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MODELLING FINANCIAL TIME SERIES
USING REFLECTIONS OF COPULAS

JozEF KOMORNIK AND MAGDA KOMORNIKOVA

We have intensified studies of reflections of copulas (that we introduced recently in [6]) and
found that their convex combinations exhibit potentially useful fitting properties for original
copulas of the Normal, Frank, Clayton and Gumbel types. We show that these properties
enable us to construct interesting models for the relations between investment in stocks and
gold.

Keywords: copula, tail dependence, survival copula, reflections of copulas, stock index,
returns of index investments, returns of gold investments

Classification: 93E12, 62A10

1. INTRODUCTION

It has been observed that during crisis periods of the international stock markets, the
investments in commodities seemed to provide safer alternatives to investors. To investi-
gate this phenomenon we have applied the reflections mainly of the Gumbel and Clayton
copulas (that are known for non-zero values of certain tail dependencies coefficients) to
derive suitable (alternative) models for relations between the returns of investments in
the New York stock exchange index and gold.

The paper is organized as follows. The second section is devoted to a brief overview
of the theory of copulas, the reflection copula and the tail dependence coefficients. The
third section contains an application part of the paper. Finally, some conclusions are
presented.

2. THEORETICAL CONCEPTS

Let (X,Y) be a 2-dimensional random vector with a joint distribution F'xy and marginal
distribution functions Fx, Fy. We will use the standard definition of a copula [5l [7]
C(u,v) : [0,1]% — [0, 1] satisfying

Fxy(z,y) = C(Fx(z), Fy (y)) (1)
and corresponding density function (if C' is absolutely continuous)
92
c(u,v) = mC(u,v). (2)
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In our subsequent investigations, we mainly utilize two families of one—parametric Archimedean
copulas Gumbel and strict Clayton ([3, [ [7]) .

For these families of copulas we apply the (left, right and composed) reflections that
exhibit new interesting properties concerning additional coefficients of tail dependencies.

e Gumbel family )
CGG(UM)) = exp_((—lnu)e-&-(—lnu)@)e )

where 6 > 1. Let us note that CF (u,v) = Il(u,v) = u - v.

e Strict Clayton family (Kimeldorf and Sampson)

!
—

C§Y(u,v) = (u79 T~ 1) (4)
for > 0, O (u,v) = I (u,v) = u - v.

To enrich the classes of considered models, we also consider the classes of Frank and
Normal copulas.

e Frank family

. efeu _ 670'0
CF u.0) = —log (1- L= ) 6

for 0 > 0, CF(u,v) = U(u,v) = u - v.

e Normal family
Cg(u,v) =9, ((I>_1(u), (I>_1(v)) (6)

for |o| <1, where @ is the distribution function of the one-dimensional normalized
normal distribution and @, is the 2-dimensional distribution function of normalized
normal distribution with given Pearson’s correlation coefficient p.

A rich overview of Archimedean copulas is presented in Embrechts et. al [3], Genest and
Favre [4], Joe [B] and Nelsen [7].

Let us recall that for a given copula C(u,v) the lower (left) and upper (right) tail
dependence coefficients are defined by

)\L(C) = (%I_I)I(I)P’I"(Fy(y) S (5|Fx(.’1,‘) S ) = lim

§ (7)
= ;ii%Pr (Fx(CC) < 5|FY(y) < 5)
and

m25—1+0(61—5,1—5) -

AR(C) = lim Pr(Py(y) > 18| Px(a) > 1-6) = I
:}iI%PT(FX(fF) >1-0[Fy(y)21-9).
It is well known [B [7] that the Gumbel copula CQG and Clayton copula CQC ! satisfy the

relation

Ar(C§)=2-20, A (C§)=0
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and 1
)\R(CQCI)ZO, )\L(CGCZ):2_§.

It is also well known (see [3]) that the values of Ag and Ap, for normal and Frank
copulas are equal to 0.

We follow the approach of Patton [10] and consider a so—called survival copula derived
from a given copula C(u,v) corresponding to the couple (X,Y") by

SCu,v)=u+v—-1+C(1—wu,1—v) ©))

which is the copula corresponding to the couple (—X, —Y") with the marginal distribution
functions
F x(x)=1-Fx(—2") and F_y(y) =1 — Fy(—y™). (10)

Obviously, the relations
AL(SC) = Ag(C) and Ag(SC) = AL(C)

hold.

Convex combinations of copulas and corresponding survival copulas has been suc-
cessfully applied for modelling of exchange rates dependences (e.g. in Patton [I0] and
Ning [8, @]).

We will attempt to use in our modelling procedures also copulas LC and RC' corre-
sponding to the couples (—X,Y) and (X, -Y).

They have the form

LC(u,v) =v—C(1 —u,v)
and

RC(u,v) =u—C(u,1 —v).
We will call the copulas LC and RC' the left and the right reflections of the copula C.
Since the survival copula SC' can be obtained in the form of the right reflection of the
copula LC' as well as the left reflection of the copula RC', we included SC also in the
family of the reflections of the copula C'. Observe that if C' is an absolutely contin-
uous copula with density function cc(u,v), then also all its reflections are absolutely
continuous with the respective density functions

cro(u,v) = co(l—u,v),
cro(u,v) = co(u,1 —v)

d
o cse(u,v) = cc(l—u,1—w).

We recall the definitions of upper—lower and lower—upper tail dependencies for the copula
C(u,v) (c.f. [6]) by Arr(C) = Ar(LC) and Apr(C) = AL(LC). It is obvious that for
the Gumbel copula C' = C’QG the equalities

Arn(LC) = ALr(RC) = Ap(C) = 2 — 2

hold.
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Similarly, for the Clayton copula C' = C’QC ! we have
)\RL(RC) = )\LR(LC) = )\L(C) = 2_%.

Using the system Mathematica we easily get that the values of Apr and Ary are equal
to 0 for all Gumbel, Clayton, Frank and normal copulas.

It is well known that for the convex sums of copulas, the corresponding density
function is the convex sum (with the same weights) of incoming density functions. The
same kind of mixing behaviour can be observed for the coefficients of tail dependencies
AR, AL, ALg and ARp.

3. MODELLING APPLICATIONS

In the modelling part, we concentrate our attention to the relations between returns
of the New York stock exchange and gold in the period 31.8.1999-3.12.2010 that
is including two dramatic stock market crises (1.9.2000-8.10.2002 and 20.7.2007 -
4.3.2009). On the contrary, in those periods the prices of gold had not been dramatically
suffering (which might have inspired the conjecture of shifts of investors’ attention and
money from volatility stocks to more safe commodities in the times of crises).

The following Figure [1| shows the parallel development of the values of the New York
stock exchange and prices of gold in the considered time periods.

The next Figures [2[ and [3| show development of returns of the New York stock index
and gold in all the periods.

In order to avoid a possible violation of the i.i.d. property of the analysed data, we
first filtered both investigated univariate time series (in all considered time periods) by
ARMA-GARCH models (all computations have been performed using the package Time
Series of software Mathematica). Subsequently we applied the fitting by copulas to the
residuals of those filters.

On the basis of the above mentioned properties of the coefficients of tail dependencies
for the individual families of copulas, we considered models from Normal, Frank, Clay-
ton, Gumbel families and their pairwise convex combinations (following a suggestion of
one of the reviewers) as well as the convex combinations of models from the last 2 above
mentioned families with their left and right reflections and their survival copulas.

For selecting the optimal models we applied the Kolmogorov—Smirnov Anderson—
Darling (KSAD, for which we use the abbreviation AD) [I] test statistic (for which
we also constructed a GoF simulation based test), when comparing models with they
submodels and different families of models. For testing of nested models we applied
likelihood ratio (LR) tests [2].

We start with the models for the whole period (31.8.1999-3. 12.2010). The minimum
value of AD were achieved by the models

0.348 % CSLy, 4+ 0.651 « LOSL,s  (A)

with AD = 1.574 and non-zero tail dependence coefficients A\, = 0.349 * 2031 =
0.060, Arp = 0.651 x 2523 = 0.034 followed by

0.713 % RO 55 + 0.287 % SC%,, (B)
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Fig. 1. Standardized values of N. Y. stock index (gray) and gold
prices (black).

Whole period Second period Fourth period

Fig. 2. Returns of gold investment (black) and N. Y. stock index
(gray) in periods 31.8.1999-3.12.2010 (left), 1.9.2000-8. 10. 2002
(middle), 20.7.2007 4. 3.2009 (right).

First period Third period Fifth period

Fig. 3. Returns of gold investment (black) and N. Y. stock index
(gray) in periods 31.8.1999—30.8.2000 (left), 9.10.2002—19.7.2007
(middle) and 5.3.2009-3.12.2010 (right).
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with AD = 1.606, Ay = 0.287 % (2 — 27%00) = 0.085, Az = 0.713 % (2 — 27125 ) = 0.106.
(Note that Ar > Ar). Next follow the models

0.364 % C™y 443 + 0.636 + CSLey  (C)
with AD = 1.954, A, = 0.636 2~ 525 = 0.058 and
0.278 % LC g0 + 0.722 % SCCo, (D)

with AD = 2.203, A\, =0.722* (2 — Qﬁ) =0.081, A\ g =0.278 % (2 — 2%) = 0.097.
For all above models, the simulation based GoF tests for AD yielded p—values > 0.1.

All one—dimensional nested submodels of the above two—dimensional models have
substantially larger values of AD (between 2.98 and 9.6). All LR tests for comparisons
the nested submodels yielded p—values < 0.001.

10 10

Fig. 4. 3D plot of the density functions for the optimal models (A —
left, B — right) of the relation between the daily returns of N. Y. stock
index and gold for the whole period (31.8.1999—3.12.2010).

Since the above types of models in the families (C¢! +LC¢!, RCY+SCE, C™+C,
LC% + SC%) will appear in the subsequent analyses, we will preserve for them the same
notation A, B, C, D (in combination with the number of the considered time periods).

Next we concentrate at two crisis period. For the second period (1.9.2000 — 8.10.2002)
the minimum value of AD was achieved for the model

0.497 % C™y ong + 0.503 % CSLes  (20)

with AD = 1.505 and A, = 0.503 % 2~ 5255 = (.0446.
A slightly greater values of AD has the competing models

0.602 % RCCyoq + 0.388 % SCC 45 (2B)

with AD = 1.575, Ay = 0.388 (2 — 273 ) = 0.062, ALg = 0.602 * (2 — 2737 ) = 0.208
(again Apg > Ap) and

0.359 % LCCq9 + 0.641 % SC%,s  (2D)
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with AD = 1.575, Ay = 0.641 % (2 — 27015 ) = 0.038, Agr = 0.359 % (2 — 2753 ) = 0.170.
Next follows the model

0.633 % CCL . + 0367« LCSL,,  (24)

with AD = 1.641, A = 0.633 % 27137 = 0.383, Az = 0.367 % 2~ 060 ) = 0.106.

For all models (24) — (2D), the simulation based GoF tests for AD yielded p—values
> 0.1. Among all considered more dimensional models, the (clearly) lowest value of
AD was reached by the optimal model in the family C¢! + LC®! + RCC! + SC! with
AD = 1.669. However, the LR test vs. the nested submodel (24) yielded p-value > 0.1.

The attempt to unify the models (2B) and (2D) in LCY + RO + SCY yielded a
substantial increase of AD to 2.686.

All one-dimensional nested submodels of the models (24) — (2D) the LR tests yielded
p-values < 0.05 except for RCC, 5 vs. (2B) (p-value = 0.074). However, since the value
of AD = 4.717 for this submodel is substantially greater than for (2B), we hesitate to
consider that submodel more appropriate than (2B).

10

Fig. 5. 3D plot of the density functions for the optimal models (2C —
left, 2B — right) of the relation between the daily returns of N. Y.
stock index and gold for the time period 1.9.2000-38. 10.2002.

For the fourth period (20.7.2007 — 4.3.2009) the (practically identical) minimum val-
ues of AD = 1.27 were achieved by the 3 models
0.325 % C™y 74y +0.675 % CSL,  (4C)
with Az, = 0.675 « 2~ 0471 = 0.156;
0.512 % ROC s +0.488 x SCCaq,  (4B)
with Az = 0.488 % (2 — 27357) = 0.170, Apg = 0.512 % (2 — 27453 ) = 0.199;

0.393 % LCC,9 4 0.607 + SCT,,,  (4D)
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with Ay = 0.607 % (2 — 2131 ) = 0.184, Ay = 0.393 % (2 — 2751 ) = 0.211.
Slightly greater value of AD was achieved by the model

0.471 % CSLog + 0.529 « LCSLs,  (4A)

with AD = 1.332, Ay, = 0.471 2~ 508 = 0.151, Az = 0.529 % 2~ o5t = (.182.

Again the unified model for (4B) and (4D) in the family LCY + RCE + SC¢ yielded
a substantially higher value of AD = 1.723 (higher than for some other 2—component
models).

For all models (4A4) — (4D), the simulation based GoF tests for AD yielded p—values
> 0.1. Among all considered more dimensional models, the (clearly) lowest value of
AD was reached by the optimal model in the family C¢ + LCY + RCE + SC% with
AD = 1.732. However, the LR test vs. the nested submodels (4B) and (4D) yielded
p—values > 0.1.

All one-dimensional nested submodels of the models (4A) — (4D) the LR tests yielded
p—values < 0.01.

Fig. 6. 3D plot of the density functions for the optimal models (4C —
left, 4B — right) of the relation between the daily returns of N. Y.
stock index and gold for the time period 20. 7. 2007 —4. 3. 2009.

For the first period (31.8.1999-30.8.2000), the value of AD for the product copula
II was 1.44. The models with the minimum values of AD in all Archimedean copula
classes have parameters that are extremely close to their limit values corresponding to
the product copula II. The models with minimum values of AD (among all considered
models) were those with copula functions

0.94 % C™y 145+ 0.06 x CSy, with AD =1.344  (10)

and
0.867 % CC 05 + 0.133 % LOTy,,  with AD = 1.346.  (1E)

The first model seems to be close to the Gauss family, where the optimal submodel
G" o7 has AD = 1.77, which is substantially larger then the value AD = 1.44 for
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the product copula II. Moreover, the LR test for the nested submodels C7 = II vs.
C% + LCC yielded p-value 0.37. Therefore, IT seems to be a satisfactory model for the
investigated time series of residuals in the first period.

For the third period (9.10.2002 — 19.7.2007) the value of AD for II was 3.39. The
models with the minimum values of AD in all Archimedean copula classes have param-
eters that are extremely close to their limit values corresponding to the product copula
II. The lowest value of AD = 2.104 (p-value = 0.835) was (clearly) achieved for the
model

0.358 % C™( 904 +0.642x CSL  (3C)

with A = 0.642 % 2~ 017 = 0.013.

Since both II as well as the optimal submodel in the Gauss family C”,, (with
AD = 4.9) had substantially higher values of AD, we did not consider reductions of this
model to 1-dimensional submodels.

Fig. 7. 3D plot of the density function for the optimal model (3C) of
the relation between the daily returns of N. Y. stock index and gold
for the time period 9.10.2002—-19. 7. 2007.

For the fifth period (5.3.2009—3.12.2010) the lowest value of AD was achieved by
the one-component model
SCTi1 (5F)

with AD = 1.243, \p, = (2 — 2111 = 0.142 followed by
0.827 % Cllogs + 0.173 x CFlae  (50)
with AD = 1.286, Ay = 0.173 % 2~ 193 = (.121,
Ciaoz  (5G)
with AD = 1.334, A, = 2020z = 0.032 and by

0.695 + LCCy, + 0.305 % SC%;,  (5D)
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with AD = 1.387, Ay = 0.305 % (2 — 27653) = 0.146, Agp = 0.695 (2 — 27022 ) = (.021.

For all above models, the simulation based GoF tests for AD yielded p—values > 0.1.
The LR test for the nested submodels (5F) vs. (5D) and (5G) vs. (5C) yielded p—values
> 0.05, thus we restrict our attention to (5F) and (5G).

Fig. 8. 3D plot of the density functions for the optimal models (5F —
left, 5G — right) of the relation between the daily returns of N. Y.
stock index and gold for the time period 5.3.2009 3. 12. 2010.

4. CONCLUSION

Our attempt to show that the models with negative deviations of stock returns accom-
panied by positive deviation of gold returns (i.e. with significantly positive values of
the coefficient of lower—upper tail dependencies (that are typical for the models with
RC% or LOC! components) can be useful for explanation of the joint behaviour of the
returns on investment in the N.Y. stock index and gold was partially supported by the
outcomes of our analyses.

According the Kolmogorov—Smirnov Anderson-Darling criteria (AD) of GoF that we
used for selection of the best models (in accordance with a suggestion of one reviewer)
2—component models were clearly favoured over their more dimensional alternatives.
However, among 2—component models, several candidates of them scored very similar
values of the above criteria.

For the whole time period (31.8.1999-3.12.2010), the minimum values of AD were
really reached for the model families C¢! + LC®! and RCY + SC%. However, for the
two crisis periods, some other models scored comparable values of AD, especially in
the family Gauss + Clayton (that we included in our analysis following a suggestion
of one reviewer). The optimum models in this family are interesting. Although they
theoretically have only one non-zero coefficient of tail dependence (\r,), the graphs of
their densities show elevated values also in another corners of the unit square. This
phenomenon might be an interesting subject of more detailed analyses.

We can observe that the quadruple of the best families of models (with respect to
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the AD criterion) for the whole period and for 2 crisis periods is the same and their
ordering (with respect to AD) is identical for both crisis periods.

Concerning the considered non-crisis time periods, we concluded that the selected
optimal models for them consist of one component only (for the first period, it was the
product copula II corresponding to the independence of the components).
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