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Abstract. A Lie algebra g is called two step nilpotent if g is not abelian and [g, g] lies in
the center of g. Two step nilpotent Lie algebras are useful in the study of some geomet-
ric problems, such as commutative Riemannian manifolds, weakly symmetric Riemannian
manifolds, homogeneous Einstein manifolds, etc. Moreover, the classification of two-step
nilpotent Lie algebras has been an important problem in Lie theory. In this paper, we study
two step nilpotent indecomposable Lie algebras of dimension 8 over the field of complex
numbers. Based on the study of minimal systems of generators, we choose an appropriate
basis and give a complete classification of two step nilpotent Lie algebras of dimension 8.

Keywords: two-step nilpotent Lie algebra; base; minimal system of generators; related
sets; H-minimal system of generators
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1. Introduction

The classification problem is one of the major problems in the theory of finite

dimensional Lie algebras over an algebraically closed field of characteristic zero. Levis

theorem and the classification of semisimple Lie algebras reduce this problem to

the classification of solvable Lie algebras. The study of solvable Lie algebras can

generally be reduced to the study of nilpotent Lie algebras. The first important

research on the classification of nilpotent Lie algebras is due to Umlauf [15] in later

19th century. In his thesis, he presented the first nontrivial classification. Since

then, several attempts have been made to develop some machinery whereby the

classification problem could be reformulated. Seeley [14] and Gong [7] gave the

classification of nilpotent Lie algebras of dimension 7 over C and R. In dimension 8,
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there are only partial results, see [2], [5], [6], [10]. For the 2-step case, the problem

can be reduced to the classification of 2-step nilpotent Lie algebras by considering

2, 3 and 4-dimensional center (see Section 3 for an interpretation). In 2011, Ren

and Zhu [11] obtained a complete classification of 2-step nilpotent Lie algebras of

dimension 8 with 2-dimensional center.

The purpose of this article is to give a complete classification of 2-step nilpotent Lie

algebras of dimension 8 over the field of complex numbers. Namely, we will present

the classification of 2-step nilpotent Lie algebras whose center is of dimension 3 or 4.

As can be expected, the computation involved here is much more complicated.

The arrangement of this paper is as follows. In Section 2, we recall some definitions

and fundamental results on nilpotent Lie algebras. In Section 3 we present the lists

of two-step nilpotent Lie algebras of dimension 8 with 3 and 4 dimensional centers,

respectively. In Section 4, we prove that each 8-dimensional two-step nilpotent Lie

algebra with 3 or 4-dimensional center must be isomorphic to one of the Lie algebras

in our lists in Section 3.

2. Preliminaries

In this section, we recall some elementary facts about nilpotent Lie algebras. All

Lie algebras in this section are over an algebraic closed field of characteristic zero.

Lemma 2.1 ([13]). If N is a nilpotent Lie algebra, then the following two asser-

tions are equivalent:

(1) The set {x1, x2, . . . , xn} is a minimal system of generators.
(2) The set {x1 + N2, x2 + N2, . . . , xn + N2} is a basis for the vector space N/N2.

If H is a maximal torus of N (i.e., a maximal abelian subalgebra of Der N consist-

ing of semisimple linear transformations), then N can be decomposed into a direct

sum of root spaces with respect to H :

N =
∑

α∈H∗

Nα.

The scalarmult (α) := dim Nα is called the multiplicity of the root α. We also denote

dim[x] = dimNα for nonzero x ∈ Nα.

If the maximal torus of N is trivial, then N is characteristically nilpotent. By the

results of R.Carles in [3], one easily deduces that the nilindex of N is greater than

or equal to 3. Since the nilindex of a 2-step nilpotent Lie algebra is 2, the maximal

torus of a 2-step nilpotent Lie algebra cannot be reduced to zero. In the following

we fix a nonzero maximal torus of a 2-step nilpotent Lie algebra N .
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Definition 2.1 ([13]). Let H be a maximal torus of N . A minimal system of

generators consisting of root vectors for H is called an H-msg of N .

Definition 2.2 ([10]). Let {x1, x2, . . . , xn} be a minimal system of generators
of a nilpotent Lie algebra N . The related set of xi is defined to be the set G(xi) =

{xj ; [xi, xj ] 6= 0}, and the number pi = |G(xi)| is called the related number
of xi. The n-tuple of integers (p1, p2, . . . , pn) [4] is called the related sequence of

{x1, x2, . . . , xn}.

Definition 2.3 ([10]). Aminimal system of generators is called a (p1, p2, . . . , pn)-

msg if its related sequence is (p1, p2, . . . , pn). It is called a (p1, p2, . . . , pn)-H-msg if

it is also an H-msg.

The study of nilpotent Lie algebras with generators was initiated by G.Favre [4],

who obtained the classification of nilpotent Lie algebras with maximal rank.

Definition 2.4 ([9]). A nilpotent Lie algebra N is called quasi-cyclic if N has

a subspace U such that N = U ⊕ U2 ⊕ . . . ⊕ Uk, where U i = [U, U i−1].

If N is a quasi-cyclic nilpotent Lie algebra, it is clear that there exists a derivation

I such that I|Us = s · id (where id denotes the identity map). Hence there exists

a maximal torus on N .

Lemma 2.2 ([9]). If N is a 2-step nilpotent Lie algebra, then C(N) = N2 if and

only if pi > 0 for any (p1, p2, . . . , pn)-msg.

Lemma 2.3 ([9]). Let N be a 2-step nilpotent Lie algebra, and {x1, x2, . . . , xn}
a minimal system of generators of N . If a linear transformation h of N satisfies

h[xi, xj ] = [h(xi), xj ] + [xi, h(xj)], 1 6 i, j 6 n

then h ∈ Der N .

Lemma 2.4 ([9]). Let N be a 2-step nilpotent Lie algebra, and {x1, x2, . . . , xn}
a minimal system of generators of N . If there exists h ∈ DerN such that h(xi) =

aixi and ai 6= aj (i 6= j), then there exists a maximal torus H on N such that

{x1, x2, . . . , xn} is an H-msg, and dim[xi] = 1 for any i.
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Lemma 2.5 ([9]). Let N be a quasi-cyclic nilpotent Lie algebra, and {x1, x2, . . . ,

xn} anH1-msg of N , {y1, y2, . . . , yn} anH2-msg of N . Then there exists θ ∈ Aut (N)

such that

(y1, y2, . . . , yn)t = A(θ(x1), θ(x2), . . . , θ(xn))t

where (y1, y2, . . . , yn)t is the transpose of the matrix (y1, y2, . . . , yn), and A is an

n×n invertible matrix. In particular, if for any i, dim[xi] = 1, then A is a monomial

matrix (i.e., each row or each column has exactly one nonzero entry).

Remark 2.1. When N is quasi-cyclic, then by Lemma 2.5 it is easily seen that

the related sequence (p1, p2, . . . , pn) (pi > pi+1) of {x1, x2, . . . , xn} is an invariant of
N if {x1, x2, . . . , xn} is an H-msg, and dim[xi] = 1 for each xi.

It is important to find new invariants in the classification of Lie algebras. Goze

and Ancochea obtained the classification of complex nilpotent Lie algebras of dimen-

sion 7 (see [1]) by introducing a new invariant which are called the characteristic

sequence (see [8]). Later, using the same method, they also obtained the classifi-

cation of complex filiform Lie algebras of dimension 8 (see [2]). Unfortunately, the

characteristic sequences of any 2-step nilpotent Lie algebras of dimension 8 with 2

(or 3, 4)-dimensional center are all of the type (2, 2, 1, 1, 1, 1) (resp. (2, 2, 1, 1, 1, 1),

(2, 1, 1, 1, 1, 1, 1)). Therefore this method cannot be used to obtain a complete clas-

sification of all 2-step nilpotent Lie algebras of dimension 8.

It is worth mentioning that, some other invariants of 2-step Lie algebras were used

by Revoy [12] to study 2-step nilpotent Lie algebras. Revoy determined the classes

of 2-step nilpotent Lie algebras with small generating sets.

In this paper, we shall apply Lemma 2.5 to determine whether two 2-step nilpotent

Lie algebras of dimension 8 are isomorphic. The key here is to find an H-msg of N

using our method. By Lemma 2.4, in order to find an H-msg of N , we need only to

find a semisimple derivation h whose eigenvalues are distinct (i.e., each eigenvalue

has multiplicity one).

3. Lists of the Lie algebras

We now start the classification of 2-step nilpotent Lie algebras of dimension 8.

Since 2-step nilpotent Lie algebras of dimension less or equal to 7 have been com-

pletely classified, we can assume that the nilpotent Lie algebras are indecomposable

(i.e., cannot be decomposed into direct sum of two or more ideals). If N is an in-

decomposable 2-step nilpotent Lie algebra of dimension 8, then the number k of

generators cannot be less than 4. In fact, if k 6 3, then by the results in [8] we have

dimN 6 k + C2
k 6 3 + 3 = 6, which is a contradiction. The above assertion amounts
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to saying that the center of N has dimension 2, 3 or 4, since N is not the Heisenberg

algebra.

Obviously, the assumption that N is indecomposable implies that C(N) = N2.

Thus pi > 0 for any (p1, p2, . . . , pn)-msg. Let {x1, x2, . . . , x8} be a basis of N .
The case that N has 2-dimensional center has been settled by Ren and Lin in [11].

We now recall the classification.

Theorem 3.1 ([11]). If dimN = 8 and dimN2 = 2, then N is isomorphic to one

of the following Lie algebras:

N8,2
1 : There exists a (1, 1, 1, 1, 1, 1)-msg {x1, x2, . . . , x6} such that

[x1, x2] = x7, [x3, x4] = x8, [x5, x6] = x7 + x8.

N8,2
2 : There exists a (2, 1, 1, 2, 1, 1)-msg {x1, x2, . . . , x6} such that

[x1, x2] = [x4, x5] = x7, [x1, x3] = [x4, x6] = x8.

N8,2
3 : There exists a (1, 1, 1, 2, 2, 1)-msg {x1, x2, . . . , x6} such that

[x1, x2] = [x4, x5] = x7, [x3, x4] = [x5, x6] = x8.

N8,2
4 : There exists a (1, 1, 1, 2, 2, 1)-msg {x1, x2, . . . , x6} such that

[x1, x2] = [x3, x4] = [x5, x6] = x7, [x4, x5] = x8.

N8,2
5 : There exists a (1, 2, 2, 2, 2, 1)-msg {x1, x2, . . . , x6} such that

[x1, x2] = [x3, x4] = [x5, x6] = x7, [x2, x3] = [x4, x5] = x8.

In particular, in each N8,2
i , {x1, x2, . . . , x6} is an Hi-msg. Moreover, for any i,

dim[xi] = 1 for i = 1, 2, 3, 4, dim Hi = 4, and dimH5 = 3.

The above theorem gives a complete classification of the case that the center of N

has dimension 2. To accomplish a classification of all 2-step nilpotent Lie algebras

of dimension 8, we need to give the classification for the cases that the center has

dimension 3 or 4. We first consider the 3-dimensional case.

Theorem 3.2. The following 2-step nilpotent Lie algebras of dimension 8 with

3-dimensional center are mutually nonisomorphic:

N8,3
1 : There exists a (2, 2, 2, 1, 1)-msg {x1, x2, . . . , x5} such that

[x1, x2] = [x4, x5] = x6, [x2, x3] = x7, [x1, x3] = x8.

N8,3
2 : There exists a (1, 2, 2, 2, 1)-msg {x1, x2, . . . , x5} such that

[x1, x2] = [x4, x5] = x6, [x2, x3] = x7, [x3, x4] = x8.
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N8,3
3 : There exists a (1, 2, 2, 2, 1)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x2, x3] = [x4, x5] = x7, [x3, x4] = x8.

N8,3
4 : There exists a (2, 2, 2, 2, 2)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x2, x3] = [x4, x5] = x7, [x3, x4] = [x5, x1] = x8.

N8,3
5 : There exists a (3, 2, 1, 1, 1)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x1, x3] = x7, [x1, x4] = x8, [x2, x5] = x7.

N8,3
6 : There exists a (3, 2, 2, 2, 1)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x1, x3] = x7, [x1, x4] = x8, [x2, x3] = x8, [x4, x5] = x7.

N8,3
7 : There exists a (3, 2, 2, 2, 1)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x1, x3] = x7, [x1, x5] = x8, [x2, x4] = x8, [x3, x4] = x6.

N8,3
8 : There exists a (3, 3, 2, 1, 1)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x1, x3] = x7, [x2, x3] = x8, [x1, x4] = x8, [x2, x5] = x7.

N8,3
9 : There exists a (3, 3, 2, 2, 2)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x1, x3] = x7, [x2, x3] = x8, [x1, x4] = x8, [x2, x5] = x7, [x4, x5] = x6.

N8,3
10 : There exists a (1, 2, 2, 2, 1)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x2, x3] = [x3, x4] = x7, [x4, x5] = x8.

N8,3
11 : There exists a (2, 2, 2, 2, 2)-msg {x1, x2, . . . , x5} such that

[x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8, [x4, x5] = [x5, x1] = x7.

In particular, {x1, x2, . . . , x5} is an Hi-msg in each N8,3
i , and dim[xi] = 1 for any

1 6 i 6 9.

P r o o f. First we consider N8,3
1 . By Lemma 2.3, there exists an h1 ∈ DerN such

that the matrix of h1 relative to {x1, x2, . . . , x8} is diag(1, 0,−1, 3,−2, 1,−1, 0). By

Lemma 2.4, there exists a maximal torus H1 on N such that {x1, x2, . . . , x5} is an
H1-msg, and dim[xi] = 1 for each xi.
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For any h ∈ H1, the matrix of h relative to {x1, x2, . . . , x8} has the form

diag(a1, a2, a3, a4, a5, a1 + a2, a2 + a3, a1 + a3).

Since [x1, x2] = [x4, x5], we have a1 +a2 = a4 +a5. It is easily seen that {t1, t2, t3, t4}
is a basis of H1, where the matrices of t1, t2, t3, t4 relative to {x1, x2, . . . , x8} are
diag(1, 0, 0, 0, 1, 1, 0, 1), diag(0, 1, 0, 0, 1, 1, 1, 0), diag(0, 0, 1, 0, 0, 0, 0, 1), diag(0, 0, 0,

1,−1, 0, 0, 0), respectively.

This argument can be applied to other cases to get a (p1, p2, p3, p4, p5)-msg and

a basis of a maximal torus relative to {x1, x2, . . . , x8} for each Lie algebras N
(8,3)
j .

We summarize the results in the following table:

(p1, p2, p3, p4, p5)-msg a basis of maximal torus relative to {x1, x2, . . . , x8} rank

N
8,3
1

(2, 2, 2, 1, 1)
diag(1, 0, 0, 0, 1, 1, 0, 1), diag(0, 1, 0, 0, 1, 1, 1, 0),
diag(0, 0, 1, 0, 0, 0, 0, 1), diag(0, 0, 0, 1,−1, 0, 0, 0).

4

N
8,3
2

(1, 2, 2, 2, 1)
diag(1, 0, 0, 0, 1, 1, 0, 0), diag(0, 1, 0, 0, 1, 1, 1, 0),
diag(0, 0, 1, 0, 0, 0, 1, 1), diag(0, 0, 0, 1, 0, 0, 0, 1).

4

N
8,3
3

(1, 2, 2, 2, 1)
diag(1, 0, 0, 0, 0, 1, 0, 0), diag(0, 1, 0, 1, 0, 1, 1, 1),
diag(0, 0, 1, 1, 0, 0, 1, 2), diag(0, 0, 0,−1, 1, 0, 0,−1).

4

N
8,3
4

(2, 2, 2, 2, 2)
diag(2, 0, 0, 1,−1, 2, 0, 1), diag(0, 2, 0, 1, 1, 2, 2, 1),

diag(0, 0, 1, 0, 1, 0, 1, 1).
3

N
8,3
5

(3, 2, 1, 1, 1)
diag(1, 0, 0, 0, 1, 1, 1, 1), diag(0, 1, 0, 0,−1, 1, 0, 0),
diag(0, 0, 1, 0, 1, 0, 1, 0), diag(0, 0, 0, 1, 0, 0, 0, 1).

4

N
8,3
6

(3, 2, 2, 2, 1)
diag(1, 0, 0,−1, 2, 1, 1, 0), diag(0, 1, 0, 1,−1, 1, 0, 1),

diag(0, 0, 1, 1, 0, 0, 1, 1).
3

N
8,3
7

(3, 2, 2, 2, 1)
diag(1, 0, 0, 1, 0, 1, 1, 1), diag(0, 1, 0, 1, 2, 1, 0, 2),

diag(0, 0, 1,−1,−1, 0, 1,−1).
3

N
8,3
8

(3, 3, 2, 1, 1)
diag(1, 0, 0,−1, 1, 1, 1, 0), diag(0, 1, 0, 1,−1, 1, 0, 1),

diag(0, 0, 1, 1, 1, 0, 1, 1).
3

N
8,3
9

(3, 3, 2, 2, 2) diag(1, 3, 2, 4, 0, 4, 3, 5), diag(3, 1, 2, 0, 4, 4, 5, 3). 2

N
8,3
10

(1, 2, 2, 2, 1)
diag(1, 0, 0, 0, 0, 1, 0, 0), diag(0, 1, 0, 1, 0, 1, 1, 1),
diag(0, 0, 1, 0, 0, 0, 1, 0), diag(0, 0, 0, 0, 1, 0, 0, 1).

4

N
8,3
11

(2, 2, 2, 2, 2)
diag(1, 0, 0, 1,−1, 1, 0, 1), diag(0, 1, 0, 0, 1, 1, 1, 0),

diag(0, 0, 1, 0, 1, 0, 1, 1).
3

Combining this table with Lemma 2.5, we conclude that the above eleven algebras

are mutually nonisomorphic. �

Now we turn to the case in which the center of the two-step nilpotent Lie algebra

has dimension 4. We first give the list of such Lie algebras.
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Theorem 3.3. The following two-step nilpotent Lie algebras of dimension 8 with

4 dimensional center are mutually nonisomorphic:

N8,4
1 : There exists a (2, 2, 2, 2)-msg {x1, x2, x3, x4} such that

[x1, x2] = x5, [x2, x3] = x6, [x3, x4] = x7, [x4, x1] = x8.

N8,4
2 : There exists a (3, 2, 2, 1)-msg {x1, x2, x3, x4} such that

[x1, x2] = x5, [x1, x3] = x6, [x2, x3] = x7, [x1, x4] = x8.

N8,4
3 : There exists a (3, 3, 2, 2)-msg {x1, x2, x3, x4} such that

[x1, x2] = x5, [x1, x3] = x6, [x2, x4] = x6, [x2, x3] = x7, [x1, x4] = x8.

P r o o f. Similarly to the proof of Theorem 3.2, one can deduce the following

results.

First consider N8,4
1 . It is easily seen that there exists an h1 ∈ Der N such that

the matrix of h1 relative to {x1, x2, . . . , x8} is diag(1, 2, 3, 4, 3, 5, 7, 5). Moreover,

there exists a maximal torus H1 on N such that {x1, x2, x3, x4} is an H1-msg, and

dim[xi] = 1 for each xi. It is easy to show that {t1, t2, t3, t4} is a basis of H1, where

the matrices of t1, t2, t3, t4 relative to {x1, x2, . . . , x8} are diag(1, 0, 0, 0, 1, 0, 0, 1),

diag(0, 1, 0, 0, 1, 1, 0, 1), diag(0, 0, 1, 0, 0, 1, 1, 0), diag(0, 0, 0, 1, 0, 0, 1, 1), respectively.

Next consider N8,4
2 . Similarly to the above case, there exists an h2 ∈ DerN such

that the matrix of h2 relative to {x1, x2, . . . , x8} is diag(1, 2, 3, 4, 3, 4, 5, 5). Moreover,

there exists a maximal torus H2 on N such that {x1, x2, x3, x4} is an H2-msg, and

dim[xi] = 1 for each xi. It is easy to show that {t1, t2, t3, t4} is a basis of H2, where

the matrices of t1, t2, t3, t4 relative to {x1, x2, . . . , x8} are diag(1, 0, 0, 0, 1, 1, 0, 1),

diag(0, 1, 0, 0, 1, 0, 1, 0), diag(0, 0, 1, 0, 0, 1, 1, 0), diag(0, 0, 0, 1, 0, 0, 0, 1), respectively.

Finally, we consider N8,4
3 . In this case, there exists an h3 ∈ Der N such that the

matrix of h3 relative to {x1, x2, . . . , x8} is diag(1, 2, 4, 3, 3, 5, 6, 4). Further, there ex-

ists a maximal torusH3 onN such that {x1, x2, x3, x4} is anH3-msg, and dim[xi] = 1

for each xi. On the other hand, it is easy to show that {t1, t2, t3} is a basis of H3,

where the matrices of t1, t2, t3 relative to {x1, x2, . . . , x8} are diag(1, 0, 0, 1, 1, 1, 0, 2),

diag(0, 1, 0,−1, 1, 0, 1,−1), diag(0, 0, 1, 1, 0, 1, 1, 1), respectively.

Combining the above observations with Lemma 2.5, we conclude that the above

three Lie algebras are mutually nonisomorphic. �
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4. The classification

In this section we shall prove that the lists in Theorems 3.1 and 3.2 give a com-

plete classification of 8-dimensional two-step nilpotent Lie algebras whose center has

dimension 3 and 4, respectively. Precisely, we have the following two theorems:

Theorem 4.1. If dimN = 8 and dimN2 = 3, then N is isomorphic to one of

the Lie algebras N8,3
i , 1 6 i 6 11.

Theorem 4.2. If dimN = 8, dim N2 = 4, then N is isomorphic to one of the

Lie algebras N8,4
i , 1 6 i 6 3.

In order to prove Theorems 4.1 and 4.2, we need the following notation and lem-

mas.

Definition 4.1. The classical lexicographic order on the set of n-tuples is

defined as follows: (p1, p2, . . . , pn) > (q1, q2, . . . , qn) if there exists i such that

pk = qk, 1 6 k 6 i − 1 and pi > qi. A minimal system of generators is called

a minimal-(p1, p2, . . . , pn)-msg if its related sequence (p1, p2, . . . , pn) is minimal with

respect to this order (i.e., (q1, q2, . . . , qn) > (p1, p2, . . . , pn), for any related sequence

(q1, q2, . . . , qn)).

Remark 4.1. The minimal sequence (p1, p2, . . . , pn) of {x1, x2, . . . , xn} is an
invariant of N . We call (p1, p2, . . . , pn) the minimal order sequence of N .

Lemma 4.1. If dim N = 8 and dimN2 = 3, then N can only have minimal order

sequences (2, 2, 2, 1, 1), (2, 2, 2, 2, 2), (3, 2, 1, 1, 1), (3, 2, 2, 2, 1) or (3, 3, 2, 1, 1).

P r o o f. Let (p1, p2, . . . , p5) be the minimal order sequence ofN , and {x1, x2, . . . ,

x5} its related minimal system of generators.
We first assert that there do not exist xi1 , xi2 such that {xi3 , xi4 , xi5} ⊂ G(xi1 ) ∩

G(xi2 ), where {i1, i2, i3, i4, i5} = {1, 2, 3, 4, 5}. In fact, otherwise, we could deduce
that either [xi1 , xi3 ], [xi1 , xi4 ], [xi1 , xi5 ] are linearly dependent, or [xi1 , xi3 ], [xi1 , xi4 ],

[xi1 , xi5 ] and [xi2 , xi3 ], [xi2 , xi4 ], [xi2 , xi5 ] are linearly independent, since dimC(N) =

3. We now show that each of the above assertions leads to a contradiction.

(1) [xi1 , xi3 ], [xi1 , xi4 ], [xi1 , xi5 ] are linearly dependent. We may assume pi3 >

pi4 > pi5 , a[xi1 , xi3 ] + b[xi1 , xi4 ] + c[xi1 , xi5 ] = 0. Suppose x′

i3
= axi3 + bxi4 + cxi5 ,

x′

i4
= bxi4 + cxi5 . Then either (pi1 , pi2 , p

′

i3
, pi4 , pi5) is less than (pi1 , pi2 , pi3 , pi4 , pi5)

(a 6= 0), or (pi1 , pi2 , pi3 , p
′

i4
, pi5) is less than (pi1 , pi2 , pi3 , pi4 , pi5) (a = 0). This is

a contradiction.
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(2) Both [xi1 , xi3 ], [xi1 , xi4 ], [xi1 , xi5 ] and [xi2 , xi3 ], [xi2 , xi4 ], [xi2 , xi5 ] are linearly

independent. It is easy to show that there exist a, b, c and k 6= 0 such that

a[xi1 , xi3 ] + b[xi1 , xi4 ] + c[xi1 , xi5 ] = k(a[xi2 , xi3 ] + b[xi2 , xi4 ] + c[xi2 , xi5 ]).

We may assume pi3 > pi4 > pi5 . Suppose x′

i3
= axi3 + bxi4 + cxi5 , x′

i4
=

bxi4 + cxi5 , and x′

i1
= xi1 − kxi2 . Then either (p′i1 , pi2 , p

′

i3
, pi4 , pi5) is less than

(pi1 , pi2 , pi3 , pi4 , pi5) (a 6= 0), or (p′i1 , pi2 , pi3 , p
′

i4
, pi5) is less than (pi1 , pi2 , pi3 , pi4 , pi5)

(a = 0, b 6= 0), or (p′i1 , pi2 , pi3 , pi4 , pi5) is less than (pi1 , pi2 , pi3 , pi4 , pi5) (a = 0,

b = 0). This is also a contradiction. Thus p2 6= 4.

Secondly, it is easy to show that none of (4, 1, 1, 1, 1), (4, 2, 2, 1, 1), (4, 2, 2, 2, 2),

(4, 3, 1, 1, 1), (4, 3, 2, 2, 1), (4, 3, 3, 1, 1), (4, 3, 3, 2, 2), (4, 3, 3, 3, 1), (4, 3, 3, 3, 3) can be

the minimal order sequence of N . Thus p1 < 4.

Finally, if (p1, p2, p3, p4, p5) = (3, 3, 3, 3, 2), we may suppose {x1, x2} = G(x5).

Then we have {x3, x4, x5} = G(x1) ∩ G(x2). By the above assertion we conclude

that (3, 3, 3, 3, 2) cannot be the minimal order sequence of N .

If (p1, p2, p3, p4, p5) = (3, 3, 3, 2, 1), we may assume {x1} = G(x5). Then it is

easy to show that [x1, x2], [x1, x3], [x1, x5] are linearly independent, and [x2, x3] =

a[x1, x2]+b[x1, x3]+c[x1, x5] (a 6= 0). Let x′

2 = ax2+bx3+cx5, x
′

3 = x1+a−1x3. Then

the related sequence (p1, p
′

2, p
′

3, p4, p5) of {x1, x
′

2, x
′

3, x4, x5} is less than (3, 3, 3, 2, 1).

This is a contradiction.

If (p1, p2, p3, p4, p5) = (3, 3, 2, 2, 2), then from the first result we know that

[x1, x2] 6= 0. Thus we may assume {x1, x2} = G(x3), and {x1, x5} = G(x4),

{x2, x4} = G(x5). It is easy to show that [x1, x2], [x1, x3], [x2, x3] are linearly

independent. Let [x1, x2] = x6, [x1, x3] = x7, [x2, x3] = x8. Then we have

[x1, x4], [x2, x5], [x4, x5] ∈ {ax7 + bx8; a, b ∈ C}. Thus there exist a and b such that

x′

1 = ax1+bx5, [x
′

1, x4] = [x′

1, x3]. Let x
′

3 = x3−x4. Then we have {x2, x4} = G(x′

1),

{x′

1, x
′

3, x5} = G(x2), {x2, x5} = G(x′

3), {x′

1, x5} = G(x4), and {x2, x
′

3, x4} = G(x5).

But this contradicts the assumption that [x2, x
′

3], [x′

3, x5], [x2, x5] are linearly de-

pendent. So (3, 3, 2, 2, 2) cannot be the minimal order sequence of N .

Finally, using the assumption that N is indecomposable, one can easily show that

(2, 1, 1, 1, 1) cannot be the minimal order sequence of N .

Combining the above results with Theorem 3.2, we conclude that (2, 2, 2, 1, 1),

(2, 2, 2, 2, 2), (3, 2, 1, 1, 1), (3, 2, 2, 2, 1) and (3, 3, 2, 1, 1) are the only possible minimal

order sequences of N . �

Lemma 4.2. Suppose dimN = 8 and dimN2 = 3. If {x1, x2, x3, x4, x5} is
a minimal system of generators of N , and there exists h ∈ DerN such that h(xi) =

aixi, and ai 6= aj(i 6= j), then N is isomorphic to one of the Lie algebras N8,3
i ,

1 6 i 6 9.
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P r o o f. Let {x1, x2, x3, x4, x5} be a (p1, p2, p3, p4, p5)-H-msg, with pi > pi+1.

Suppose there exists h ∈ DerN such that h(xi) = aixi, with ai 6= aj(i 6= j). Then

[xi, xj ], [xi, xk] ([xi, xj ], [xi, xk] 6= 0) are linearly independent, since they lie in differ-

ent eigenspaces of the linear transformation h. Therefore we have (p1, p2, p3, p4, p5) 6

(3, 3, 2, 2, 2). A direct computation shows:

If (p1, p2, p3, p4, p5) = (2, 2, 2, 1, 1), then N is isomorphic to N8,3
1 , N

8,3
2 or N8,3

3 .

If (p1, p2, p3, p4, p5) = (2, 2, 2, 2, 2), then N is isomorphic to N8,3
4 .

If (p1, p2, p3, p4, p5) = (3, 2, 1, 1, 1), then N is isomorphic to N8,3
5 .

If (p1, p2, p3, p4, p5) = (3, 2, 2, 2, 1), then N is isomorphic to N8,3
6 or N8,3

7 .

If (p1, p2, p3, p4, p5) = (3, 3, 2, 1, 1), then N is isomorphic to N8,3
8 .

If (p1, p2, p3, p4, p5) = (3, 3, 2, 2, 2), then N is isomorphic to N8,3
9 .

This completes the proof of the lemma. �

Lemma 4.3. If N has a minimal-(2, 2, 2, 1, 1)-msg, then N is isomorphic to N8,3
1 ,

N8,3
2 , N

8,3
3 , or N8,3

10 .

P r o o f. Let {x1, x2, x3, x4, x5} be a minimal-(2, 2, 2, 1, 1)-msg. By the assump-

tion that N is indecomposable, one easily sees that, if [x4, x5] 6= 0, then N is iso-

morphic to N8,3
1 . Otherwise we may assume that neither of the elements [x4, x1],

[x1, x2], [x2, x3] or [x3, x5] is 0. In this case, one easily deduces that, if [x4, x1],

[x1, x2], [x3, x5] are linearly independent, then N is isomorphic to N8,3
10 ; if [x4, x1],

[x1, x2], [x3, x5] are linearly dependent, then N is isomorphic to N8,3
2 or N8,3

3 . �

Lemma 4.4. If N has a minimal-(3, 2, 1, 1, 1)-msg, then N is isomorphic to N8,3
5 .

P r o o f. Let {x1, x2, x3, x4, x5} be a minimal-(3, 2, 1, 1, 1)-msg. We may assume

[x2, x3] 6= 0. Then it is easy to show that [x1, x4], [x1, x5], [x1, x2] are linearly inde-

pendent, and [x2, x3] ∈ {a[x1, x4] + b[x1, x5]; a, b ∈ C}. Therefore N is isomorphic

to N8,3
5 . �

Lemma 4.5. If N has a minimal-(3, 2, 2, 2, 1)-msg, then N is isomorphic to N8,3
7 .

P r o o f. Let {x1, x2, x3, x4, x5} be a minimal-(3, 2, 2, 2, 1)-msg. If G(x1) =

{x2, x3, x4}, G(x2) = {x1, x3}, G(x3) = {x1, x2}, G(x4) = {x1, x5} and G(x5) =

{x4}, then [x1, x2], [x1, x3], [x1, x4] are linearly independent. Further, [x1, x2],

[x1, x3], [x2, x3] are also linearly independent. Thus we may assume [x1, x4] =

a[x2, x3] and [x5, x4] = b[x1, x2] + c[x1, x3] (a, b, c 6= 0). Suppose x′

1 = x1 + x5 −
(a/b) · x3, x

′

2 = bx2 + cx3 − x4. Then the related sequence of {x′

1, x
′

2, x3, x4, x5} is
(2, 2, 2, 2, 2). So we have G(x1) = {x2, x3, x5}, G(x2) = {x1, x4}, G(x3) = {x1, x3},
G(x4) = {x2, x3} and G(x5) = {x1}. It is easy to show that the following sets of
vectors are all linearly independent:
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(1) [x1, x2], [x1, x3], [x1, x5],

(2) [x2, x4], [x3, x4],

(3) [x2, x4], [x2, x1],

(4) [x3, x1], [x3, x4].

From this we see that one can choose a new basis of N satisfying [x1, x5] = [x3, x4],

[x1, x3] = [x2, x4], and keeping other brackets invariant. Thus N is isomorphic

to N8,3
7 . �

Lemma 4.6. If N has a minimal-(3, 3, 2, 1, 1)-msg, then N is isomorphic to N8,3
8 .

P r o o f. Let {x1, x2, x3, x4, x5} be a minimal-(3, 3, 2, 1, 1)-msg. Without losing

generality, we may assume that [x1, x2], [x1, x3], [x2, x3] are linearly independent,

that [x1, x4], [x2, x5] are linearly independent, and that [x1, x4], [x2, x5] ∈ {a[x1, x3]+

b[x2, x3] | a, b ∈ C}. Therefore there exist a, b, k and t such that [x1, x
′

3] = k[x2, x5],

[x2, x
′

3] = t[x1, x4], and (x′

3 = ax4 + bx5). Thus N is isomorphic to N8,3
8 . �

Finally, we prove

Lemma 4.7. If N has a minimal-(2, 2, 2, 2, 2)-msg {x1, x2, x3, x4, x5}, then either
N is isomorphic to N8,3

11 , or N has a derivation h ∈ Der N such that h(yi) = aiyi,

with ai 6= aj (i 6= j), and 〈x1, x2, x3, x4, x5〉 = 〈y1, y2, y3, y4, y5〉.

P r o o f. Let {x1, x2, x3, x4, x5} be a minimal-(2, 2, 2, 2, 2)-msg. We may assume

[x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8, [x4, x5] = α1x6 + α2x7 + α3x8, and

[x5, x1] = β1x6 + β2x7 + β3x8. Let α = {αi 6= 0} and β = {βi 6= 0}. It is easy
to check that |α| > 0, |β| > 0. By symmetry, we may assume |α| > |β|. Now let
V = 〈x1, x2, x3, x4, x5〉 be the vector space spanned by {x1, x2, x3, x4, x5}. We have
the following cases:

Case 2–1 : α1 6= 0, β1 6= 0, α2 = α3 = β2 = β3 = 0. Obviously, this case does not

occur.

Case 2–2 : α1 6= 0, β2 6= 0, α2 = α3 = β1 = β3 = 0. We can change the basis

to a new one satisfying [x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8, [x4, x5] = x6, and

[x5, x1] = x7. Then one can check that this algebra is isomorphic to N8,3
4 .

Case 2–3 : α1 6= 0, β3 6= 0, α2 = α3 = β1 = β2 = 0. This case can be reduced to

Case 2–2.

Case 2–4 : α2 6= 0, β1 6= 0, α1 = α3 = β2 = β3 = 0. This case does not occur.

Case 2–5 : α2 6= 0, β2 6= 0, α1 = α3 = β1 = β3 = 0. Obviously, in this case N is

isomorphic to N8,3
11 .

Case 2–6 : α2 6= 0, β3 6= 0, α1 = α3 = β1 = β2 = 0. This case can be reduced to

Case 2–2.
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Case 2–7 : α3 6= 0, β1 6= 0, α1 = α2 = β2 = β3 = 0. This case does not occur.

Case 2–8 : α3 6= 0, β2 6= 0, α1 = α2 = β1 = β3 = 0. This case can be reduced to

Case 2–4.

Case 2–9 : α3 6= 0, β3 6= 0, α1 = α2 = β1 = β2 = 0. This case can be reduced to

Case 2–1.

Case 3–1 : α2 6= 0, α3 6= 0, β3 6= 0, α1 = β1 = β2 = 0. In this case we can

change the basis to a new one satisfying [x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8,

[x4, x5] = x7 + x8, and [x5, x1] = x8. Let h be an element of gl(N) whose matrix

relative to {x1, x2, . . . , x8} is




























3 1 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 0 2 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 −1 3





























.

Then it is easy to show that h ∈ DerN , that h is semisimple on V and that it has

distinct eigenvalues 3, −1, 1, 2, 0.

Case 3–2 : α1 6= 0, α3 6= 0, β3 6= 0, α2 = β1 = β2 = 0. This case can be reduced

to Case 3–1.

Case 3–3 : α1 6= 0, α2 6= 0, β3 6= 0, α3 = β1 = β2 = 0. This case can be reduced

to Case 2–3.

Case 3–4 : α2 6= 0, α3 6= 0, β1 6= 0, α1 = β2 = β3 = 0. This case can be reduced

to Case 2–7.

Case 3–5 : α1 6= 0, α3 6= 0, β1 6= 0, α2 = β2 = β3 = 0. This case can be reduced

to Case 2–5.

Case 3–6 : α1 6= 0, α2 6= 0, β1 6= 0, α3 = β2 = β3 = 0. In this case we can

change the basis to a new one satisfying [x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8,

[x4, x5] = x6 + x7, and [x5, x1] = x6. Then it is easily seen that N is isomorphic

to N8,3
6 .

Case 3–7 : α2 6= 0, α3 6= 0, β2 6= 0, α1 = β1 = β3 = 0. This case can be reduced

to Case 3–5.

Case 3–8 : α1 6= 0, α3 6= 0, β2 6= 0, α2 = β1 = β3 = 0. This case can be reduced

to Case 3–3.

Case 3–9 : α1 6= 0, α2 6= 0, β2 6= 0, α3 = β1 = β3 = 0. This case can be reduced

to Case 3–1.

Case 4–1 : |α| = 3, β3 6= 0, β1 = β2 = 0. This case can be reduced to Case 3–1.
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Case 4–2 : |α| = 3, β2 6= 0, β1 = β3 = 0. This case can be reduced to Case 4–1.

Case 4–3 : |α| = 3, β1 6= 0, β2 = β3 = 0. The algebra is isomorphic to N8,3
11 .

Case 4–4 : |α| = 2, |β| = 2, α1 = β1 = 0. In this case we can change the basis

to a new one satisfying [x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8, [x4, x5] = x7 + x8,

[x5, x1] = x7 + λx8, and λ 6= 0, 1, 9/8 (when λ is replaced by 1 − λ, the resulting

algebra is isomorphic to the original one). Let h be an element of gl(N) whose matrix

relative to {x1, x2, . . . , x8} is




























2λ − 1 1 0 0 0 0 0 0

−1 1 − 2λ 0 0 0 0 0 0

0 0 2λ − 1 0 1 − λ 0 0 0

λ λ 0 0 0 0 0 0

0 0 −1 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 −λ 2λ





























.

Then it is easy to check that h ∈ Der N , that h is semisimple on V and that the

restriction of h to V has distinct eigenvalues 2
√

λ2 − λ, −2
√

λ2 − λ, 0, λ+
√

λ2 − λ,

and λ −
√

λ2 − λ.

Case 4–5 : |α| = 2, |β| = 2, α3 = β1 = 0. In this case we can change the basis

to a new one satisfying [x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8, [x4, x5] = x6 + x7

and [x5, x1] = x7 + x8. Let h be an element in gl(N) whose matrix relative to

{x1, x2, . . . , x8} is




























0 0 0 −1 −1 0 0 0

0 −1 0 0 0 0 0 0

0 0 2 1 1 0 0 0

0 −1 0 −2 0 0 0 0

0 1 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 −1 1 0

0 0 0 0 0 −1 1 0





























.

Then one can check that h ∈ Der N , that h is semisimple on V , and that the

restriction of h to V has distinct eigenvalues 0, −1, 2, −2, 1.

Case 4–6 : |α| = 2, |β| = 2, α2 = β1 = 0. This case can be reduced to Case 4–5.

Case 4–7 : |α| = 2, |β| = 2, α1 = β2 = 0. This case can be reduced to Case 3–1.

Case 4–8 : |α| = 2, |β| = 2, α2 = β2 = 0. This case can be reduced to Case 4–4.

Case 4–9 : |α| = 2, |β| = 2, α3 = β2 = 0. This case can be reduced to Case 4–6.

Case 4–10 : |α| = 2, |β| = 2, α1 = β3 = 0. This case can be reduced to Case 2–5.
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Case 4–11 : |α| = 2, |β| = 2, α2 = β3 = 0. This case can be reduced to Case 4–7.

Case 4–12 : |α| = 2, |β| = 2, α3 = β3 = 0. This case can be reduced to Case 4–4.

Case 5–1 : |α| = 3, |β| = 2, β1 = 0. In this case we can change the basis to a new

one satisfying [x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8, [x4, x5] = x6 + x7 + x8 and

[x5, x1] = x7 + λx8, where λ 6= 0. Let h be an element of gl(N) whose matrix of h

relative to {x1, x2, . . . , x8} is























−1 −1 0 −1 −λ 0 0 0

0 −2 0 0 0 0 0 0

0 1 1 1 λ − 1 0 0 0

0 −λ 0 −3 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 −3 0 0

0 0 0 0 0 −λ λ −2























.

Then it is easy to check that h ∈ Der N , that h is semisimple on V and that the

restriction of h to V has distinct eigenvalues 0, −1, 1, −2, −3.

Case 5–2 : |α| = 3, |β| = 2, β2 = 0. In this case we can change the basis to

a new one satisfying [x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8, [x4, x5] = x6 +x7 +x8

and [x5, x1] = x6 + λx8, where λ 6= 0. Let h be the element in gl(N) whose matrix

relative to {x1, x2, . . . , x8} is





























3λ 1 λ 0 λ − 1 0 0 0

0 −λ 0 0 λ 0 0 0

0 0 2λ 0 −λ 0 0 0

0 λ λ λ λ(λ − 1) 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 2λ −λ 0

0 0 0 0 0 0 λ 0

0 0 0 0 0 0 −λ 3λ





























.

Then it is easy to check that h ∈ Der N , that h is semisimple on V and that the

restriction of h to V has distinct eigenvalues 0, −λ, λ, 2λ, 3λ.

Case 5–3 : |α| = 3, |β| = 2, β3 = 0. This case can be reduced to Case 4–12.

Case 6–1 : |α| = 3, |β| = 3. In this case we can change the basis to a new one

satisfying [x1, x2] = x6, [x2, x3] = x7, [x3, x4] = x8, [x4, x5] = x6 + x7 + x8, and

[x5, x1] = x6 + λx7 + µx8, where λ 6= 0 and µ 6= 0, 1. Let h be the element in gl(N)
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whose matrix relative to {x1, x2, . . . , x8} is




























µ 0 0 −1 0 0 0 0

−λ 1 − 2µ −1 1 − λ 0 0 0 0

µ − λ 1 2µ − 1 1 0 0 0 0

µ 0 0 −µ 0 0 0 0

−λ 1 −1 1 0 0 0 0

0 0 0 0 0 −µ 0 1

0 0 0 0 0 −µ 0 λ

0 0 0 0 0 −µ 0 µ





























.

Then it is easy to check that h ∈ Der N , that h is semisimple on V and that the

restriction of h to V has distinct eigenvalues 0, −2
√

µ2 − µ, −
√

µ2 − µ,
√

µ2 − µ,

2
√

µ2 − µ.

Combining all the results in the above cases we complete the proof of the lemma.

�

Now we are ready to prove Theorems 4.1 and 4.2.

P r o o f of Theorem 4.1. This follows directly from Lemmas 4.1–4.7. �

P r o o f of Theorem 4.2. It is easy to know that the minimal order sequence of N

can only be (2, 2, 2, 2), (3, 2, 2, 1) or (3, 3, 2, 2). Now we prove the theorem case by

case, using an argument similar (but simpler) to that in Lemma 4.7.

(1) If the minimal order sequence of N is (2, 2, 2, 2), then N is isomorphic to N8,4
1 .

(2) If the minimal order sequence of N is (3, 2, 2, 1), then N is isomorphic to N8,4
2 .

(3) Let {x1, x2, x3, x4} be a minimal-(3, 3, 2, 2)-msg of N . Obviously, [x1, x2] 6= 0,

and the vectors [x1, x3], [x1, x4], [x2, x3] and [x2, x4] are linearly dependent. From

this one easily deduces that N is isomorphic to N8,4
3 . �

The method used in this paper can be easily applied to greater dimensions, but

the computation involved will be much more complicated.

In the classification of 7 dimensional Lie algebras, there is a one parameter family of

nonisomorphic Lie algebras. This phenomenon does not appear for 2-step nilpotent

Lie algebras in dimension 7. By the results of this paper, it does not appear in

dimension 8 either. In dimension 9 or greater, it was proved by Gauger [6] that

there are infinitely many isomorphism classes of 2-step nilpotent Lie algebras. So

the number 8 is the largest dimension for which the isomorphism classes of 2-step

nilpotent Lie algebras are finite.
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