤ bij ≤ 1 for all i and j, and for some i, j, k = 1, 2, . . . , n, (18) does not hold, then B is
said to be additively inconsistent (or, a-inconsistent). Finally if, for some n× n matrix
B = {bij} with 0 ≤ bij ≤ 1 for all i and j, and for some i, j, k = 1, 2, . . . , n, (22) does
not hold, then B is said to be additively intransitive (or, a-intransitive). In order to

5Compare with (9) in the definition of the strict utility mode.
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measure the grade of inconsistency/intransitivity of a given matrix several measurement
methods have been proposed in the literature.

We have already mentioned that multiplicative m-reciprocal matrices are considered
in Analytic hierarchy process [26]. In order to measure the grade of inconsistency, T.
Saaty proposed the consistency ratio (CR) [27]. Moreover, for prioritization procedure
based on the geometric mean, the geometric consistency ratio was proposed in [5] and
[1], with interpretation analogous to that of CR. In [3], Koczkodaj proposed a new
consistency index based on 3× 3 sub-matrices and derived its relation to CR. Singular
value decomposition method by Gass and Rapcsak [16] is another method for measuring
consistency of positive m-reciprocal matrix. Recently, Stein and Mizzi [28] proposed the
harmonic consistency index. Ramı́k and Korviny [23] proposed an inconsistency index
for measuring of pairwise comparison matrix with fuzzy elements.

As far as additively reciprocal matrices are concerned, appropriate methods for mea-
suring inconsistency, or intransitivity, are not known to the authors. Some methods for
measuring a-inconsistency/a-intransitivity will be dealt with in this section.

Instead of positive matrices we first consider generalized preference matrices with
nonnegative elements; that is, some of their elements are permitted to be zeros. A
typical example is so called won/lost matrix A = {aij} with the elements aij defined for
all i and j by

aij =

 1 if i beats j
0 if j beats i
0.5 if i and j are equal.

(34)

Measuring inconsistency of this matrix can be based on the Perron–Frobenius theory
which is known in several versions [2, 26, 12]. For a comfort of the reader, let us recall
it shortly. One of the assumptions of the Perron–Frobenius theory is that the matrix
does not have an off-diagonal zero-block. More precisely, a square matrix A is cogredient
to a matrix B if there exists a permutation matrix P with elements 0 or 1 such that
PAPT = B, where PT is the transpose - and hence also the inverse - of P . That is,
two matrices are cogredient if one can be obtained from the other by applying the same
permutation to its rows and columns. The matrix A is reducible if it is cogredient to a
partitioned matrix

B =
(

C D
0 F

)
(35)

where the diagonal blocks C and F are square. If a matrix is not reducible, it is said to
be irreducible. Obviously, every positive matrix is irreducible. For instance, a won-lost
matrix (35) is reducible if and only if the players can be partitioned into two groups
such that players from the group one are always beaten by players from the group two.

The Perron–Frobenius theorem, see e. g. [12], describes some of the remarkable prop-
erties enjoyed by the eigenvalues and eigenvectors of irreducible nonnegative matrices.

Theorem 6.1. (Perron–Frobenius) Let A be an irreducible nonnegative square matrix.
Then the spectral radius, ρ(A), is a real eigenvalue, which has a positive (real) eigenvec-
tor. This eigenvalue called the principal eigenvalue of A is simple (it is not a multiple
root of the characteristic equation), and its eigenvector is unique up to a multiplicative
constant.
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The m-consistency of a nonnegative m-reciprocal n× n matrix A is measured by the
m-consistency index Imc(A) by

Imc(A) =
ρ(A)− n

n− 1
(36)

where ρ(A) is the spectral radius of A (particularly, principal eigenvalue of A).
The “relative importance” of the alternatives in X is determined by the vector of

weights w = (w1, w2, . . . , wn), with wi > 0, for all i = 1, 2, . . . , n, such that
∑n

i=1 wi = 1,
which is called the (normalized) principal eigenvector of A. It holds

Aw = ρ(A)w (37)

Since the weight wi is interpreted as the relative importance of alternative xi, the
alternatives x1, x2, . . . , xn in X are ranked by their relative importance, or, they are
ordered by their magnitude. The following important result has been derived in [27].

Theorem 6.2. Let A = {aij} be an n× n positive m-reciprocal matrix. Then Imc(A)
≥ 0 and A is m-consistent if and only if Imc(A) = 0.

To provide a (in)consistency measure independently of the dimension of the matrix,
n, T. Saaty in [27] proposed the m-consistency ratio CRmc. T. Saaty himself called
it in [27] consistency ratio. Here, in order to distinguish it from the other consistency
measures, we shall call it m-consistency ratio. This consistency ratio is obtained by
taking the ratio Imc to its mean value Rmc over a large number of positive m-reciprocal
matrices of dimension n, whose entries are randomly and uniformly chosen, i. e.

CRmc =
Imc

Rmc
. (38)

For this consistency measure T. Saaty proposed an estimation of 10% threshold for
the CRmc. A pairwise comparison matrix should be accepted in decision making process
if its m-consistency ratio does not surpass this threshold. In other words, in practical
decision making situations, inconsistency is “acceptable” if CRmc < 0.1, see [27].

The m-consistency index Imc has been defined by (36) only for m-reciprocal matri-
ces. Now, we shall investigate inconsistency/intransitivity also for a-reciprocal matrices.
For this purpose we use relations between m-consistent and a-transitive/a-consistent
matrices derived in Proposition 5.4 and Proposition 5.2.

Let us denote

φ(t) =
t

1 + t
for t > 0, (39)

φ−1(t) =
t

1− t
for 0 < t < 1. (40)

Let B = {bij} be an a-reciprocal n× n matrix with 0 < bij < 1 for all i and j. Now,
we define the a-consistency index Iac(B) of the positive a-reciprocal matrix B = {bij}
as follows

Iac(B) = Imc(A),where A = {φ−1(bij)}. (41)

From (40), (41) we obtain the following result which is parallel to Theorem 6.2.
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Theorem 6.3. Let B = {bij} be an a-reciprocal n × n matrix with 0 < bij < 1 for all
i and j. Then Iac(A) ≥ 0 and B is a-consistent if and only if Iac(B) = 0.

P r o o f . 1. Let B be a-consistent, i. e. m-transitive. By Proposition 5.4 (i), A =
{φ−1(bij)} is m-consistent. By Theorem 6.2, Imc(A) = 0, hence, by (41), Iac(B) =
Imc(A) = 0.

2. Let Iac(B) = 0. Then by (41), Imc(A) = 0, where A = {φ−1(bij)}. By Theorem
6.2, A is m-consistent. Now, by Proposition 5.4 (ii), {φ(φ−1(bij))} = {bij} = B is
m-transitive, i. e. a-consistent. �

Now, we shall deal with measuring a-intransitivity of a-reciprocal matrices. Recall
transformation functions ϕ and ϕ−1 defined by (26), (27), where σ > 1.

ϕ(t) =
1
2

(
1 +

ln t

lnσ

)
for t ∈ [1/σ;σ],

ϕ−1(t) = σ2t−1 for t ∈ [0; 1].

Let B = {bij} be an a-reciprocal n × n matrix with 0 < bij < 1 for all i and j. We
define the a-transitivity index Iat(B) of the positive a-reciprocal matrix B = {bij} as
follows:

Iat(B) = Imc(A),where A = {ϕ−1(bij)}. (42)

From (27), (42) we obtain the following result which is parallel to Theorem 6.2 and
Theorem 6.3.

Theorem 6.4. Let B = {bij} be an a-reciprocal n × n matrix with 0 < bij < 1 for all
i and j. Then Iat(A) ≥ 0 and B is a-transitive if and only if Iat(B) = 0.

P r o o f . 1. Let B be a-transitive. By Proposition 5.2, A = {ϕ−1(bij)} is m-consistent.
By Theorem 6.2, Imc(A) = 0, hence, by (42), Iat(B) = Imc(A) = 0.

2. Let Iat(B) = 0. Then by (42), Imc(A) = 0, where A = {ϕ−1(bij)}. By Theorem
6.2, A is m-consistent. Now, by Proposition 5.3, {ϕ(ϕ−1(bij))} = {bij} = B is a-
transitive. �

Let A = {aij} be an a-reciprocal n× n matrix. In (38), the m-consistency ratio of A
denoted by CRmc(A) is obtained by taking the ratio Imc(A) to its mean value Rmc(n)
over a large number of randomly and uniformly generated positive m-reciprocal matrices
of dimension n, that is,

CRmc(A) =
Imc(A)
Rmc(n)

. (43)

The following table gives the dimension n of the matrix in the first row and cor-
responding mean value Rmc(n) over a large number of randomly generated positive
m-reciprocal matrices of dimension n = 3,4,. . . ,10.



482 J. RAMÍK AND M. VLACH

n 3 4 5 6 7 8 9 10
Rmc(n) 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49

Similarly, we define a-consistency ratio and a-transitivity ratio. Let B = {bij} be an
a-reciprocal n × n matrix with 0 < bij < 1 for all i and j. We define the a-consistency
ratio CRac of B as follows:

CRac(B) =
Iac(B)
Rmc(n)

. (44)

Moreover, we define a-transitivity ratio CRat of B as

CRat(B) =
Iat(B)
Rmc(n)

. (45)

In practical decision making situations, a-inconsistency of a positive a-reciprocal pair-
wise comparison matrix B is “acceptable” if CRac(B) < 0.1. Also, a-intransitivity of a
positive a-reciprocal pairwise comparison matrix B is “acceptable” if CRat(B) < 0.1.

7. ILLUSTRATIVE EXAMPLES

Example 7.1. Let X = {x1, x2, x3, x4} be a set of 4 alternatives (products) and let A
be a pairwise comparison matrix obtained as the result of comparisons of all pairs xi ,
xj evaluated on the scale [1/10; 10] by a DM according to the criterion “design”,

A =


1 5

3
10
3 10

3
5 1 2 6
3
10

1
2 1 3

1
10

1
6

1
3 1

 . (46)

Here, as it can be easily verified by (24), A = {aij} is m-consistent and m-reciprocal.
Then, by Theorem 6.2, Imc(A) = 0, hence by (36), CRmc(A) = 0.

Also, w = (0.5; 0.3; 0.15; 0.05) is the corresponding vector of weights given by Propo-
sition 5.5 with A = {wi/wj}. Consequently, according to the criterion “design” , the
best alternative is x1, (with the corresponding weight 0.5), the second best is x2(with
0.3), then x3(with 0.15), and the worst alternative is x4(with 0.05).

Now, let B = {bij} = { aij

1+aij
} = {φ(aij)}, that is,

B =


0.5 0.63 0.77 0.91
0.38 0.5 0.67 0.86
0.23 0.33 0.5 0.75
0.09 0.14 0.25 0.5

 . (47)

By Proposition 5.3 (i), B is a-reciprocal and by Proposition 5.4 (ii), B is m-transitive
(that is, a-consistent). This fact can be also easily verified directly by (18). Moreover,
the above stated vector w satisfies Proposition 5.6 where B is a matrix evaluated by the
corresponding additive pairwise comparison relation. By (41), the additive consistency
index Iac(B) = Imc(A) = 0, where A = {φ−1(bij)}, hence by (44), CRac(A) = 0.
Similarly, by (42) and (45), for additive transitivity, we obtain Iat(B) = CRat(A) = 0,
where A = {ϕ−1(bij)}.
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Example 7.2. Let us consider the same decision problem as in Example 7.1, with the
different DM, who evaluated all pairs xi, xj of the pairwise comparison matrix C as
follows:

C =


1 2 3 9

0.5 1 2 6
0.3 0.5 1 3
0.1 0.16 0.3 1

 . (48)

Here, as it can be easily verified by (24), C = {cij} is m-inconsistent as a12a23 =
2× 2 = 4 6= 3 = a13.

The vector of weights w = (w1, w2, w3, w4), with wi > 0, for all i = 1, 2, 3, 4, and
satisfying

Cw = ρ(C)w (49)

is calculated as follows: w = (0.503; 0.290; 0.155; 0.052) with ρ(C) = λmax = 4.01 and
m-consistency ratio CRmc = 0.0038 < 0.1. Hence, in this DM situation, m-inconsistency
of matrix C is acceptable; in other words, it is slightly m-inconsistent.

Example 7.3. Let Z = {z1, z2, z3, z4} be again a set of 4 alternatives, D be a pairwise
comparison matrix: the result of comparisons of all pairs zi, zj evaluated on the scale
[0, 1] by a DM according to the criterion “comfort” ,

D =


0.5 0.4 0.6 0.7
0.6 0.5 0.6 0.9
0.4 0.4 0.5 0.5
0.3 0.1 0.5 0.5

 . (50)

Here, D = {dij} is a-reciprocal and it is a-inconsistent, as it may be directly verified
by (18); for example, d12.d23.d31 6= d32.d21.d13. At the same time, D is a-intransitive
because d12 + d23 + d31 = 1.9 6= 1.5.

We can calculate the following matrices

E = {φ−1(dij)} =


1 0.67 1.5 2.33

1.5 1 1.5 9
0.67 0.67 1 1
0.43 0.11 1 1

 ,

F = {ϕ−1(dij)} =


1 0.64 1.55 2.41

1.55 1 1.55 5.80
0.64 0.64 1 1
0.42 0.17 1 1

 ,

where σ = 9.
We also calculate ρ(E) = 4.29, ρ(F ) = 4.15, and by (36), (44) and (45) we obtain
CRac(D) = 0.11 > 0.1, with the vector of weights wE = (0.249; 0.473; 0.177; 0.102),

and CRat(D) = 0.0055 < 0.1, with the vector of weights wF = (0.267; 0.435; 0.181; 0.117).
As it is evident, a-consistency ratio CRac(D) > 0.1, it is too high that matrix D

should be considered “a-consistent”. On the other hand, a-transitivity ratio CRat(D) <
0.1, it is sufficiently low so that matrix D is considered “a-transitive”.
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According to the criterion “comfort”, the best alternative is z2 (with the correspond-
ing weight 0.473, resp. 0.435), the second best is z1 (0.249, resp. 0.267), then z3 (0.177,
resp. 0.181), and the worst alternative is z4 (with 0.102, resp. 0.117).

8. CONCLUSION

In this paper we have investigated properties of two types of pair comparison systems
and their mutuals relations. In particular, we have been interested in several consistency
properties of these systems and the ways of measurement of inconsistency. New features
and results presented in this paper can be summarized as follows:

• We dealt with the representation of preferences that involves measurement per-
formed by assigning numbers to represent properties of possibly nonnumerical
systems by properties of numerical systems. Two basic problems of these measure-
ments were investigated: First, finding conditions under which such assignment is
possible, and second, determining the type of uniqueness of the resulting measure.
Here, we presented both some results from the literature concerning the set of
alternatives X with arbitrary cardinality and results for a more specific situation
where X was a denumerable or finite set.

• General pair comparison systems were dealt with. We considered functions that
map X × X into the unit interval [0, 1] of real numbers. We also defined sev-
eral consistency conditions which were closely related to the standard notion of
transitivity.

• Defining function ϕ by formula (26), we extended the concept of the transforma-
tion function introduced by Herrera et al. [18], allowing the Saaty’s scale [1/9, 9]
to become [1/σ, σ] with σ > 1. Moreover, by (27) we defined a new transforma-
tion functions ϕ and ϕ−1. Some properties of equivalence between multiplicative
consistency and additive transitivity have been derived in Propositions 5.1 and
5.2.

• The concept of additive consistency (a-consistency) as a counterpart to m-consistency
proved to be equivalent to the multiplicative transitivity known from the literature.

• In Proposition 5.3 and Proposition 5.4 we characterized an a-consistent matrix by
some transformed m-consistent matrix using a transformation independent of the
scale.

• Proposition 5.5 gives a characterization of m-consistent matrix by a vector of
weights, i. e. a positive vector with sum of elements equal to one.

• In Proposition 5.6 we gave a characterization of a-consistent matrix by a vector of
weights.

• We summarized some results of Perron–Frobenius theory concerning the spectral
radius of irreducible matrices applicable both to m-reciprocal and a-reciprocal
positive square matrices, i. e. pairwise comparison matrices. In the literature, an
inconsistency measure, i. e. inconsistency index, is known only for m-reciprocal
matrix. Here we defined the inconsistency index also for a-reciprocal matrices.
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