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GENERALIZED n-LAPLACIAN: SEMILINEAR NEUMANN

PROBLEM WITH THE CRITICAL GROWTH

Robert Černý, Praha

(Received July 8, 2011)

Abstract. Let Ω ⊂ R
n, n > 2, be a bounded connected domain of the class C1,θ for

some θ ∈ (0, 1]. Applying the generalized Moser-Trudinger inequality without boundary
condition, the Mountain Pass Theorem and the Ekeland Variational Principle, we prove the
existence and multiplicity of nontrivial weak solutions to the problem

u ∈ W
1
L
Φ(Ω), − div

(

Φ′(|∇u|)
∇u

|∇u|

)

+ V (x)Φ′(|u|)
u

|u|
= f(x, u) + µh(x) in Ω,

∂u

∂n
= 0 on ∂Ω,

where Φ is a Young function such that the space W 1LΦ(Ω) is embedded into exponential
or multiple exponential Orlicz space, the nonlinearity f(x, t) has the corresponding critical
growth, V (x) is a continuous potential, h ∈ (LΦ(Ω))∗ is a nontrivial continuous function,
µ > 0 is a small parameter and n denotes the outward unit normal to ∂Ω.

Keywords: Orlicz-Sobolev space, Mountain Pass Theorem, Palais-Smale sequence, Eke-
land Variational Principle

MSC 2010 : 46E35, 46E30, 26D10

1. Introduction

Throughout the paper ωn−1 denotes the surface of the unit sphere and the n-

dimensional Lebesgue measure is denoted by Ln.

In this paper, we show that the techniques for proving the existence and multiplic-

ity of weak solutions to the Dirichlet problem concerning the generalized n-Laplace

The author was supported by the research project MSM 0021620839 of the Czech Min-
istry MŠMT.
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equation with the nonlinearity in the critical growth range (see [12] and [8]) can be

used also for the Neumann problem. In particular, we are dealing with the differential

equation

(1.1)

u ∈WLΦ(Ω), − div
(
Φ′(|∇u|)

∇u

|∇u|

)
+ V (x)Φ′(|u|)

u

|u|
= f(x, u) + µh(x) in Ω

and
∂u

∂n
= 0 on ∂Ω.

Here Ω ⊂ R
n, n > 2, is a bounded connected domain of the class C1,θ for some

θ ∈ (0, 1], Φ is a Young function with the growth corresponding to the Trudinger-

type embedding of the Orlicz-Sobolev spaceWLΦ(Ω) into an exponential or multiple

exponential Orlicz space, µ > 0 is a small parameter, h ∈ (LΦ(Ω))∗ is a nontrivial

continuous function, n is the outward unit normal vector to ∂Ω, V is a continuous

potential and f is a nonlinearity with the critical growth with respect to Φ. The

precise assumptions on Φ, V and f are given below.

It is an often studied problem to find solutions to the Laplace equation

(1.2) u ∈W 1,2
0 (Ω) and − ∆u = f(x, u) in Ω ⊂ R

2.

For n > 3 and f satisfying lim
t→∞

(f(x, t)/tq) = 0 uniformly on Ω with q <

(n+ 2)/(n− 2), there are many results using the compactness of the embedding

of the space W 1,2
0 (Ω) into Lr(Ω) with r ∈ [1, 2n/(n− 2)) (see a review article

by Lions [23] and the references given there). Problem (1.2) under condition

lim
t→∞

(f(x, t)/t(n+2)/(n−2)) = 0 becomes much more difficult thanks to the fact that

the embedding of W 1,2
0 (Ω) into L2n/(n−2)(Ω) is no longer compact. This difficulty

has been overcome by Brézis and Nirenberg [6]. Their method uses the Mountain

Pass Theorem by Ambrosetti and Rabinowitz [4].

When n = 2, we do not only have the Sobolev embedding into Lr(Ω) for any

r ∈ [0,∞) but there is also the embedding ofW 1,2
0 (Ω) into the Orlicz space expL2(Ω).

This is a special case of the Trudinger embedding [28] of the Sobolev space of

W 1,n
0 (Ω), n > 2, into the Orlicz space expLn/(n−1)(Ω). In particular, there is so

called Moser-Trudinger inequality by Moser [24]

sup
‖u‖

W
1,n
0

(Ω)
61

∫

Ω

exp(K|u|n/(n−1)) dx 6 C(n,Ln(Ω))

if and only if K 6 nω
1/(n−1)
n−1 .

For n = 2, Adimurthi [2] using the Moser-Trudinger inequality modified the varia-

tional approach by Brézis and Nirenberg [6] so that he was able to prove the existence
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of a nontrivial weak solution to (1.2) also in the case of the nonlinearity with an ex-

ponential growth.

For n > 2, Adimurthi’s method works for the n-Laplace equation

(1.3) u ∈W 1,n
0 (Ω) and − ∆nu = f(x, u) in Ω,

where ∆nu := div(|∇u|n−2∇u) and f(x, t) ≈ exp(b|t|n/(n−1)) for some b > 0. See

for example [1].

In the recent paper [12], the above techniques are modified for a differential equa-

tion corresponding to the embedding of the Orlicz-Sobolev space W0L
n logα L(Ω),

n > 2, α < n − 1, into the Orlicz space expLn/(n−1−α)(Ω) (this embedding is due

to Fusco, Lions, Sbordone [21] and Edmunds, Gurka, Opic [17]). The result is the

existence of a nontrivial weak solution to the equation

(1.4) u ∈ W0L
Φ(Ω) and − div

(
Φ′(|∇u|)

∇u

|∇u|

)
= f(x, u) in Ω,

with Φ being a Young function that behaves like tn logα(t), α < n − 1, for large t

and with the nonlinearity f having so called critical growth (corresponding to the

choice of the Young function Φ).

The results from the paper [12] were further generalized in the papers [11], [9]

and [8] in several ways (generalized n-Laplace equation corresponding to the embed-

ding into multiple exponential spaces, singular nonlinearity, the case of WLΦ(Rn),

multiplicity of solutions) motivated by some recent results concerning the n-Laplace

equation, see for example [3], [15], [16], and [27].

The present article is motivated by the paper [25] which alters the methods from [1]

so that they can be applied to the Neumann problem concerning the n-Laplace

equation. In our case, we modify the methods from [12] and [8].

Assumptions on Φ, V and f . For l ∈ N, n > 2 and α < n− 1, we set

γ =
n

n− 1 − α
> 0, B = 1 −

α

n− 1
=

n

(n− 1)γ
> 0,(1.5)

Kl,n,α =

{
B1/Bnω

γ/n
n−1 for l = 1,

B1/Bω
γ/n
n−1 for l > 2.

The following notation enables us to work with the multiple exponential spaces

comfortably. For k ∈ N, let us write

log[k](t) = log(log[k−1](t)), where log[1](t) = log(t)
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and

exp[k](t) = exp(exp[k−1](t)), where exp[1](t) = exp(t).

We suppose that Φ: [0,∞) → [0,∞) is a C1-Young function satisfying

(1.6) lim
t→∞

Φ(t)

tn
( ∏l−1

j=1 logn−1
[j] (t)

)
logα

[l](t)
= 1

(for l = 1 we read (1.6) as lim
t→∞

(Φ(t)/(tn logα
[1](t))) = 1). Next, we suppose that there

is C > 0 such that

(1.7)
1

C
tn 6 Φ(t) 6 Ctn for t ∈

[
0,

1

C

)

and

(1.8) t 7→ Φ′(t)t is a Young function.

Let us also recall a condition that is often used when discussing the critical case

concerning the generalized Moser-Trudinger inequality (see for example [10, Theo-

rem 1.1(v) and Theorem 1.2(v)])

(1.9) Φ(t) 6 tn
( l−1∏

j=1

logn−1
[j] (t)

)
logα

[l](t)(1 − log−β
[l] (t)) for t ∈ [tΦ,∞)

for some β ∈ (0,min{1, B}) and tΦ > 1. Notice that the assumptions (1.6) and (1.7)

together with the fact that Φ is a C1-Young function imply the existence of cΦ > 0

such that

(1.10) cΦΦ′(t)t 6 Φ(t), t > 0.

The potential V : Ω → R satisfies

(1.11) V is continuous and 0 < V0 6 V (x) 6 V1 <∞.

The function f : Ω×R 7→ R is supposed to satisfy the following conditions. There

are M > 1, tM > 0, Cb > 0 and b > 0 satisfying

f is uniformly continuous on Ω × [−t0, t0] for every t0 > 0,(1.12)

f(x, 0) = 0 and tf(x, t) > 0 for all x ∈ Ω and t 6= 0,

0 < F (x, t) :=

∫ t

0

f(x, s) ds 6 M |t|1−1/M |f(x, t)|(1.13)

provided |t| > tM and x ∈ Ω,

|f(x, t)| 6 Cb exp[l](b|t|
γ) for every t ∈ R and x ∈ Ω,(1.14)

lim sup
t→0

F (x, t)

V0Φ(|t|)
< 1 uniformly on Ω(1.15)
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and

(1.16) lim inf
t→∞

tf(x, t)

exp[l](b|t|
γ)
> 0 uniformly on Ω.

Variational formulation. We define

(1.17) Jµ(u) =

∫

Ω

(Φ(|∇u|) + V (x)Φ(|u|) − F (x, u) − µh(x)u) dx, u ∈WLΦ(Ω),

where µ > 0 and h ∈ (LΦ(Ω))∗ is assumed to be a nontrivial function. In a standard

way (see for example [12, Section 6]; use (1.14) and Theorem 3.1(i) given below when

dealing with the part of the functional corresponding to F (x, u)) it can be shown

that this is a C1-functional on WLΦ(Ω) and its Fréchet derivative is

(1.18)

〈J ′
µ(u), v〉 =

∫

Ω

(
Φ′(|∇u|)

∇u

|∇u|
· ∇v + V (x)Φ′(|u|)

u

|u|
v − f(x, u)v − µh(x)v

)
dx,

u, v ∈ WLΦ(Ω),

where the symbol 〈J ′
µ(u), v〉 denotes the value of the linear functional J ′

µ(u) of v.

We say that u ∈WLΦ(Ω) is a weak solution to the problem (1.1) if

(1.19) 〈J ′
µ(u), v〉 = 0 for every v ∈WLΦ(Ω).

Now, we can state our main result.

Theorem 1.1. Let l ∈ N, n > 2 and α < n− 1. Let Ω ⊂ R
n be a bounded con-

nected domain of the class C1,θ for some θ ∈ (0, 1]. Suppose that a C1-Young func-

tion Φ: [0,∞) → [0,∞) satisfies (1.6), (1.7), (1.8), and (1.9) with β ∈ (0,min{1, B}).

Let V : Ω → R satisfy (1.11) and let f : Ω × R → R be a function satisfying (1.12),

(1.13), (1.14), (1.15), and (1.16). Let h ∈ (LΦ(Ω))∗ be a nontrivial continuous func-

tion. Then there is µ0 > 0 with the following property:

If µ ∈ [0, µ0), then the problem (1.1) has at least two distinct weak solutions in

WLΦ(Ω). Moreover, if µ ∈ (0, µ0), then all the weak solutions are nontrivial. If

µ = 0, then there is a trivial weak solution (included in the above multiplicity

result).

The paper is organized as follows. After Preliminaries we focus on the generalized

Moser-Trudinger inequality. The fourth section is devoted to the proof of the fact

that the functional Jµ satisfies the assumptions of the Mountain Pass Theorem. The

properties of the Palais-Smale sequences are given in the fifth section. Finally, in

the sixth section we apply the Mountain Pass Theorem and the Ekeland Variational
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Principle to obtain two convergent Palais-Smale sequences. Then we show that the

limit functions are distinct provided µ ∈ (0, µ0).

For the convenience of the reader acquainted with the article [8], our paper is

organized in a similar way, we use the same strategies of the proofs when possible

and we also use the same notation.

2. Preliminaries

By χA we mean the characteristic function of A ⊂ R
n. By B(x0, R) we denote

the open Euclidean ball in Rn centered at x0 with radius R > 0. If x0 = 0 we simply

write B(R).

For two functions g, h : [0,∞) 7→ [0,∞) we write g . h if there is C > 0 such that

g(t) 6 Ch(t) for every t ∈ [0,∞). If u is a measurable function on A, then by u = 0

(or u 6= 0) we mean that u is equal (or not equal) to the zero function a.e. on A. If

u = 0 (or u 6= 0), we call it trivial (or nontrivial).

By C we denote a generic positive constant which may depend on l, n, α, and Φ.

This constant may vary from expression to expression as usual. The symbol o(1)

stands for a sequence indexed by k ∈ N and converging to zero as k → ∞.

ByM(A) we denote the set of all Radon measures on a compact set A. We write

that νk
∗
⇀ ν inM(A) if

∫
A ψ dνk →

∫
A ψ dν for every ψ ∈ C(A).

Properties of exp[l]. For given l ∈ N and p > 1, one can easily prove that there

is C > 1 such that

(2.1) expp
[l](t) 6 C exp[l](pt) for all t > 0.

Young functions and Orlicz spaces. A function Φ: [0,∞) → [0,∞) is a Young

function if Φ is increasing, convex, Φ(0) = 0 and lim
t→∞

(Φ(t)/t) = ∞.

Denote by LΦ(A, dν) the Orlicz space corresponding to a Young function Φ on a

set A with a measure ν. If ν = Ln we simply write L
Φ(A). The space LΦ(A, dν) is

equipped with the Luxemburg norm

(2.2) ‖u‖LΦ(A,dµ) = inf

{
λ > 0:

∫

A

Φ
( |u(x)|

λ

)
dν(x) 6 1

}
.

By Ψ we denote the associated Young function to Φ. The dual space to LΦ(A, dν)

can be identified as the Orlicz space LΨ(A, dν). We further have the generalized

Hölder’s inequality

(2.3)

∫

A

|u(y)v(y)| dν(y) 6 2‖u‖LΦ(A,dν)‖v‖LΨ(A,dν).
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∆2-condition. We say that a function Φ satisfies the ∆2-condition if there is

C∆ > 1 such that

Φ(2t) 6 C∆Φ(t) whenever t > 0 .

It is not difficult to check the ∆2-condition for our Young functions satisfying (1.6)

and (1.7). Therefore, one easily proves

(2.4)

∫

A

Φ
( |u|

‖u‖LΦ(A,dν)

)
dν = 1 whenever ‖u‖LΦ(A,dν) > 0

and

(2.5) ‖uk‖LΦ(A,dν)
k→∞
−→ 0 ⇐⇒

∫

A

Φ(|uk|) dν
k→∞
−→ 0.

Similarly as in [8] we need the following results (see [8, Lemmas 2.2 and 2.4]).

Lemma 2.1. If a Young function Φ satisfies (1.6) and (1.7), then Ψ(Φ′) . Φ.

Lemma 2.2. Let Φ be a Young function satisfying (1.6) and (1.7). Then for

every ε > 0 there is δ > 0 such that

‖u‖n+ε
LΦ(A,dν) 6

∫

A

Φ(|u|) dν 6 ‖u‖n−ε
LΦ(A,dν) provided ‖u‖LΦ(A,dν) < δ.

Further, we need the Brézis-Lieb lemma from [5, Theorem 2 and Examples (b)].

Lemma 2.3. Let {fk} be a sequence of ν-measurable functions on A ⊂ R
n such

that fk → f a.e. in A. Let Φ be a Young function. Suppose that f ∈ LΦ(A, dν) and

‖fk‖LΦ(A,dν) 6 C. Then

∫

A

|Φ(|fk|) − Φ(|fk − f |) − Φ(|f |)| dν
k→∞
−→ 0.

Orlicz-Sobolev spaces. Let A ⊂ R
n be a nonempty bounded connected domain

of the class C1,θ for some θ ∈ (0, 1] and let Φ be a Young function satisfying (1.6).

In this subsection we consider Orlicz spaces only with the Lebesgue measure. We

define the Orlicz-Sobolev space WLΦ(A) as the set

WLΦ(A) := {u : u, |∇u| ∈ LΦ(A)}
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equipped with the norm

‖u‖WLΦ(A) := ‖u‖LΦ(A) + ‖∇u‖LΦ(A),

where ∇u is the gradient of u and we use its Euclidean norm in R
n.

Hence, WLΦ(A) is a Banach space satisfying

WLΦ(A) ⊂ Lr(A), r ∈ [1,∞), and WLΦ(A) ⊂ LΦ(Ω),

where both embeddings are compact. Moreover, bounded C∞(A)-functions are dense

in WLΦ(A). We write that uk ⇀ u in WLΦ(A) if

∫

A

fkv dx→

∫

A

fv dx and

∫

A

∂uk

∂xi
v dx→

∫

A

∂u

∂xi
v dx

for every v ∈ LΨ(A) and i ∈ {1, . . . , n}.

We denote by W0L
Φ(A) the closure of C∞

0 (A) in WLΦ(A).

Tools from the Measure Theory. We make use of the following result from

[12, Lemma 2.5] (see also [14, Lemma 2.1]).

Lemma 2.4. Let Ω ⊂ R
n be a bounded set, θ ∈ [0, 1) and let {uk} be a sequence

of functions from L1(Ω) converging to u ∈ L1(Ω) a.e. in Ω. Let f : Ω × R 7→ R

be a continuous function bounded on Ω × [−t0, t0] for every t0 > 0. Suppose that

f(x, uk)|uk|
θ and f(x, u)|u|θ belong to L1(Ω) and

∫

Ω

|f(x, uk)uk| 6 C.

Then f(x, uk)|uk|θ → f(x, u)|u|θ in L1(Ω).

R em a r k 2.5. Using the same methods as in the proof of [14, Lemma 2.1] one

easily proves the following observation. Let Ω ⊂ R
n be a bounded measurable set,

p > 1 and let {vk} be a sequence of functions from Lp(Ω) converging to v ∈ Lp(Ω)

a.e. in Ω. Suppose that

∫

Ω

|vk|
p 6 C for every k ∈ N.

Then vk → v in Lq(Ω) for every q ∈ [1, p).

We use the Generalized Lebesgue Dominated Convergence Theorem (see [26, Ex-

ercise 5.4.13]).
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Proposition 2.6. Let {uk}, {vk} be sequences of measurable functions onA ⊂ R
n

such that |uk| 6 vk for all k ∈ N. Let u and v be measurable functions on A such

that uk → u a.e. in A and vk → v a.e. in A. Then

lim
k→∞

∫

A

vk =

∫

A

v =⇒ lim
k→∞

∫

A

uk =

∫

A

u.

Tools from the Calculus of Variations. Our key instrument is the following

version of the Mountain Pass Theorem by Ambrosetti and Rabinowitz [4].

Theorem 2.7. Let X be a real Banach space and J ∈ C1(X,R). Suppose that

there exist a neighborhood U of 0 in X and ξ ∈ R satisfying the following conditions:

(i) J(0) < ξ,

(ii) J(u) > ξ on the boundary of U ,

(iii) there is w /∈ U such that J(w) < ξ.

Set

c = inf
γ∈Γ

max
u∈γ

J(u) > ξ,

where Γ = {g ∈ C([0, 1], X) : g(0) = 0, g(1) = w}. Then there is a sequence {uk} ⊂

X such that

(2.6) J(uk) → c and J ′(uk) → 0 in X∗.

By C1(X,R) we denote the class of functionals (possibly nonlinear) on X with the

continuous Fréchet derivative.

The sequence satisfying (2.6) is called the Palais-Smale sequence and the constant

c is a Palais-Smale level. Notice that this version of the Mountain Pass Theorem is

slightly different from that which is often used and which requires the Palais-Smale

condition (the Palais-Smale sequence has a subsequence convergent in the norm) and

asserts that there is a critical point x0 ∈ X satisfying J(x0) = c. The reason is that

we need a bit less from the Palais-Smale sequence than the convergence in the norm.

Our approach is taken from [6]. See [6, page 459] for the discussion concerning the

proof of Theorem 2.7.

The second weak solution to (1.1) is obtained by the following version of the

Ekeland Variational Principle [20].
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Theorem 2.8. Let X be a complete metric space and Y be its nonempty closed

subset. Suppose that Λ: Y → R is lower semicontinuous and bounded from below.

Then for every δ > 0 there is uδ ∈ Y such that

(2.7) Λ(uδ) 6 Λ(u) + δ dist(u, uδ) for every u ∈ Y.

3. Generalized Trudinger embedding and generalized

Moser-Trudinger inequality

On embedding into exponential and multiple exponential spaces. Let

Ω ⊂ R
n, n > 2, be a bounded connected domain of the class C1,θ for some θ ∈ (0, 1].

The spaceWLn logα L(Ω), α < n−1, of the Sobolev type, modeled on the Zygmund

space Ln logα L(Ω), is continuously embedded into the Orlicz space with the Young

function that behaves like exp(tγ) for large t (see [21] and [17]). Moreover it is shown

in [17] (see also [18]) that in the limiting case α = n− 1 we have the embedding into

a double exponential space, i.e. the space WLn logn−1 L logα logL(Ω), α < n− 1, is

continuously embedded into the Orlicz space with the Young function that behaves

like exp(exp(tγ)) for large t. Further in the limiting case α = n − 1 we have the

embedding into triple exponential space and so on. The borderline case is always

α = n− 1 and for α > n− 1 we have embedding into L∞(Ω). It is well-known that

the Zygmund space Ln logα L(Ω) coincides with the Orlicz space LΦ(Ω), where the

Young function Φ satisfies

lim
t→∞

Φ(t)

tn logα(t)
= 1,

the space Ln logn−1 L logα logL(Ω) coincides with LΦ(Ω) where

lim
t→∞

Φ(t)

tn logn−1(t) logα(log(t))
= 1,

and so on. For other results concerning these spaces we refer the reader to [17], [18],

and [19].

On generalized Moser-Trudinger inequality. We need a version of the Moser-

Trudinger inequality for the space WLΦ(Ω) from [10, Theorem 1.2]. First, we define

the median of given measurable function u : Ω → R by

med(u) = sup
{
t ∈ R : Ln({x ∈ Ω: u(x) > t}) >

Ln(Ω)

2

}
.
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Theorem 3.1. Let K > 0, l ∈ N, n > 2 and α < n − 1. Suppose that Ω ⊂ R
n

is a bounded connected domain from the class C1,θ for some θ ∈ (0, 1]. Let Φ be a

Young function satisfying (1.6).

(i) If u ∈ WLΦ(Ω), then

∫

Ω

exp[l](K|u(x)|γ) dx <∞.

(ii) If K < Kl,n,α(1/2)γ/n, M > 0, u ∈ WLΦ(Ω) with ‖∇u‖LΦ(Ω) 6 1 and

|med(u)| 6 M , then

∫

Ω

exp[l](K|u(x)|γ) dx 6 C(l, n, α,Φ,Ln(Ω),K,M).

(iii) If K > Kl,n,α(1/2)γ/n and M > 0, then there is a smooth domain Ω̃ ⊂ R
n such

that

sup
u∈WLΦ(Ω̃),‖∇u‖

LΦ(Ω̃)
61,|med(u)|6M

∫

Ω̃

exp[l](K|u(x)|γ) dx = ∞.

Let us note that there is also a version of the Moser-Trudinger inequality for

the space W0L
Φ(Ω). In such a version the borderline parameter Kl,n,α(1/2)γ/n is

replaced by Kl,n,α and moreover, it is not necessary to control the medians (see for

example [8, Theorem 3.1]).

In our applications of Theorem 3.1(ii), the boundedness of medians is always

ensured, since we work with sequences {uk} bounded in LΦ(Ω) and we have an

estimate

(3.1) Φ(|med(v)|)
Ln(Ω)

2
6

∫

Ω

Φ(|v|), v ∈ LΦ(Ω).

We make use of another version of Theorem 3.1(ii).

Proposition 3.2. Let l ∈ N, n > 2, α < n−1, andM > 0. Suppose that Ω ⊂ R
n

is a bounded connected domain from the class C1,θ for some θ ∈ (0, 1]. Let Φ be a

Young function satisfying (1.6). Let v ∈WLΦ(Ω) with |med(v)| 6 M and

(3.2)

∫

Ω

Φ(|∇v|) 6 c̃ <
1

2

(Kl,n,α

b

)n/γ

.

Then there is q > 1 independent of the choice of v such that

∫

Ω

exp[l](bq|v|
γ) 6 C(l, n, α,Φ,Ln(Ω), c̃,M).
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P r o o f. The proof is obtained modifying the proof of Theorem 3.1(ii) (i.e. [10,

Theorem 1.2(ii)]) in the same way as [12, Proposition 3.2] is obtained from the proof

of [22, Theorem 1.1]. Let us recall the main ideas.

From the proof of Theorem 3.1(ii) we see that the assumption ‖∇u‖LΦ(Ω) 6 1 can

be replaced by

(3.3) ‖∇u‖LΦ(Ω̃) 6 1, where Ω̃ = {x ∈ Ω: |∇u| > G},

with G > 0 being a fixed arbitrarily large number (in such a case C also depends

on G). Next, using (3.2), (1.6) for t > G (with G very large) and the definition of

the Luxemburg norm one finds ĉ ∈ (0, 1) such that

‖∇v‖LΦ(Ω̃) 6 C1 := ĉ
(1

2

)1/n(Kl,n,α

b

)1/γ

(if G is very large, then the norm is very close to the n-th root of the modular,

similarly as in the proof of [8, Lemma 4.2]). Finally, if q > 1 is so close to 1 that

qĉγ < 1, then we can apply the version of Theorem 3.1(ii) with the assumption (3.3),

since

bq|v|γ = bqCγ
1

( |v|

C1

)γ

= Kl,n,α

(1

2

)γ/n

qĉγ
( |v|

C1

)γ

(notice that ‖∇(v/C1)‖LΦ(Ω̃) 6 1 and |med(v/C1)| 6 M/C1). �

We also need a version of [8, Proposition 4.1].

Proposition 3.3. Let l ∈ N and n > 2, α < n − 1. Suppose that Ω ⊂ R
n is a

bounded connected domain of the class C1,θ for some θ ∈ (0, 1]. Let Φ be a Young

function satisfying (1.6). Let {uk}∞k=1 ⊂WLΦ(Ω) satisfy

there is finite lim
k→∞

∫

Ω

Φ(|∇uk|), uk ⇀ u in WLΦ(Ω) and ∇uk → ∇u a.e. in Ω

for some u ∈WLΦ(Ω). Then for every

p < P :=

(
lim

k→∞

∫

Ω

Φ(|∇uk|) −

∫

Ω

Φ(|∇u|)

)−γ/n

(where we define P = ∞ if the difference in the brackets is zero) we have

exp[l]

(
Kl,n,α

(1

2

)γ/n

p|uk|
γ
)
is bounded in L1(Ω).

P r o o f. We can use the proof of [8, Proposition 4.1] with the following changes.

Instead of the Moser-Trudinger inequality for the spaceW0L
Φ(Ω), we use the version

566



of the Moser-Trudinger inequality given by Theorem 3.1(i) and (ii) (with (3.3) instead

of ‖∇u‖LΦ(Ω) 6 1). Notice that the boundedness of med(uk − u) easily follows from

the weak convergence in WLΦ(Ω) and (3.1). The constant Kl,n,α is always replaced

by Kl,n,α(1/2)γ/n. �

4. The geometry of the functional Jµ

In this section we check that our functional Jµ has the Mountain Pass Geometry

(i.e. assumptions (i), (ii), and (iii) from Theorem 2.7 are satisfied).

Lemma 4.1. If u ∈WLΦ(Ω) is such that u > 0 and u 6= 0, then

Jµ(tu)
t→∞
−→ −∞.

Moreover, this convergence is uniform with respect to µ taken from a bounded set.

P r o o f. Since u 6= 0 and u > 0, there is τ > 0 such that

Ln({u > τ}) > τ.

Moreover, we observe that it follows from (1.12) and (1.13) that there is C1 > 0 such

that

F (x, t) > C1 exp(C1|t|
1/M ), |t| > tM .

Thus, by (1.12) we have a similar inequality on [τ,∞) with a constant C2 > 0

F (x, t) > C2 exp(C1t
1/M ) for t ∈ [τ,∞).

Further, for every t > 1 we can find m ∈ N such that 2m < t 6 2m+1. Thus using

the ∆2-condition, the above estimates,
∫
Ω |hu| 6 C and the fact that Φ and F (x, ·)

are increasing on [0,∞), we obtain

Jµ(tu) =

∫

Ω

(Φ(t|∇u|) + V (x)Φ(t|u|) − F (x, tu) − µth(x)u)

6

∫

Ω

(Φ(2m+1|∇u|) + V1Φ(2m+1|u|) + µ2m+1|h(x)u|) −

∫

{u>τ}

F (x, 2mu)

6 Cm+1
∆

∫

Ω

(Φ(|∇u|) + V1Φ(|u|)) + Cµ2m+1 − τC2 exp(C12
m/Mτ1/M )

m→∞
−→ −∞.

�
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Lemma 4.2. There is µ0 > 0 such that for every µ ∈ [0, µ0) there is ̺µ > 0

satisfying

inf
‖u‖

W LΦ(Ω)
=̺µ

Jµ(u) > 0

(i.e. there is ξµ > 0 such that if u ∈WLΦ(Ω) with ‖u‖WLΦ(Ω) = ̺µ, then Jµ(u) > ξµ)

and

c0 = c0(µ) := inf
‖u‖WLΦ(Ω)6̺µ

Jµ(u)

has the following properties:

If µ = 0, then we have c0 = 0.

If µ ∈ (0, µ0), then the constant ̺µ > 0 is chosen so that ̺µ → 0+ as µ→ 0+ and

c0 > C(µ, ̺µ), where C(µ, ̺µ)
µ→0+
−→ 0−.

P r o o f. Fix q > n. By the assumptions (1.13), (1.14), and (1.15) we can find

η > 0 so that

F (x, t) 6 (1 − 2η)V0Φ(|t|) + C exp[l](b|t|
γ)|t|q = F1(t) + F2(t).

By (1.11) we obtain

(4.1)

∫

Ω

F1(u) = (1 − 2η)V0

∫

Ω

Φ(|u|) 6 (1 − 2η)

∫

Ω

(Φ(|∇u|) + V (x)Φ(|u|)).

Next, fix p > 1. If ̺ is so small that bp̺γ < Kl,n,α(1/2)γ/n, then from Hölder’s

inequality, Theorem 3.1(ii) (the medians of (1/̺)u are bounded, see (3.1)), (2.1), the

fact that WLΦ(Ω) is continuously embedded into Lr(Ω), for every r ∈ [1,∞), and

from the equivalence of the norms ‖ · ‖LΦ(Ω,V (x) dx) and ‖ · ‖LΦ(Ω) (see (1.11)), for

every u ∈WLΦ(Ω) such that ‖u‖WLΦ(Ω) = ̺ we obtain

∫

Ω

F2(u) = C

∫

Ω

exp[l](b|u|
γ)|u|q

6 C

( ∫

Ω

exp[l]

(
bp̺γ

( |u|

̺

)γ))1/p( ∫

Ω

|u|qp′

)1/p′

6 C‖u‖q

Lqp′ (Ω) 6 C‖u‖q
WLΦ(Ω)

6 C‖∇u‖q
LΦ(Ω)

+ C‖u‖q
LΦ(Ω,V (x) dx)

.

Hence, for ̺ > 0 small enough Lemma 2.2 with ε ∈ (0, q − n) gives

(4.2)

∫

Ω

F2(u) 6 C‖∇u‖q−n−ε
LΦ(Ω) ‖∇u‖

n+ε
LΦ(Ω) + C‖u‖q−n−ε

LΦ(Ω,V (x) dx)‖u‖
n+ε
LΦ(Ω,V (x) dx)

6 η

∫

Ω

(Φ(|∇u|) + V (x)Φ(|u|)).
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Thus, we obtain from (4.1) and (4.2) and the generalized Hölder’s inequality

Jµ(u) =

∫

Ω

(Φ(|∇u|) + V (x)Φ(|u|) − F (x, u) − µh(x)u)

> η

∫

Ω

(Φ(|∇u|) + V (x)Φ(|u|)) − 2µ‖h‖LΨ(Ω)‖u‖LΦ(Ω).

Next ‖u‖WLΦ(Ω) = ̺ implies that ‖∇u‖LΦ(Ω) > ̺/2 or ‖u‖LΦ(Ω) > ̺/2 (thus,

‖∇u‖LΦ(Ω,V (x) dx) > ̺/C1). Hence, Lemma 2.2 with ε = 1 and ‖u‖LΦ(Ω) 6

‖u‖WLΦ(Ω) imply for all ̺ > 0 small enough that

Jµ(u) > η
( ̺

C1

)n+1

− 2µ‖h‖LΨ(Ω)̺.

Now, if µ = 0, then we conclude easily. Otherwise we set

̺µ = C1

(4C1‖h‖LΨ(Ω)µ

η

)1/n

.

We plainly have ̺µ → 0+ as µ→ 0+. Furthermore, if ‖u‖WLΦ(Ω) = ̺µ, then

Jµ(u) > η
(4C1‖h‖LΨ(Ω)µ

η

) ̺µ

C1
− 2µ‖h‖LΨ(Ω)̺µ = 2µ‖h‖LΨ(Ω)̺µ =: ξµ > 0,

while for every u ∈WLΦ(Ω) satisfying ‖u‖WLΦ(Ω) 6 ̺µ we have

Jµ(u) > −2µ‖h‖LΨ(Ω)̺µ and − 2µ‖h‖LΨ(Ω)̺µ
µ→0+
−→ 0−.

�

Lemma 4.3. There is v ∈ W0L
Φ(Ω) with ‖v‖WLΦ(Ω) = 1 such that for every

µ > 0 there is tµ > 0 with the following property: For every t ∈ (0, tµ) we have

Jµ(tv) < 0.

In particular, for every µ ∈ (0, µ0) (where µ0 comes from Lemma 4.2) we have

c0 < 0.

P r o o f. Since h is continuous and nontrivial, we obtain an open set G ⊂ Ω

such that h is bounded away from zero on G. We can easily construct a nontrivial

W0L
Φ(Ω)-function ṽ supported on G with the same sign as h has on G. Further we

can assume that ṽ and ∇ṽ are bounded. Normalizing suitably, we get v ∈ W0L
Φ(Ω)

such that ‖v‖WLΦ(Ω) = 1 and

∫

Ω

hv =

∫

G

hv = C1 > 0.
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Finally, as F is nonnegative, using the above construction, (1.7) and (1.11), we obtain

for t > 0 small enough

Jµ(tv) =

∫

Ω

(Φ(t|∇v|) + V (x)Φ(t|v|) − F (x, tv) − µth(x)v)

6 Ctn
∫

Ω

(|∇v|n + V1|v|
n) − µC1t = Ctn − C1µt

and we conclude the proof easily. �

Upper estimate of the Palais-Smale level. In the rest of this section we show

that the Palais-Smale level is not too high. Fix x0 ∈ R
n and R > 0. We make use

of the concentrating sequences of W0L
Φ(B(x0, R))-functions from [7] and [13] (these

sequences are also used in [10] when showing that we cannot haveK = Kl,n,α(1/2)γ/n

in Theorem 3.1(ii)). For l = 1 we set

(4.3) wk(x) = gk(|x− x0|),

where

gk(y) =






0 for y ∈ [R,∞),
(
−

2

R
y + 2

)
K

−1/γ
1,n,αn

B logB(2)k1/γ−B
(
1 +

log(k)

k

)1/γ

for y ∈
[R

2
, R

]
,

K
−1/γ
1,n,αn

B logB
(R
y

)
k1/γ−B

(
1 +

log(k)

k

)1/γ

for y ∈
[
Re−k/n,

R

2

]
,

K
−1/γ
1,n,αk

1/γ
(
1 +

log(k)

k

)1/γ

for y ∈ [0, Re−k/n].

In the case l > 2 we fix T > exp[l](1) and we define

(4.4) wk(x) = gk(|x− x0|),

where

gk(y) =






0 for y ∈ [R,∞),
(
−

2

R
y + 2

)
K

−1/γ
l,n,α logB

[l](T + 2)k1/γ−B
(
1 +

log(k)

k

)1/γ

for y ∈
[R

2
, R

]
,

K
−1/γ
l,n,α logB

[l]

(
T +

R

y

)
k1/γ−B

(
1 +

log(k)

k

)1/γ

for y ∈
[
R exp

−1/n
[l] (k),

R

2

]
,

K
−1/γ
l,n,α logB

[l](T + exp
1/n
[l] (k))k1/γ−B

(
1 +

log(k)

k

)1/γ

for y ∈ [0, R exp
−1/n
[l] (k)].
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We need the following estimate.

Lemma 4.4. Let x0 ∈ ∂Ω, R > 0 and wk be defined by (4.3) and (4.4), re-

spectively. Then for every ϑ0 > 0 there is k0 ∈ N such that for every k > k0 and

ϑ ∈ [0, ϑ0] we have

(4.5)

∫

Ω

Φ(ϑ|∇wk|) + V (x)Φ(ϑ|wk |) 6
1

2
ϑn.

P r o o f. The proof is obtained modifying the proofs of [7, Example 5.1] (the

case of l = 1) and [13, Theorem 4.1] (the case of l > 2), respectively, and adding

some rough estimates.

Without loss of generality, we can suppose that x0 = 0. As ∂Ω is of class C1,θ,

θ ∈ (0, 1], we can also suppose that there exists R0 ∈ (0, R) and a C1,θ-function

η : BR0(0) ∩ {xn = 0} → R such that

η(0) = 0, ∇η(0) = 0,

Ω ∩BR0(0) = {(x′, xn) ∈ BR0(0) : η(x′) < xn},

and

∂Ω ∩BR0(0) = {(x′, xn) ∈ BR0(0) : η(x′) = xn},

where (x1, x2, . . . , xn) = (x′, xn). Further, for each r > 0 we denote B+(r) = B(r) ∩

{xn > 0}, B−(r) = B(r)∩{xn < 0}. For every k ∈ N we setM = M(k) = R/klog(k).

We have
∫

Ω

Φ(ϑ|∇wk|) + V (x)Φ(ϑ|wk |) =

∫

Ω

Φ(ϑ|∇wk|) +

∫

Ω

V (x)Φ(ϑ|wk |) = J1 + J2.

Next, if k is large enough, we can write

J1 6

∫

Ω∩B−(M)

. . .+

∫

B+(M)

. . .+

∫

B( R
2 )\B(M)

. . .+

∫

B(R)\B( R
2 )

. . . = I0 +I1 +I2 +I3.

Fix ε ∈ (0, B − β) (recall that β ∈ (0,min{1, B}) comes from (1.9)).

Now, we distinguish two cases. First, let l = 1. By an easy modification of the

corresponding estimates in the proof of [7, Example 5.1] (it is essential that ϑ is

bounded from above) we have that

(4.6) I3 6 Cϑnk−B, I2 6 Cϑnk−B log2Bn+4(k)

and I1 =
1

2

∫

B(M)

Φ(ϑ|∇wk|) 6
1

2
ϑn

(
1 −

1

kβ+ε

)
.
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Next, as ϑ is bounded, (1/γ −B)n = −B (see (1.5)) and we have

|g′k(y)| 6 C logB−1
(R
y

)1

y
k1/γ−B on (Re−k/n,M) for k sufficiently large,(4.7)

M
k→∞
−→ 0,

η(x′) 6 C|x′|1+θ for |x′| sufficiently small

and

Φ(t) 6 tn(1 + logn(t)) for every t > 0,

we obtain for k > k1, where k1 is large enough

(4.8) I0 =

∫

Ω∩B−(M(k))

Φ(ϑ|∇wk|) dx

6 C

∫ M(k)

Re−k/n

|ϑg′k(y)|n(1 + logn(|ϑg′k(y)|))yn−1+θ dy

6 Cϑnk(1/γ−B)n

∫ M(k)

Re−k/n

log(B−1)n
(R
y

)(
1 + logn(k) + logn

(1

y

))
yθ−1 dy

6 Cϑnk(1/γ−B)n logn(k)

∫ M(k1)

0

log(B−1)n
(R
y

)(
1 + logn

(1

y

))
yθ−1 dy

= Cϑnk−B logn(k).

Hence, since β + ε < B, (4.6) and (4.8) yield for k large enough

(4.9) J1 6
1

2
ϑn

(
1 −

1

2kβ+ε

)
.

For l > 2, (4.9) is obtained in a similar way. Indeed, by a minor modification of the

proof of [13, Theorem 4.1] we obtain a version of (4.6) (with a bit different power

of log(k) in the estimate concerning I2). When estimating I0, the formula (4.7)

becomes a bit more complicated, however thanks to θ > 0 the last integral in (4.8)

is still finite. Moreover, the power of k is −B again.

Finally, we estimate J2. Given p > 0 we fix q ∈ (0, 1). Now, we define a sequence

of auxiliary radii by Rk = R exp−1
[l] (kq), k ∈ N. Notice that for k large enough Rk

satisfies

R exp
−1/n
[l] (k) 6 Rk 6

R

2
.

Thus, we observe from (4.3) and (4.4), respectively, that for k large enough we have

(4.10)

∫

B(Rk)

|wk|
p 6 Ln(B(Rk))gp

k(0) = C exp−n
[l] (kq)kp/γ
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and

(4.11)

∫

B(R/2)\B(Rk)

|wk|
p 6 Ln

(
B

(
x0,

R

2

))
gp

k(Rk)

6 C logBp
[l] (exp[l](k

q))k(1/γ−B)p = CkBpq+(1/γ−B)p.

Since on B(R) \B(R/2) we trivially have |wk| 6 Ck1/γ−B, (4.10) and (4.11) yield

(4.12)

∫

B(R)

|wk|
p 6 CkBpq+(1/γ−B)p.

Now, as Φ(t) 6 Ctn +Ctn+1 (by (1.6) and (1.7)), V (x) is bounded (by (1.11)), ϑ

is bounded, Bq > 0, 1/γ − B < 0 and (B − 1/γ)n = B (by (1.5)), from (4.12) we

obtain

(4.13)

∫

B(R)

V (x)Φ(|ϑwk |) 6 CϑnkB(n+1)q+(1/γ−B)n = CϑnkB(n+1)q−B.

Finally, we see that if q and ε are small enough, then (4.9), (4.13) and β < B

imply (4.5). �

Lemma 4.5. If µ0 > 0 is small enough, then there is w ∈WLΦ(Ω) such that

Jµ(tw) < c0 +
1

2

(Kl,n,α

b

)n/γ

for every t ∈ [0,∞) and µ ∈ [0, µ0).

P r o o f. First, we prove the assertion for µ = 0. Since, by Lemma 4.2, in this

case c0 = 0, our aim is to prove that there are ε > 0 and a function w ∈ WLΦ(Ω)

such that for every t ∈ [0,∞) we have

(4.14) J0(tw) 6
1

2

(Kl,n,α

b

)n/γ

− 2ε.

To do this, fix x0 ∈ ∂Ω and R > 0. Suppose that x0 = 0 to simplify our notation.

By (1.16) we can find C > 0 satisfying

(4.15) lim inf
t→∞

tf(x, t)

exp[l](b|t|
γ)
> C uniformly with respect to x ∈ Ω.

Our aim is to show that there is k ∈ N such that the assertion of the lemma holds

for wk given by (4.3) and (4.4), respectively. Aiming at contradiction suppose that

for all k ∈ N we have

sup
ϑ>0

J0(ϑwk) >
1

2

(Kl,n,α

b

)n/γ

.
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In view of Lemma 4.1 there are ϑk > 0, k ∈ N, such that

J0(ϑkwk) = max
ϑ>0

J0(ϑwk).

Since F is nonnegative (see (1.12)), we arrive at

(4.16)

∫

Ω

Φ(ϑk|∇wk|) + V (x)Φ(ϑk |wk|) > J0(ϑkwk) >
1

2

(Kl,n,α

b

)n/γ

.

Now, we claim that ϑk are bounded away from zero. Indeed, for k ∈ N such that

ϑk 6 1 and large enough so that (4.5) holds with ϑ = 1, we have by (4.16), (4.5) and

by the fact that Φ is a Young function (hence Φ(ts) 6 tΦ(s) for every t ∈ [0, 1] and

s > 0)

1

2
ϑk > ϑk

∫

Ω

Φ(|∇wk|) + V (x)Φ(|wk|)

>

∫

Ω

Φ(ϑk|∇wk|) + V (x)Φ(ϑk|wk|) >
1

2

(Kl,n,α

b

)n/γ

.

Further, as d
dϑJ0(ϑwk)|ϑ=ϑk

= 0, it follows that

∫

Ω

Φ′(ϑk|∇wk|)|∇wk| + V (x)Φ′(ϑk|wk|)|wk| =

∫

Ω

wkf(x, ϑkwk).

Multiplying both sides by ϑk, using (1.10), (4.15) (recall that ϑk are bounded away

from zero), the fact that

Ln(Ω ∩B(R exp
−1/n
[l] (k))) > CLn(B(R exp

−1/n
[l] (k))) = C exp−1

[l] (k)

for k large enough

and the definition of wk we obtain k1 > k0 such that for k > k1 we have

(4.17)

∫

Ω

Φ(ϑk|∇wk|) + V (x)Φ(ϑk|wk|)

> cΦ

∫

Ω

Φ′(ϑk|∇wk|)ϑk|∇wk| + V (x)Φ′(ϑk|wk|)ϑk|wk|

= cΦ

∫

Ω

ϑkwkf(x, ϑkwk)

> cΦ

∫

Ω∩B(R exp
−1/n

[l]
(k))

ϑkwkf(x, ϑkwk)

> C

∫

Ω∩B(R exp
−1/n

[l]
(k))

exp[l](b|ϑkwk|
γ)

= C exp−1
[l] (k) exp[l](b|ϑkwk(0)|γ).
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Next, if l = 1, then (4.3) gives

exp[l](b|ϑkwk(0)|γ) = exp
( bϑγ

k

K1,n,α
(k + log(k))

)
,

and if l > 2, then we have by [13, Proof of Theorem 4.1] for k large enough

( log[l](exp
1/n
[l] (k))

k

)Bγ

(k + log(k)) > k +
1

2
log(k)

which together with (4.4) implies

exp[l](b|ϑkwk(0)|γ) > exp[l]

( bϑγ
k

Kl,n,α

(
k +

1

2
log(k)

))
.

Therefore, there exists k2 > k1 so that for k > k2 we infer from (4.17)
∫

Ω

Φ(ϑk|∇wk|) + V (x)Φ(ϑk|wk|)(4.18)

> C exp−1
[l] (k) exp[l]

( bϑγ
k

Kl,n,α

(
k +

1

2
log(k)

))
.

Now, for each k ∈ N satisfying ϑk > 2 let us find ak ∈ N such that ϑk ∈ [2ak , 2ak+1).

Therefore, the ∆2-condition, (4.5) (for ϑ = 1) and (4.18) give us k3 > k2 such that

for every k > k3 satisfying ϑk > 2 we have

CCak

∆ >
1

2
Cak+1

∆

> Cak+1
∆

∫

Ω

Φ(|∇wk|) + V (x)Φ(|wk |) >

∫

Ω

Φ(ϑk|∇wk|) + V (x)Φ(ϑk|wk|)

> C exp−1
[l] (k) exp[l]

( b

Kl,n,α
2akγ

(
k +

1

2
log(k)

))
.

Therefore, the ak are bounded and thus there is ϑ0 > 1 such that ϑk 6 ϑ0 for every

k ∈ N.

Hence, there is k4 > k3 so that for every k > k4 we have a version of the estimate

(4.5) with ϑ = ϑk. This has the following consequences. First, (4.16) and (4.5) give

(4.19) ϑk >
(Kl,n,α

b

)1/γ

for k > k4.

Second, (4.5), (4.18) and (4.19) imply

C =
1

2
ϑn

0 >
1

2
ϑn

k >

∫

Ω

Φ(ϑk|∇wk|) + V (x)Φ(ϑk|wk|)

> C exp−1
[l] (k) exp[l]

(
k +

1

2
log(k)

)
k→∞
−→ ∞.

Thus, we have a contradiction and we have proved (4.14).
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Finally, since
∫
Ω
|hw| 6 C, using Lemma 4.1, (1.17) and (4.14) we obtain for every

µ > 0 small enough

max
t>0

Jµ(tw) 6
1

2

(Kl,n,α

b

)n/γ

− ε.

Moreover, by Lemma 4.2 we can guarantee that c0 > −ε provided µ > 0 is small

enough, and the result follows. �

5. Properties of the Palais-Smale sequence

In this section we study the properties of the Palais-Smale sequence corresponding

to the functional Jµ. Our main aim is to show that it contains a subsequence with

the gradients converging a.e. in Ω (see Lemma 5.2) and that the limit (in the sense

of (5.10)) is a weak solution to the problem (1.1) (see Lemma 5.3).

Let {uk} be a Palais-Smale sequence from WLΦ(Ω), that is by (2.6),

(5.1) Jµ(uk) =

∫

Ω

(
Φ(|∇uk|) + V (x)Φ(|uk|) − F (x, uk) − µh(x)uk

)
k→∞
−→ c,

and by (1.18) there are εk → 0 such that for every v ∈ WLΦ(Ω) we have

(5.2) |〈J ′
µ(uk), v〉| =

∣∣∣∣
∫

Ω

(
Φ′(|∇uk|)

∇uk

|∇uk|
· ∇v + V (x)Φ′(|uk|)

uk

|uk|
v

− f(x, uk)v − µh(x)v
)∣∣∣∣ 6 εk‖v‖WLΦ(Ω).

Lemma 5.1. There is a constant C > 0 independent of k ∈ N such that

‖∇uk‖LΦ(Ω) 6 C,

∫

Ω

Φ(|∇uk|) 6 C,(5.3)

‖uk‖LΦ(Ω) 6 C,

∫

Ω

Φ(|uk|) 6 C,(5.4)

and

(5.5) 0 6

∫

Ω

f(x, uk)uk 6 C.

P r o o f. Using (1.6) and (1.7), it can be easily shown that there is λ0 > 0 large

enough so that

(5.6) Φ(λt) > λn−1/2Φ(t) for every t > 0, λ > λ0.
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From (1.13) we see that for every ε > 0 there is tε > 0 such that

(5.7) F (x, t) 6 εf(x, t)t, |t| > tε.

We obtain from (5.1), (5.7), (5.2) with v = uk and (1.10)

(5.8)

∫

Ω

(Φ(|∇uk|) + V (x)Φ(|uk|))

6 C +

∫

Ω

F (x, uk) +

∫

Ω

µh(x)uk 6 Cε + ε

∫

Ω

f(x, uk)uk +

∫

Ω

µh(x)uk

6 Cε + ε

( ∫

Ω

(Φ′(|∇uk|)|∇uk| + V (x)Φ′(|uk|)|uk| − µh(x)uk)

+ εk‖uk‖WLΦ(Ω)

)
+

∫

Ω

µh(x)uk

6 Cε +
ε

cΦ

∫

Ω

(Φ(|∇uk|) + V (x)Φ(|uk|))

+ εεk‖uk‖WLΦ(Ω) + (1 − ε)

∫

Ω

µh(x)uk.

Next, as h ∈ LΨ(Ω) and ‖uk‖LΦ(Ω) 6 ‖uk‖WLΦ(Ω), the generalized Hölder’s inequal-

ity gives ∫

Ω

h(x)uk 6 2‖h‖LΨ(Ω)‖uk‖LΦ(Ω) 6 C‖uk‖WLΦ(Ω).

Thus, if ε is sufficiently small, then (5.8) implies
∫

Ω

(Φ(|∇uk|) + V (x)Φ(|uk|)) 6 C + C‖uk‖WLΦ(Ω).

Hence, the definition of the norm on WLΦ(Ω) and (1.11) yield

(5.9)

∫

Ω

(Φ(|∇uk|) + Φ(|uk|)) 6 C + C‖∇uk‖LΦ(Ω) + C‖uk‖LΦ(Ω).

Finally, from (2.4) together with (5.6) we can easily see that all terms in (5.9) have

to be bounded. This is (5.3) and (5.4).

The upper estimate in (5.5) now follows from (5.2) (with v = uk, see also (1.10)).

The integral in (5.5) is nonnegative by (1.12). �

By (5.3), (5.4) and the reflexivity of WLΦ(Ω), there is a function u ∈ WLΦ(Ω)

(passing to a suitable subsequence of {uk} if necessary) such that

(5.10) uk ⇀ u in WLΦ(Ω),

uk → u in LΦ(Ω),

uk → u in Lr(Ω) for every r ∈ [1,∞),

uk → u a.e. in Ω.
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Next, by (1.14) and Theorem 3.1(i) we have f(x, u), f(x, uk) ∈ L1(Ω). Since we

also have (5.5), Lemma 2.4 with θ = 0 implies

(5.11) lim
k→∞

∫

Ω

f(x, uk) =

∫

Ω

f(x, u).

Moreover, from (5.5) and Lemma 2.4 with θ = 1 − 1/M we also obtain

f(x, uk)|uk|
1−1/M k→∞

−→ f(x, u)|u|1−1/M in L1(Ω)

and thus by (1.13) and Proposition 2.6 we see that

(5.12) lim
k→∞

∫

Ω

F (x, uk) =

∫

Ω

F (x, u).

Lemma 5.2. Passing to a subsequence, we have

∇uk → ∇u a.e. on Ω.

P r o o f. Our aim is to show that for every ε > 0 we can find Ωε ⊂ Ω such that

Ln(Ω \Ωε) < ε and a subsequence of {uk} (still denoted {uk}) such that ∇uk → ∇u

a.e. in Ωε.

Step 1. (Choice of a subsequence)

By (5.3) the sequence {Φ(|∇uk|)} is bounded in L1(Ω) and thus passing to a

subsequence, we can suppose that

(5.13) Φ(|∇uk|)
∗
⇀ µ inM(Ω).

Step 2. (Choice of Ωε)

Fix ε > 0. By Theorem 3.1(ii) and the fact that uk are bounded in WLΦ(Ω)

(hence their medians are bounded on any subset of Ω by a constant depending on its

measure, see (3.1)), we can find τ > 0 so small that for every B(x,R) ⊂ Ω we have

(5.14) ‖∇uk‖LΦ(B(x,R)) < τ =⇒

∫

B(x,R)

exp[l](2b|uk|
γ) 6 C = C(R).

Next, using the ∆2-condition one can show that there is σ > 0 so that for each

Ω̃ ⊂ Ω, we have

(5.15)

∫

Ω̃

Φ(|v|) < σ =⇒ ‖v‖LΦ(Ω̃) < τ.

578



We define the set

Aσ = {z ∈ Ω: µ(z) > σ}.

Since |µ|(Ω) < ∞ (by (5.3) and (5.13)), we obtain that Aσ is a finite set, i.e. Aσ =

{zj}m
j=1. Choose ̺ > 0 so small that B(zi, ̺) ∩B(zj , ̺) = ∅ for i 6= j and

m∑

j=1

Ln(B(zj , ̺)) <
ε

2
.

Next, as Ln is a Radon measure, we can find compact sets Kε, Lε ⊂ Ω such that

Kε ⊂ IntLε and Ln(Ω \Kε) < ε/2. Let us define

Ωε = Kε \
m⋃

j=1

B(zj , ̺) and Bε =

m⋃

j=1

B
(
zj ,

̺

2

)
∩ Ω.

Clearly,

(5.16) Ln(Ω \ Ωε) < ε.

Fix ψε ∈ C1
0 (Ω) such that 0 6 ψε 6 1, ψε = 1 on Ωε and ψε = 0 on (Ω \ Lε) ∪Bε.

Step 3. (Proof of (5.17): decomposition of the integral)

We want to prove

(5.17) 0 6

∫

Ωε

(
Φ′(|∇uk|)

∇uk

|∇uk|
− Φ′(|∇u|)

∇u

|∇u|

)
· (∇uk −∇u)

k→∞
−→ 0.

From (5.2) with v = ψεuk and v = ψεu we obtain

(5.18)∫

Ω

Φ′(|∇uk|)|∇uk|ψε 6

∫

Ω

(
− ukΦ′(|∇uk|)

∇uk

|∇uk|
· ∇ψε − V (x)Φ′(|uk|)

uk

|uk|
ψεuk

+ ψεf(x, uk)uk + µψεh(x)uk

)
+ εk‖∇(ψεuk)‖WLΦ(Ω)

and

(5.19)∫

Ω

−Φ′(|∇uk|)ψε
∇uk

|∇uk|
· ∇u 6

∫

Ω

(
uΦ′(|∇uk|)

∇uk

|∇uk|
· ∇ψε + V (x)Φ′(|uk|)

uk

|uk|
ψεu

− ψεf(x, uk)u − µψεh(x)u
)

+ εk‖∇(ψεu)‖WLΦ(Ω).

Next, we observe that if g : R → R is a differentiable convex function, then we

trivially have

(g′(s2) − g′(s1))(s2 − s1) > 0 for all s1, s2 ∈ R.
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In particular, for

g(s) = Φ(|s∇uk + (1 − s)∇u|), s1 = 0, s2 = 1,

we obtain the inequality

0 6
(
Φ′(|∇uk|)

∇uk

|∇uk|
− Φ′(|∇u|)

∇u

|∇u|

)
· (∇uk −∇u).

This, after integration, gives

0 6

∫

Ωε

(
Φ′(|∇uk|)

∇uk

|∇uk|
− Φ′(|∇u|)

∇u

|∇u|

)
· (∇uk −∇u)

6

∫

Ω

(
Φ′(|∇uk|)

∇uk

|∇uk|
− Φ′(|∇u|)

∇u

|∇u|

)
· (∇uk −∇u)ψε

=

∫

Ω

Φ′(|∇uk|)|∇uk|ψε − Φ′(|∇uk|)ψε
∇uk

|∇uk|
· ∇u

+ ψεΦ
′(|∇u|)

∇u

|∇u|
· (∇u −∇uk).

Therefore, we obtain from (5.18) and (5.19)

(5.20)

0 6

∫

Ωε

(
Φ′(|∇uk|)

∇uk

|∇uk|
− Φ′(|∇u|)

∇u

|∇u|

)
· (∇uk −∇u)

6

∫

Ω

(
− ukΦ′(|∇uk|)

∇uk

|∇uk|
· ∇ψε − V (x)Φ′(|uk|)

uk

|uk|
ψεuk + ψεf(x, uk)uk

+ µψεh(x)uk

)
+

∫

Ω

(
uΦ′(|∇uk|)

∇uk

|∇uk|
· ∇ψε + V (x)Φ′(|uk|)

uk

|uk|
ψεu

− ψεf(x, uk)u − µψεh(x)u
)

+ εk‖∇(ψεuk)‖WLΦ(Ω) + εk‖∇(ψεu)‖WLΦ(Ω)

+

∫

Ω

ψεΦ
′(|∇u|)

∇u

|∇u|
· (∇u−∇uk)

=

∫

Ω

Φ′(|∇uk|)
∇uk

|∇uk|
· ∇ψε(u− uk) +

∫

Ω

ψεΦ
′(|∇u|)

∇u

|∇u|
· (∇u−∇uk)

+

∫

Ω

V (x)Φ′(|uk|)
uk

|uk|
ψε(u− uk) +

∫

Ω

ψεf(x, uk)(uk − u)

+ µ

∫

Ω

ψεh(x)(uk − u) + εk‖∇(ψεuk)‖WLΦ(Ω) + εk‖∇(ψεu)‖WLΦ(Ω)

= I1 + I2 + I3 + I4 + I5 + I6 + I7.

Step 4. (Proof of (5.17): estimate concerning I1)

From Ψ(Φ′) . Φ (see Lemma 2.1) and (5.3) we know that Φ′(|∇uk|) are bounded

in LΨ(Ω) and by (5.10) we see that uk → u in LΦ(Ω). Hence, we can use the
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generalized Hölder’s inequality to obtain

(5.21) |I1| 6

∫

Ω

∣∣∣Φ′(|∇uk|)
∇uk

|∇uk|
· ∇ψε(u− uk)

∣∣∣

6 max
x∈Ω

|∇ψε(x)|2‖Φ
′(|∇uk|)‖LΨ(Ω)‖u− uk‖LΦ(Ω)

k→∞
−→ 0.

Step 5. (Proof of (5.17): estimate concerning I2)

As Ψ(Φ′) . Φ by Lemma 2.1, we observe that

ψεΦ
′(|∇u|)

∇u

|∇u|
∈ LΨ(Ω,Rn).

Next, we use the fact that uk ⇀ u in WLΦ(Ω) (cf. (5.10)) and the duality between

LΦ(Ω,Rn) and LΨ(Ω,Rn) to obtain

(5.22) |I2| =

∣∣∣∣
∫

Ω

ψεΦ
′(|∇u|)

∇u

|∇u|
· (∇u −∇uk)

∣∣∣∣
k→∞
−→ 0.

Step 6. (Proof of (5.17): estimate concerning I3)

The boundedness of V (x)ψε (see (1.11)), Ψ(Φ′) . Φ (see Lemma 2.1), the gener-

alized Hölder’s inequality, (5.4) and (5.10) yield

|I3| 6

∫

Ω

∣∣∣V (x)Φ′(|uk|)
uk

|uk|
ψε(u− uk)

∣∣∣(5.23)

6 C‖Φ′(|uk|)‖LΨ(Ω)‖u− uk‖LΦ(Ω)
k→∞
−→ 0.

Step 7. (Proof of (5.17): estimate concerning I4)

First let us show that there is C > 0 such that for k ∈ N large enough we have

(5.24)

∫

Lε\Bε

f2(x, uk) 6 C.

Fix x ∈ Lε \Aσ. Then there is rx > 0 such that B(x, rx) ⊂ Ω and µ(B(x, rx)) < σ.

Consider the test-function ϕ ∈ C(Ω) such that 0 6 ϕ 6 1, ϕ = 1 on B(x, rx/2) ∩ Ω,

and ϕ = 0 on Ω \B(x, rx). Thus by (5.13)

∫

B(x,rx)

Φ(|∇uk|)ϕ
k→∞
−→

∫

B(x,rx)

ϕdµ 6 µ(B(x, rx)) < σ.

Therefore, we have for all k ∈ N large enough

∫

B(x,rx/2)

Φ(|∇uk|) < σ
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and hence (5.15) gives

‖∇uk‖LΦ(B(x,rx/2)) < τ.

Next, we apply (1.14), (2.1) and (5.14) to obtain

(5.25)

∫

B(x,rx/2)

f2(x, uk) 6 C

∫

B(x,rx/2)

exp[l](2b|uk|
γ) 6 C.

Since Lε \Bε is a compact set, we obtain x1, x2, . . . , xm ∈ Lε \Bε such that

Lε \Bε ⊂
m⋃

j=1

B
(
xj ,

rxj

2

)

and thus (5.25) applied to each B(xj , rxj/2), j = 1, . . . ,m, implies (5.24).

Finally, Hölder’s inequality, (5.10) and (5.24) imply

(5.26) |I4| 6

∫

Lε\Bε

|f(x, uk)(uk−u)| 6

(∫

Lε\Bε

f2(x, uk)

)1/2

‖uk−u‖L2(Ω)
k→∞
−→ 0.

Step 8. (Proof of (5.17): estimate concerning I5)

Since h ∈ LΨ(Ω) and uk → u in LΦ(Ω) (by (5.10)), the generalized Hölder’s

inequality gives

(5.27) |I5| 6 µ

∫

Ω

|ψεh(x)(uk − u)| 6 2µ‖h‖LΨ(Ω)‖uk − u‖LΦ(Ω)
k→∞
−→ 0.

Step 9. (Proof of (5.17): estimates concerning I6 and I7)

By (5.3) and (5.4) we have

‖∇(ukψε)‖LΦ(Ω) = ‖uk∇ψε + ψε∇uk‖LΦ(Ω)

6 max
x∈Ω

|∇ψε(x)|‖uk‖LΦ(Ω) + max
x∈Ω

|ψε(x)|‖∇uk‖LΦ(Ω) 6 C

and by (5.4) we also see that

‖ukψε‖LΦ(Ω) 6 ‖uk‖LΦ(Ω) 6 C.

Hence,

‖ukψε‖WLΦ(Ω) = ‖∇(ukψε)‖LΦ(Ω) + ‖ukψε‖LΦ(Ω) 6 C.

In the same way we obtain

‖uψε‖WLΦ(Ω) 6 C.
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Hence, from εk → 0 we infer

(5.28) I6 + I7
k→∞
−→ 0.

Step 10. (Convergence a.e.)

From (5.20), (5.21), (5.22), (5.23), (5.26), (5.27) and (5.28) we obtain (5.17). Using

(5.17) and the fact that the function Φ is strictly convex, we see that passing to a

subsequence we have

∇uk → ∇u a.e. in Ωε.

This can be done for every ε = 1/m, m ∈ N. Thus, the diagonal subsequence has

the desired property. �

Lemma 5.3. The function u ∈ WLΦ(Ω) given by (5.10) is a weak solution to the

problem (1.1), i.e. we have (1.19).

P r o o f. The proof consists of two steps. First, we show (1.19) for test-functions

from WLΦ(Ω) ∩ C∞(Ω) ∩ L∞(Ω) only. In the second step, we use the density of

these functions in WLΦ(Ω).

Step 1. We want to prove that for every function ψ ∈WLΦ(Ω)∩C∞(Ω)∩L∞(Ω)

we have

(5.29)

∫

Ω

Φ′(|∇u|)
∇u

|∇u|
· ∇ψ+

∫

Ω

V (x)Φ′(|u|)
u

|u|
ψ−

∫

Ω

f(x, u)ψ−µ

∫

Ω

h(x)ψ = 0.

In view of (5.2) with v = ψ it is enough to prove that

∫

Ω

Φ′(|∇uk|)
∇uk

|∇uk|
· ∇ψ

k→∞
−→

∫

Ω

Φ′(|∇u|)
∇u

|∇u|
· ∇ψ,(5.30)

∫

Ω

V (x)Φ′(|uk|)
uk

|uk|
ψ

k→∞
−→

∫

Ω

V (x)Φ′(|u|)
u

|u|
ψ(5.31)

and

(5.32)

∫

Ω

f(x, uk)ψ
k→∞
−→

∫

Ω

f(x, u)ψ.

Let us prove (5.30). By the reflexivity of LΨ(Ω,Rn), Lemma 2.1 and (5.3) we can

pass to a subsequence to obtain

Φ′(|∇uk|)
∇uk

|∇uk|
⇀ w in LΨ(Ω,Rn).
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However, we know that ∇uk → ∇u a.e. in Ω by Lemma 5.2, and thus the continuity

of Φ′ and the fact that the weak limit has to be the same as the a.e. pointwise limit

imply

Φ′(|∇uk|)
∇uk

|∇uk|
⇀ Φ′(|∇u|)

∇u

|∇u|
in LΨ(Ω,Rn).

As ∇ψ can be used as a test-function, we obtain (5.30).

The proof of (5.31) follows easily from the Generalized Lebesgue Dominated Con-

vergence Theorem (Proposition 2.6). Indeed, ψ is bounded, V (x) is bounded by

(1.11), Φ′(t) 6 Ctn−1 + Ctn (by (1.6), (1.7) and (1.10)), and we have (5.10).

Finally, (5.32) follows from (5.11) and ψ ∈ L∞(Ω). Thus, we have proved (5.29).

Step 2. Fix v ∈ WLΦ(Ω). Then there are {ψk} ⊂ WLΦ(Ω) ∩ C∞(Ω) ∩ L∞(Ω)

such that ψk → v in WLΦ(Ω).

By Lemma 2.1 we observe that

Φ′(|∇u|)
∇u

|∇u|
∈ LΨ(Ω,Rn).

Thus, as∇ψk → ∇v in LΦ(Ω,Rn), we obtain from the generalized Hölder’s inequality

(2.3)

(5.33)

∫

Ω

Φ′(|∇u|)
∇u

|∇u|
· (∇v −∇ψk)

k→∞
−→ 0.

Next, since ψk → v in LΦ(Ω), Φ′(|u|) ∈ LΨ(Ω) (by Lemma 2.1 and u ∈WLΦ(Ω))

and V (x) is bounded (by (1.11)), the generalized Hölder’s inequality (2.3) gives

(5.34)

∣∣∣∣
∫

Ω

V (x)Φ′(|u|)
u

|u|
(v − ψk)

∣∣∣∣ 6 2V1‖v − ψk‖LΦ(Ω)‖Φ
′(|u|)‖LΨ(Ω)

k→∞
−→ 0.

By Hölder’s inequality, (1.14), (2.1) and Theorem 3.1(i) we easily obtain

(5.35)

∣∣∣∣
∫

Ω

f(x, u)(v − ψk)

∣∣∣∣ 6 ‖f(x, u)‖L2(Ω)‖v − ψk‖L2(Ω)
k→∞
−→ 0.

Finally, as h ∈ LΨ(Ω) and ψk → v in LΦ(Ω) we have by the generalized Hölder’s

inequality (2.3)

(5.36) µ

∫

Ω

h(x)(v − ψk)
k→∞
−→ 0.

Now, (1.19) follows from (5.29), (5.33), (5.34), (5.35), and (5.36). �
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Lemma 5.4. If the Palais-Smale sequence {uk} ⊂WLΦ(Ω) satisfies

(5.37) lim inf
k→∞

‖∇uk‖LΦ(Ω) <
(1

2

)1/n(Kl,n,α

b

)1/γ

,

then (passing to a subsequence if necessary) uk → u in WLΦ(Ω) (the strong conver-

gence).

P r o o f. We can write uk = u + wk. Further, by (5.37), we see that passing to

a subsequence we can suppose that there is p > 1 such that for every k ∈ N we have

(5.38) p2/γ‖∇uk‖LΦ(Ω) 6 C1 :=
(1

2

)1/n(Kl,n,α

b

)1/γ

.

Our aim is to show that wk → 0 in WLΦ(Ω).

First, (1.14), (2.1), (3.1), (5.4), (5.38), and Theorem 3.1(ii) give

∫

Ω

|f(x, uk)|p 6 C

∫

Ω

exp[l](pb|uk|
γ)(5.39)

= C

∫

Ω

exp[l]

(1

p

(1

2

)γ/n

Kl,n,α

( |uk|

C1

)γ)
6 C.

Further, f(x, u) ∈ Lp(Ω) by (1.14), (2.1) and Theorem 3.1(i). By (1.12) and (5.10)

we also see that f(x, uk) → f(x, u) a.e. in Ω. Therefore, for fixed q ∈ (1, p) we can

use Remark 2.5 with the functions vk = f(x, uk) and v = f(x, u), and we obtain

f(x, uk) → f(x, u) in Lq(Ω).

Thus, as u ∈ Lr(Ω) for every r ∈ [1,∞), Hölder’s inequality yields

(5.40)

∫

Ω

f(x, uk)u
k→∞
−→

∫

Ω

f(x, u)u.

Since, wk → 0 in Lr(Ω) for every r ∈ [1,∞), Hölder’s inequality together with (5.39)

also give that

(5.41)

∫

Ω

f(x, uk)wk
k→∞
−→ 0.

Now, fix ε > 0. By the Brézis-Lieb lemma (Lemma 2.3) for the function t 7→ Φ′(t)t

(see also (1.8)), (5.2) (with v = u and v = uk, respectively), (5.3), (5.4), (5.10), (5.40)
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and (5.41) we have for k ∈ N large enough

∫

Ω

(Φ′(|∇wk|)|∇wk| + V (x)Φ′(|wk|)|wk|)

6 ε+

∫

Ω

(Φ′(|∇uk|)|∇uk| − Φ′(|∇u|)|∇u| + V (x)(Φ′(|uk|)|uk| − Φ′(|u|)|u|))

6 ε+

∫

Ω

(f(x, uk)uk − f(x, u)u+ µh(x)(uk − u)) + εk‖uk‖WLΦ(Ω) + εk‖u‖WLΦ(Ω)

6 ε+

∫

Ω

f(x, uk)wk +

∫

Ω

(f(x, uk)u − f(x, u)u) + 2µ‖h‖LΨ(Ω)‖uk − u‖LΦ(Ω) + 2ε

6 Cε.

That is, ∫

Ω

(Φ′(|∇wk|)|∇wk| + V (x)Φ′(|wk|)|wk|)
k→∞
−→ 0.

Therefore, from the inequality Φ(t) 6 Φ′(t)t, t > 0 (which easily follows from the

convexity of Φ and Φ(0) = 0), and (2.5) we see that ‖∇uk −∇u‖LΦ(Ω) → 0 and since

we also have ‖uk − u‖LΦ(Ω) → 0 (see (5.10)), we are done. �

6. Existence results

In this section we show that the Ekeland Variational Principle (Theorem 2.8) and

the Mountain Pass Theorem (Theorem 2.7) give us two different nontrivial weak

solutions to (1.1).

Proposition 6.1. There is µ0 > 0 such that if µ ∈ (0, µ0), then (1.1) has

a nontrivial minimum-type solution u0 ∈ WLΦ(Ω) with Jµ(u0) = c0 < 0, where

c0 is given in Lemma 4.2. Moreover, there is a corresponding Palais-Smale sequence

{uk} ⊂WLΦ(Ω) converging to u0 in the sense of (5.10) and strongly in WLΦ(Ω).

P r o o f. Let ̺µ > 0 be the same as in Lemma 4.2. We can suppose that µ0 is

so small that

̺µ <
(1

2

)1/n(Kl,n,α

b

)1/γ

for all µ ∈ (0, µ0).

Set Y = {v ∈ WLΦ(Ω): ‖v‖WLΦ(Ω) 6 ̺µ}. Since WLΦ(Ω) is a complete metric

space, Y is its closed subset, the functional Jµ is a C
1-functional and bounded

from below on Y (see Lemma 4.2), we can use the Ekeland Variational Principle

(Theorem 2.8) to obtain a sequence {uk} ⊂ Y such that

(6.1) Jµ(uk)
k→∞
−→ c0 and ‖J ′

µ(uk)‖C(WLΦ(Ω),R)
k→∞
−→ 0.
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Indeed, the boundedness of Y ensures that (2.7) can be used to obtain a minimizing

sequence. Moreover, if δ > 0 is small enough, then uδ is an interior point of Y (see

Lemma 4.2 and Lemma 4.3) and we obtain the convergence of the Fréchet derivatives

in (6.1) in the standard way dealing with (2.7) and with the definition of the Fréchet

derivative.

Notice that (6.1) gives us the conditions (5.1) and (5.2). Therefore we can use all

our results from Section 5 for the sequence {uk}. By Lemma 5.3, Lemma 5.4 and the

continuity of Jµ we obtain that u0 is a weak solution to (1.1) satisfying Jµ(u0) = c0.

We have c0 < 0 by Lemma 4.3. Since µ and h are nontrivial, u0 has to be nontrivial

(see (1.12), (1.18) and (1.19)). �

Proposition 6.2. There is µ0 > 0 such that if µ ∈ [0, µ0), then (1.1) has a nontriv-

ial Mountain Pass-type solution uM ∈WLΦ(Ω). Moreover, there is a corresponding

Palais-Smale sequence {vk} ⊂WLΦ(Ω) converging to uM in the sense of (5.10) and

Jµ(vk) → cM , where cM ∈ (0, c0 + 1/2(Kl,n,α/b)
n/γ).

P r o o f. Since we have Jµ(0) = 0, Lemmas 4.1, 4.2 and the fact that Jµ is a C
1-

functional, we can apply the Mountain Pass Theorem (Theorem 2.7) which gives us

a Palais-Smale sequence {vk} ⊂WLΦ(Ω) such that Jµ(vk) → cM > ξµ > 0. Passing

to a subsequence, we can further suppose that {vk} possesses all the properties from

Section 5, except for Lemma 5.4 (since we do not have (5.37) in general). Finally, if

we set uM = u, where u ∈ WLΦ(Ω) is given by (5.10), then uM is a weak solution

to (1.1) by Lemma 5.3. Further, Lemma 4.5 gives us the upper estimate of the

Palais-Smale level cM .

It remains to show that uM is nontrivial. This is plainly satisfied if µ > 0, since h

is nontrivial (see (1.12), (1.18) and (1.19)). In the rest of the proof let µ = 0 and for

the sake of contradiction suppose that uM = 0. From (5.1) (with µ = 0), uM = 0,

F (x, 0) = 0, (5.12) and from the upper estimate concerning the level cM (recall that

c0 = 0 for µ = 0 by Lemma 4.2) we obtain c̃ > cM such that for k sufficiently large

we have ∫

Ω

Φ(|∇vk|) + V (x)Φ(|vk |) 6 c̃ <
1

2

(Kl,n,α

b

)n/γ

.

Hence, as the second term in the above integral is nonnegative (by (1.11)), the

estimates (2.1), (5.4), (3.1) and Proposition 3.2 give us q > 1 such that
∫

Ω

(exp[l](b|vk|
γ))q 6 C.

Now, from the above estimate, (1.14), (5.10), uM = 0 and Hölder’s inequality we

infer that
∣∣∣∣
∫

Ω

f(x, vk)vk

∣∣∣∣ 6 C‖ exp[l](b|vk|
γ)‖Lq(Ω)‖vk‖Lq′(Ω)

k→∞
−→ 0.
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Therefore, (5.2) with v = vk and µ = 0, (5.3) and (5.4) imply

∫

Ω

Φ′(|∇vk|)|∇vk| + V (x)Φ′(|vk|)|vk|
k→∞
−→ 0.

Next, as Φ is a Young function, we have Φ(t) 6 tΦ′(t) for every t > 0 and thus we

obtain from the above
∫

Ω

Φ(|∇vk|) + V (x)Φ(|vk|)
k→∞
−→ 0.

However, in view of (5.1) and (5.12) this contradicts cM > 0. Hence, uM is nontrivial

and we are done. �

Proposition 6.3. If µ0 > 0 is small enough and µ ∈ (0, µ0), then the functions

u0 and uM given by Proposition 6.1 and Proposition 6.2, respectively, are distinct.

P r o o f. By Proposition 6.1, Proposition 6.2 and by the properties of the Palais-

Smale sequences obtained in the previous section we have {uk}, {vk} ⊂ WLΦ(Ω)

such that

(6.2) uk → u0 in WLΦ(Ω) and vk ⇀ uM in WLΦ(Ω), vk → uM in L
Φ(Ω),

uk → u0 a.e. in Ω and vk → uM a.e. in Ω,

∇uk → ∇u0 a.e. in Ω and ∇vk → ∇uM a.e. in Ω,

Jµ(uk) → c0 = Jµ(u0) and Jµ(vk) → cM ,

〈J ′
µ(uk), uk〉 → 0 and 〈J ′

µ(vk), vk〉 → 0.

Moreover, by Propositions 6.1 and 6.2 we have

(6.3) c0 < 0 < cM and cM − c0 <
1

2

(Kl,n,α

b

)n/γ

.

Suppose that on the contrary, u0 = uM . As both Palais-Smale sequences converge

to u0 = uM in L
Φ(Ω), h ∈ LΨ(Ω) and we have (5.12), we see that

Jµ(uk) =

∫

Ω

(Φ(|∇uk|) + V (x)Φ(|uk|) − F (x, u0) − µh(x)u0) + o(1)
k→∞
−→ c0,

Jµ(vk) =

∫

Ω

(Φ(|∇vk|) + V (x)Φ(|vk|) − F (x, u0) − µh(x)u0) + o(1)
k→∞
−→ cM

and subtracting one from another, we obtain

(6.4)

∫

Ω

(Φ(|∇uk|) + V (x)Φ(|uk|)) −

∫

Ω

(Φ(|∇vk|) + V (x)Φ(|vk |))
k→∞
−→ c0 − cM .
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Next, 〈J ′
µ(uk), uk〉 → 0 and 〈J ′

µ(vk), vk〉 → 0 read by (1.18)

∫

Ω

(Φ′(|∇uk|)|∇uk| + V (x)Φ′(|uk|)|uk| − f(x, uk)uk − µh(x)uk)
k→∞
−→ 0,

∫

Ω

(Φ′(|∇vk|)|∇vk| + V (x)Φ′(|vk|)|vk| − f(x, vk)vk − µh(x)vk)
k→∞
−→ 0,

and thus

(6.5)

∫

Ω

(Φ′(|∇uk|)|∇uk| + V (x)Φ′(|uk|)|uk|)

−

∫

Ω

(Φ′(|∇vk|)|∇vk| + V (x)Φ′(|vk|)|vk|)

−

∫

Ω

(f(x, uk)uk − f(x, vk)vk) − µ

∫

Ω

h(x)(uk − vk)
k→∞
−→ 0.

As both sequences converge to u0 in L
Φ(Ω) and h ∈ LΨ(Ω), for the last integral we

have

(6.6) µ

∫

Ω

h(x)(uk − vk)
k→∞
−→ 0.

Further, since uk → u0 in WLΦ(Ω) by (6.2), passing to a subsequence we can

construct a common majorant g ∈WLΦ(Ω). Hence, from (1.14) we infer that

|f(x, uk)uk| 6 Cb exp[l](b|uk|
γ)|uk| 6 Cb exp[l](b|g|

γ)|g|.

Since the right hand side is an L1(Ω)-function (we can use Hölder’s inequality with

the powers equal to 2 together with Theorem 3.1(i) and (2.1)), we can use the

Lebesgue Dominated Convergence Theorem to obtain

(6.7)

∫

Ω

f(x, uk)uk
k→∞
−→

∫

Ω

f(x, u0)u0.

Further, let us also prove that

(6.8)

∫

Ω

(f(x, vk)vk − f(x, u0)u0)
k→∞
−→ 0.

Since
∫
Ω Φ(|∇vk|) are bounded by (5.3), passing to a subsequence we can suppose

that these modulars converge. Notice that by Fatou’s lemma the limit is larger than

or equal to
∫
Ω Φ(|∇u0|). Next, we distinguish two cases.

Case 1:
∫
Ω

Φ(|∇vk|) →
∫
Ω

Φ(|∇u0|).

In this case we have

∇vk → ∇u0 in LΦ(Ω)
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(indeed, we can use the Brézis-Lieb lemma to show that the modular of ∇(vk − u0)

tends to zero and so does the norm of the gradient by (2.5)). Since we also have

vk → u0 in L
Φ(Ω), we obtain vk → u0 in WLΦ(Ω). Hence, we can prove (6.8) in the

same way as we proved (6.7).

Case 2: lim
k→∞

∫
Ω Φ(|∇vk|) −

∫
Ω Φ(|∇u0|) > 0.

In this case, our first step is to prove that there is q > 1 such that

(6.9)

∫

Ω

(exp[l](b|vk|
γ))q 6 C.

By the Brézis-Lieb lemma, uk → u0 in WLΦ(Ω) and (6.4) we see that

lim
k→∞

∫

Ω

Φ(|∇vk|) + lim
k→∞

∫

Ω

V (x)Φ(|vk |) −

∫

Ω

Φ(|∇u0|) −

∫

Ω

V (x)Φ(|u0|) = cM − c0.

Further, from Fatou’s lemma and vk → u0 a.e. on Ω we obtain

lim
k→∞

∫

Ω

V (x)Φ(|vk|) >

∫

Ω

V (x)Φ(|u0|).

Thus, (6.3) yields

lim
k→∞

∫

Ω

Φ(|∇vk|) −

∫

Ω

Φ(|∇u0|) 6 cM − c0 <
1

2

(Kl,n,α

b

)n/γ

.

Therefore, there exists q > 1 such that

lim
k→∞

∫

Ω

Φ(|∇vk|) −

∫

Ω

Φ(|∇u0|) <
1

2

(Kl,n,α

bq2

)n/γ

.

That is,

(6.10) bq <
(1
2 )γ/nKl,n,α

q

( 1

lim
k→∞

∫
Ω Φ(|∇vk|) −

∫
Ω Φ(|∇u0|)

)γ/n

.

Next, (2.1) gives ∫

Ω

(exp[l](b|vk|
γ))q 6 C

∫

Ω

exp[l](bq|vk|
γ).

Now, the integral on the right hand side is uniformly bounded by Proposition 3.3

and (6.10). Thus, we have proved (6.9).

Next, we are going to estimate

∫

Ω

|f(x, vk)vk − f(x, u0)u0|

6

∫

Ω

|(f(x, vk) − f(x, u0))u0| +

∫

Ω

|f(x, vk)(vk − u0)| = I1 + I2.
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First, let us deal with I2. Estimates (1.14), (6.9), vk → u0 in L
q′

(Ω) (by (5.10)) and

Hölder’s inequality yield

I2 =

∫

Ω

|f(x, vk)(vk − u0)| 6 C

∫

Ω

exp[l](b|vk|
γ)|vk − u0|

6 C‖ exp[l](b|vk|
γ)‖Lq(Ω)‖vk − u0‖Lq′ (Ω)

k→∞
−→ 0.

It remains to deal with I1. By (1.14), (2.1), (6.9) and Theorem 3.1(i) we know that

f(x, vk)− f(x, u0) is bounded in L
q(Ω). Further, by (6.2) and (1.12) these functions

converge to zero a.e. in Ω. Hence, choosing r ∈ (1, q) we obtain that they converge

to zero in Lr(Ω) by Remark 2.5. Since u0 ∈ Lr′

(Ω) by (5.10), Hölder’s inequality

implies

I1 =

∫

Ω

|(f(x, vk) − f(x, u0))u0| 6 ‖f(x, vk) − f(x, u0)‖Lr(Ω)‖u0‖Lr′(Ω)
k→∞
−→ 0.

This concludes the proof of (6.8) also in the second case.

Now, by (6.6), (6.7) and (6.8) we obtain from (6.5)

∫

Ω

(Φ′(|∇uk|)|∇uk| + V (x)Φ′(|uk|)|uk|)

−

∫

Ω

(Φ′(|∇vk|)|∇vk| + V (x)Φ′(|vk|)|vk|)
k→∞
−→ 0.

Next, since uk → u0 in WLΦ(Ω) (see (6.2)), by (1.10) we easily obtain the conver-

gence of the corresponding modulars with respect to the function t 7→ Φ′(t)t and

thus
∫

Ω

(Φ′(|∇u0|)|∇u0| + V (x)Φ′(|u0|)|u0|)

−

∫

Ω

(Φ′(|∇vk|)|∇vk| + V (x)Φ′(|vk|)|vk|)
k→∞
−→ 0.

Now, applying the Brézis-Lieb lemma for the function t 7→ Φ′(t)t we see that

∫

Ω

(Φ′(|∇(vk − u0)|)|∇(vk − u0)| + V (x)Φ′(|vk − u0|)|vk − u0|)
k→∞
−→ 0.

Hence, the inequality Φ(t) 6 Φ′(t)t, t ∈ [0,∞), and (2.5) give us vk → u0 inWLΦ(Ω).

This strong convergence together with Jµ ∈ C1(WLΦ(Ω),R) implies

Jµ(vk)
k→∞
−→ Jµ(u0)

and we have a contradiction to (6.2) and (6.3). �
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P r o o f of Theorem 1.1. If µ0 > 0 is sufficiently small and µ ∈ (0, µ0), then

Propositions 6.1, 6.2, and 6.3 give us two nontrivial distinct weak solutions to (1.1).

Moreover, since µ and h are nontrivial, there is no trivial weak solution to (1.1) in

this case (see (1.12), (1.18), and (1.19)).

Finally, if µ = 0, then we easily see that (1.1) admits a trivial weak solution (see

(1.12), (1.18), and (1.19)) and the Mountain Pass-type solution given by Proposi-

tion 6.2 is nontrivial (hence it is distinct). �

R em a r k 6.4. Similarly as in the papers [12], [9], [11], and [8], we can use our

methods to obtain the same existence results as (1.1) also in the sub-critical case.

That is, we have a version of Theorem 1.1 where instead of (1.14) we have

for every b > 0 there is Cb > 0 such that

|f(x, t)| 6 Cb exp[l](b|t|
γ) whenever t ∈ R and x ∈ Ω.

In this case we do not need to assume (1.9) and (1.16) (cf. [12, Section 7]).

A c k n ow l e d g em e n t. The author would like to thank the referee for careful

reading.
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