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Abstract

In statistical inference on the drift parameter a in the Wiener process
with a constant drift Yt = at+Wt there is a large number of options how
to do it. We may, for example, base this inference on the properties of
the standard normal distribution applied to the differences between the
observed values of the process at discrete times. Although such methods
are very simple, it turns out that more appropriate is to use the sequential
methods. For the hypotheses testing about the drift parameter it is more
proper to standardize the observed process, and to use the sequential
methods based on the first time when the process reaches either B or −B,
where B > 0, until some given time. These methods can be generalized
to other processes, for instance, to the Brownian bridges.

Key words: Wiener process, Brownian bridge, symmetric process,
sequential methods
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1 Introduction

Random processes provide a useful tool for describing a large number of practical
situations. Since we are unable to observe such processes continuously, we can
observe the processes only in a set of discrete time points or only observe the
time points when the processes reaches some boundary.
We will work with the Wiener process Wt (or with some other Gaussian

continuous centered processes) with a constant drift a and constant variance
b2 > 0, i.e.

Yt = at+ bWt. (1.1)
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This process has been used as a first approximation to other processes with
approximately constant drift rate and approximately constant instantaneous
variance (see [8]) or can be used for hospital modeling events (see [3]) or for
many other applications.
Therefore our objective is to make some inference on the parameters a and

b (or b2). First we formulate the problem in the second section, and recall the
definition of the general Brownian bridge. In the third section we will show
how the classical statistical approach can be used for the estimating of the
parameters, and the hypotheses testing about them. In the fourth section we
will consider the sequential methods for the hypotheses testing about the drift
parameter a, and discuss its advantages and disadvantages against the classical
approach. Generalizations to the Brownian bridge are discussed in the fifth
section. In the last section all the results are summarized.

2 Problem formulation and notation

Consider a random process

Yt = at+ bBt, (2.1)

where {Bt; t ≥ 0} is either the Wiener process on the interval [0,∞) or the
Brownian bridge on some fixed interval [0,T], where a is a drift rate, and b2 > 0
is an instantaneous variance. Our goal is to make an inference on these param-
eters, especially we are interested in estimating them, and in doing hypotheses
testing about them. In the hypotheses testing we are also interested in the time-
efficiency of a decision, i.e. in shortening the average time needed for decision
with some precision. The inference is often based on observing the process at
discrete time points, i.e. on observations Yt1 , . . . , Ytn , where 0 ≤ t1 < · · · < tn is
a set of time points. Alternative approach is to observe the first hitting time of
the process (2.1), i.e. τB = inf {t ≥ 0;Yt ≥ B}, where B > 0 is a pre-specified
boundary point. We may also consider more pre-specified boundary points.

General Brownian bridge

We say that the random process Bt is a general Brownian bridge on the interval
[T1, T2] with an initial value d1 and final value d2 if

• BT1
= d1, BT2

= d2;

• {Bt, t ∈ [T1, T2]} has continuous sample paths;
• the finite dimensional distributions of the process Bt are Gaussian;

• the expected value and the covariance function are given by

EBt = d1 +
t− T1

T2 − T1
(d2 − d1), Cov(Bs, Bt) =

(T2 − t)(s− T1)

T2 − T1

for s ≤ t, s, t ∈ [T1, T2].
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The general Brownian bridge can be denoted by
{
BT1,T2

t (d1, d2), t ∈ [T1, T2]
}
.

Note that if T1 = 0 and T2 = T (for some T > 0), then the Brownian bridge
can be represented as follows

B0,T
t (d1, d2)

D
= d1 +

t

T
(d2 − d1) +Wt − t

T
WT ,

where Wt is the Wiener process and
D
= stands for the equality in distribution.

In this paper we will consider the case d1 = d2 = 0, T1 = 0, and T2 = T (for
some T > 0). The Brownian bridge on the interval [0, T ] (for some T > 0) with

d1 = d2 = 0 will be denoted by
{
B0,T

t , t ∈ [0, T ]
}
or BT

t , for simplicity. In this

case we have

BT
0 = BT

T = 0, EBT
t = 0,

Cov
(
BT

s , B
T
t

)
= EBT

s B
T
t = s− st

T
,

BT
t

D
= Wt − t

T
WT

for s ≤ t, s, t ∈ [0, T ].

3 Classical approach

In this part we assume that the process Bt in (2.1) is the Wiener process Wt,
i.e. Bt = Wt. For the inference on the parameters a and b we will observe the
process Yt at some times 0 < t1 < t2 < . . . < tn ≡ T . Assume, for brevity,
that ti are equidistant, i.e. we choose a constant c > 0 such that (with the
convention t0 ≡ 0)

tk − tk−1 = c, k = 1, 2, . . . , n,

or equivalently
tk = ck, k = 0, 1, . . . , n.

Let Yc, Y2c, . . . , Ync be the realizations of the process (2.1). Define (transform)
new n observations as follows

Zk = Ytk − Ytk−1
= Ykc − Y(k−1)c = ac+ b

(
Wkc −W(k−1)c

)
, k = 1, 2, . . . , n.

Since the Wiener process has independent increments (with the mean zero nor-
mal distribution and the variance equal to the difference between observed
times), then Z1, Z2, . . . , Zn are independent, identically distributed random
variables with N(ac, b2c). We can use these observations and the elementary
mathematical statistics tools to derive the basic properties of the estimators of
the parameters a and b, and to do the hypotheses testing about them. Define

Z̄n =
1

n

n∑
k=1

Zk, s2 =
1

n− 1

n∑
k=1

(
Zk − Z̄n

)2
, S2

ac =

n∑
k=1

(Zk − ac)
2
.
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According to the strong law of large numbers we can use Z̄n/c :=
1
nc

∑n
k=1 Zk =

YT /T (in the variable n or in the variable T ) and s2/c as the strictly consistent
estimators of the parameters a and b2 respectively. The estimator YT /T of the
parameter a can be also obtained by means of the maximal likelihood procedure
applied to the Girsanov theorem (see [6, Theorem 8.6.6] and [4, (17.25)] for the
choice at ≡ 1 or [6, Theorems 6.1.2, 6.2.8 and Example 6.2.11] for the choice
M(t) = N(t) ≡ 1 for the similar result). It is also very well known that if a and
b are the real parameters, then

Z̄n ∼ N

(
ac,

b2c

n

)
,

(n− 1)s2

b2c
∼ χ2

n−1,
Z̄n − ac

s

√
n ∼ tn−1,

S2
ac

b2c
∼ χ2

n,

(3.1)
and that the statistics Z̄n and s2 are independent.

3.1 Hypotheses about the parameters a and b

Let us investigate the hypotheses testingH1 : b
2 ≥ b20,H2 : b

2 ≤ b20, andH3 : b
2 =

b20 against the alternatives K1 : b
2 < b20, K2 : b

2 > b20, and K3 : b
2 	= b20

respectively. Similarly we may consider the hypotheses testing H4 : a ≥ a0,
H5 : a ≤ a0, and H6 : a = a0 against the alternatives K4 : a < a0, K5 : a > a0,
and K6 : a 	= a0 respectively. According to the known distributions (3.1) we can
test these hypotheses very simply for all the cases.

3.1.1 Hypotheses about the scale parameter b2 with known a

This reflects the situation of the hypotheses testing about the variance in the
normal distribution when the expected value is known. By the symbol I we will
understand the indicator function, and it will be used for the critical functions of
tests. When the critical function attains the value 1, we will reject a considered
hypothesis. Otherwise we will not reject such a hypothesis. The critical func-
tions of the tests of H1 : b

2 ≥ b20, H2 : b
2 ≤ b20, and H3 : b

2 = b20 (on the maximal
level α) against the alternatives K1 : b

2 < b20, K2 : b
2 > b20, and K3 : b

2 	= b20 are

I

{
S2
ac

b20c
< χ2

n(α)
}
, I

{
S2
ac

b20c
> χ2

n(1− α)
}
, 1 − I

{
S2
ac

b20c
∈ (

χ2
n(α/2), χ

2
n(1− α/2)

)}
respectively. The powers of these tests are

Pb21
(reject H1) = Fχ2

n

(
b20
b21
χ2
n(α)

)
, b21 < b20,

Pb21
(reject H2) = 1− Fχ2

n

(
b20
b21
χ2
n(1− α)

)
, b21 > b20,

Pb21
(reject H3) = 1−

(
Fχ2

n

(
b20
b21
χ2
n(1− α/2)

)
− Fχ2

n

(
b20
b21
χ2
n(α/2)

))
, b21 	= b20,

where Fχ2
n
is the distribution function of the χ2

n-distribution, and χ
2
n(α) is its α-

quantile. Note that the powers of the tests do not depend on the parameter a nor
on the total observed time T = cn. The powers depend mainly on the number
of observations n. Similarly we may consider the case when the parameter a is
not known. The powers are very similar and so is the conclusion.
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3.1.2 Hypotheses about the scale parameter a with known b

This reflects the situation of the hypotheses testing about the mean value in the
normal distribution when the variance is known. Let Φ−1(α) be the α-quantile
of the standard normal distribution (and let Φ be its distribution function).
The critical functions of the tests of H4 : a ≥ a0, H5 : a ≤ a0, and H6 : a = a0
(on the level α) against the alternativesK4 : a < a0, K5 : a > a0, andK6 : a 	= a0

are I

{
Z̄n−a0c

b
√
c

√
n < Φ−1(α)

}
, I

{
Z̄n−a0c

b
√
c

√
n > Φ−1(1− α)

}
, I

{ |Z̄n−a0c|
b
√
c

√
n >

Φ−1(1− α/2)
}
respectively. The powers of these tests are

Pa1
(reject H4) = Φ

(
Φ−1(α) +

(a0 − a1)

b

√
T

)
, a1 < a0,

Pa1
(reject H5) = 1− Φ

(
Φ−1(1− α) +

(a0 − a1)

b

√
T

)
, a1 > a0,

Pa1
(reject H6) = 1− Φ

(
Φ−1(1− α/2) +

(a0 − a1)

b

√
T

)

+Φ

(
Φ−1(α/2) +

(a0 − a1)

b

√
T

)
, a1 	= a0.

Note that the powers of these tests do not depend on the value a0, but only
on the difference a1 − a0. The powers also depend on the total observed time
T = cn. Similarly we may consider the case when the parameter b is not known.
The powers are very similar and so is the conclusion.

4 Sequential methods

Although the inference on the parameters a and b based on the classical ap-
proach is very simple, and it is very easy to implement, it is not always the
most appropriate method, especially for the hypotheses testing from the time-
efficiency point of view. Since the inference on the parameter b is sufficient
for the classical approach, as the power does not depend on the total observed
time, but mainly on the number of observations n, we will concentrate on the
inference on the parameter a. Let us assume, for brevity, that the parameter b
is known. Without loss of generality we may assume b = 1. Thus the observed
process (2.1) will reduce to the process

Yt = at+Wt. (4.1)

For a given value of a0 we are now interested in the hypotheses testing
H4 : a ≥ a0, H5 : a ≤ a0, and H6 : a = a0 against the alternatives K4 : a < a0,
K5 : a > a0, and K6 : a 	= a0 respectively. For this purpose we use the sequential
methods. For better work we will transform the observed process (4.1) as follows

Ỹt := Yt − a0t = (a− a0)t+Wt = ãt+Wt,
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where ã := a − a0. Since there is no confusion, we will consider that the
transformed process is Yt = at + Wt rather than the process Ỹt = ãt + Wt.
Thus we can only consider the hypotheses testing H ′

4 : a ≥ 0, H ′
5 : a ≤ 0, and

H ′
6 : a = 0 against the alternatives K ′

4 : a < 0, K ′
5 : a > 0, and K ′

6 : a 	= 0
respectively. Since the hypotheses H ′

4 : a ≥ 0 and H ′
5 : a ≤ 0 are symmetric (as

the Wiener process is), we will consider only the hypotheses H ′
5 and H ′

6.
Let us start with the hypothesis H ′

5. For this purpose we can define, for some
pre-specified boundary point B > 0 and a finite observed time TB (depending
on B), the random time

τ−∞,B(Y ) := inf {t ≥ 0, Yt ≥ B} ∧ TB.

The idea of such a test is that if there is a positive trend, then the process
Yt hits some positive boundary B till some suitable time TB, and otherwise
not. So the critical function of the test of H ′

5 will be I {τ−∞,B(Y ) < TB}. Let
α, β ∈ (0, 1) represent the maximal type I error and type II error respectively.
From the requirement Pa (reject H ′

5) = Pa (τ−∞,B(Y ) < TB) ≤ α for all a ≤ 0
we get (by setting a = 0) P (τ−∞,B(W ) < TB) = α. On the other hand it is very
well known (see [2, Theorem 1.5.1] or the formula (8.20) in [1] for more details)

P (τ−∞,B(W ) < TB) = P

(
sup

0≤t≤TB

Wt ≥ B

)
= 2P (WTB

≥ B)

= 2
(
1− Φ

(
B/

√
TB

))
.

Simple calculation shows TB =
(

B
Φ−1(1−α/2)

)2

so whatever B we choose, we can

easily compute TB or compute B from TB . On the other hand if we want to
attain some power 1 − β at some chosen a1 > 0, we will use the next result.
It is known (see the formula (13.9) in [9] or [8] for many types of results) that
the first hitting time of a positive boundary B by a shifted Wiener process
Yt = at+Wt with the parameter a > 0 is an absolutely continuous a.s. positive
random variable with the inverse Gaussian distribution with the parameters B

a

and B2, denoted by IG
(
B
a , B

2
)
, i.e. with the density

fIG(t) =
B√
2πt3

exp

{
− (B − at)

2

2t

}
, t > 0.

Thus to determine such B or TB we use

Pa1

(
sup

0≤t≤TB

Yt ≥ B

)
= Pa1

(τ−∞,B(Y ) < TB) = FIG(B/a1,B2)(TB),

where FIG(B/a1,B2) is the distribution function of the inverse Gaussian distribu-
tion with the parameters B

a1
and B2. According to this formula we can calculate

B (for given TB) or TB (for given B) large enough to have the power of this
test at least 1− β at some chosen a1 > 0.
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We can also test the hypothesis H ′
5 against the alternative K

′
5 differently.

We use a testing method which consider two hitting boundaries and a maximal
observed time. Let us define

τmin
B (Y ) := τmin

−B,B(Y ) := inf {t ≥ 0, |Yt| ≥ B} ∧ TB, (4.2)

where TB is some suitable chosen time according to the constant B (or B can
be chosen from TB). The idea of such a test is that if there is a positive trend,
then the process Yt will reach first the positive boundary B rather than the
negative boundary −B and till a suitable time TB, and otherwise not. So the
critical function of the test of H ′

5 will be I
{
Yτmin

B (Y ) ≥ B
}
. Another possibility

is to consider two (generally different) boundaries B and −A (A,B > 0), to
use [5, Theorem 2.49], and to consider the more general formula (9.13) from [1].
For the maximal type I error α we will use the symmetry of the Wiener process
to the next result. According to [2, Theorem 1.5.1] or the formula (9.14) in [1]

(and the fact Wt
D
=

√
TWt/T for T > 0) we have

P
(
Wτmin

B (W ) ≥ B
)
=

1

2
P

(
sup

0≤t≤TB

|Wt| ≥ B

)
=

1

2
− 1

2
P

(
sup

0≤t≤TB

|Wt| < B

)

=
1

2
− 2

π

∞∑
k=0

(−1)k

2k + 1
exp

{−TBπ
2(2k + 1)2/8B2

}
. (4.3)

From the requirement Pa

(
Yτmin

B (Y ) ≥ B
) ≤ α for all a ≤ 0 and this equation

we can compute TB numerically for given B > 0 and α ∈ (0, 1) (or compute
B numerically for given TB and α ∈ (0, 1)). Let us illustrate the procedure on
simulated data for the choice α = 0.05, a = 1, and B = 7. According to the
equation (4.3) we can approximately compute TB = 12.76.
As we can observe from the Fig. 1 the process hits first the positive boundary

B and before time TB so we would reject the hypothesis H ′
5 : a ≤ 0.

If we need to choose appropriate B > 0 for attaining the power 1 − β at
some chosen a1 > 0, we can use the known result (see [3] the formula (2) or [7]
for more details)

Pa1

(
Yτmin

B (Y ) ≥ B
)
= 1−

∞∑
k=−∞

sign(a1)

{
e−a1ck

[
Φ

(
ck +B − a1TB√

TB

sign(a1)

)]

− ea1dk

[
Φ

(−dk +B − a1TB√
TB

sign(a1)

)]}
, (4.4)

where ck = 4kB and dk = 4kB + 2B.
Now we concentrate on the hypothesis testing H ′

6 : a = 0 against the alter-
native K ′

6 : a 	= 0. For this purpose we will consider the process Ỹt = ãt + Wt

as that for the hypothesis testing H ′
5 and the random time τ

min
B (Y ) given by

(4.2). The idea of such a test is also similar to the tests used for the hypotheses
testing at one-sided alternatives—if there is any positive or negative trend, then
the absolute value of the process Yt will grow fast, and otherwise not. The



114 David Stib̊urek

critical function of the test of H ′
6 will be I

{
τmin
B (Y ) < TB

}
. For the maximal

type I error α we use a similar formula as that for the hypothesis H ′
5.

0 5 10 15 20

−
10

−
5

0
5

10

t

Y
t

TB

B

−B

H’ :  a ≤ 05

H’ :  a ≤ 05

K’ :  a > 05

τB
min

Process

Fig. 1: Sequential method considering 2 boundaries in the process Yt = at+Wt, and
for the hypothesis testing H ′

5 : a ≤ 0 against the alternative K ′
5 : a > 0.

Under the hypothesis H ′
6 the process Yt is of course the Wiener one, and

using the same argumentation as we used in the equation (4.3) we get

P(τmin
B (W ) < TB) = P

(
sup

0≤t≤TB

|Wt| ≥ B

)

= 1− 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
TBπ

2(2k + 1)2/8B2
)
.

For given B > 0 and α ∈ (0, 1) it is not difficult to compute TB numerically
(or B from TB > 0 and α ∈ (0, 1)). But we need to choose appropriate B > 0
for the power 1 − β at some chosen a1 	= 0. For this purpose we can use the
formula (1) from [3] (or see [7] for more details) to obtain

Pa1

(
sup

0≤t≤TB

|Yt| ≥ B

)
=

= 1−
∞∑

k=−∞

{
e−a1ck

[
Φ

(
ck +B − a1TB√

TB

)
− Φ

(
ck −B − a1TB√

TB

)]

− ea1dk

[
Φ

(−dk + B − a1TB√
TB

)
− Φ

(−dk −B − a1TB√
TB

)]}
, (4.5)

where ck and dk are the same as in the equation (4.4), i.e. ck = 4kB and dk =
4kB+2B. Note that such sequential methods considering two boundaries (with



Statistical inference about the drift parameter in stochastic processes 115

the same absolute value) until some given time are usually very appropriate,
especially from the time-efficiency point of view. This conclusion is illustrated
on the Fig. 2 and Fig. 3 for the power 1− β = 0.95, type I error α = 0.05, and
a1 = a0 + 0.2. Instead of using the complicated formulas (4.4) and (4.5), we
can also use the simulation methods to attain the needed powers at desirable
alternatives. Such a procedure can be applied for more general drift functions.
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Fig. 2: Average times of decision at H5 : a ≤ a0 against K5 : a > a0 in the process
Yt = at+Wt, and for the different procedures.
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Fig. 3: Average times of decision at H6 : a = a0 against K6 : a �= a0 in the process
Yt = at+Wt, and for the different procedures.
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5 Sequential methods for the Brownian bridge

For a given value of T > 0 let us assume that we observe a process

Ut = at+BT
t , t ∈ [0, T ],

where BT
t is the Brownian bridge on the interval [0, T ]. Such a process can be

called as the shifted Brownian bridge. Note that the Brownian bridge is usually
considered on the interval [0, 1], and it is not difficult to show

BT
t

D
=

√
TB1

t/T or B1
t

D
=

1√
T
BT

tT .

Using similar techniques it can be easily shown (for chosen T, S > 0) the more
general formula

BS
t

D
=

√
S

T
BT

tT/S . (5.1)

Our goal is to do the hypotheses testing about the unknown parameter a, i.e.
for some chosen a0 we want to test H4 : a ≥ a0, H5 : a ≤ a0, and H6 : a = a0
against the alternatives K4 : a < a0, K5 : a > a0, and K6 : a 	= a0 respectively.
Note that we need to consider the hypotheses testing only if we are unable to
wait until time T or if we are more interested in shortening the time of decision.
Otherwise we can use the obvious equality a = UT

T (as BT
T = 0), which may

lead us to the strictly consistent estimator Ut

t (as t → T ) of the parameter a,
and decide with certainty. For the hypotheses testing we first transform the
observed process into more convenient process—like before we transform

Ũt := Ut − a0t = (a− a0)t+BT
t = ãt+BT

t , t ∈ [0, T ],

where ã := a−a0. We will consider that the transformed process is Ut = at+BT
t ,

as in the process (4.1), rather than the process Ũt = ãt+BT
t . We can similarly

consider the equivalent hypotheses H ′
4 : a ≥ 0, H ′

5 : a ≤ 0, and H ′
6 : a = 0

against the alternatives K ′
4 : a < 0, K ′

5 : a > 0, and K ′
6 : a 	= 0 respectively.

Since the hypotheses H ′
4 and H

′
5 are symmetric (as the Brownian bridge is), we

will concentrate only on the hypotheses H ′
5 and H

′
6 against the alternatives K

′
5

and K ′
6 respectively.

Let us start with the hypothesis testing H ′
5, and use the similar idea as we

used in the case of the Wiener process in the previous section. Let us consider
(for some chosen B > 0) the random time

τ−∞,B(U) := inf {t ≥ 0, Ut ≥ B} ∧ T.

The idea of testing is also the same as that for the process (4.1), i.e. if there is
some positive trend, the process Ut hits some suitably chosen boundary B > 0
before time T , and otherwise not. The critical function of the test of H ′

5 will
be I ({τ−∞,B(U) < T} ∪ {UT > 0}). To choose the suitable boundary B > 0 we
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need the condition for the maximal type I error. Let α ∈ (0, 1) be such a given
maximal error, and we calculate such a probability under the null hypothesis
a = 0. According to [2, Theorem 1.5.1] or the formula (9.41) in [1] (and the
equation (5.1)) we get

α = P
(
τ−∞,B

(
BT

)
< T

)
= P

(
sup

0≤t≤T
BT

t ≥ B

)
= exp

(−2B2/T
)
.

For α and T we can compute B =
√
− logα

2 T . We see that the choice of such
B is limited, and gives us only one possibility how to choose B. We also see

that for the value of time T there holds T = −2B2

logα and so
√
T =

√
−2
logαB. Let

us evaluate the process Ut at the last time, and see the chance of hitting or
exceeding the boundary B before time T

UT = aT = a
√
T
√
T = a

√
T

√ −2

logα
B.

From this equation we see that we can be sure of detecting the alternative before
time T if

UT > B ⇔ a
√
T

√ −2

logα
> 1 ⇔ a >

1√
T

√
− logα

2
=

B

T
. (5.2)

We see the advantages and disadvantages of the procedure if we are unable to
wait the whole time T . For small a > 0 the time-efficiency of this test can not
be improved, and we need to wait the whole time T . On the other hand we
are able to detect the positive trend before time T with certainty for a > 0
which is greater than the bound in (5.2). We see that this bound can be exactly
computed, and depends on the level α, and on the maximal observed time T .
The fact that we need to wait until time T for small a should not be surprising,
because on the bounded intervals we are not usually able to detect all positive
trends. However, the Brownian bridge is not wild, i.e. it is continuous, tied
down to the origin and at t = T (as BT

0 = BT
T = 0) so we are able to detect

larger a before time T .
The hypothesis H ′

5 can be also tested by means of the two boundaries as
that for the Wiener process in the previous section. Let us recall the random
time

τmin
B (U) := τmin

−B,B(U) := inf {t ≥ 0, |Ut| ≥ B} ∧ T.

The idea of testing is the same as that for the shifted Wiener process (4.1),
i.e. if there is a positive trend, then the process Ut will reach first the positive
boundary B rather than the negative boundary −B, and before time T , and
otherwise not. Thus the critical function of the test of H ′

5 will be

I

({
Uτmin

B (U) ≥ B
}
∪ ({

τmin
B (U) = T

} ∩ {UT > 0})) .
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Let us consider the maximal type I error α. Since the Brownian bridge has
similar important properties as the Wiener process—symmetry, continuity, the
knowledge of the distribution of the supremum of the absolute value, we can use
a similar calculation as we used in (4.3) and [2, Theorem 1.5.1] (or the formula
(9.40) in [1]) to get

α = P
(
BT

τmin
B (BT ) ≥ B

)
=

1

2
P

(
sup

0≤t≤T
|BT

t | ≥ B

)
=

1

2
− 1

2
P

(
sup

0≤t≤T
|BT

t | < B

)

=
1

2

∑
k �=0

(−1)k+1 exp
{−2k2B2/T

}
. (5.3)

From this equation we can calculate the boundary B > 0, and test the hy-
pothesis H ′

5. Note that the test can not reveal all (small) trends before time
T because of the same reason as before (finite observed time). We see that T
is of the form

√
T = c(α)B, where c(α) is a positive constant given by (5.3),

depending only on α, and satisfying limα→0 c(α) = 0, limα→1 c(α) = ∞. If we
evaluate the process Ut at the last time, we will get

UT = aT = a
√
T
√
T = a

√
Tc(α)B.

To hit or exceed the boundary B before time T we need

a >
1√

Tc(α)
=

B

T
. (5.4)

Although the test is usually (or more conveniently) more efficient for one-sided
alternatives, there is always a positive probability that the process Ut hits first
the negative boundary −B, and we can not be certainly sure of detecting any
trend. However, behind the bound (5.4) there is a high probability that we
detect the positive trend before time T . Let us illustrate the procedure on
simulated data for the choice α = 0.05, a = 1, and T = 1. According to the
equation (5.3) we can approximately compute B = 1.22.
As we can observe from the Fig. 4 the process hits first the positive boundary

B and before time T = 1 so we would decide correctly before time T , i.e. we
would reject the hypothesis H ′

5.
Now we will investigate the hypothesis testing H ′

6 : a = 0 against the both-
sided alternative K ′

6 : a 	= 0. Similarly as in the case of the Wiener process we
use the random time

τmin
B (U) := τmin

−B,B(U) := inf {t ≥ 0, |Ut| ≥ B} ∧ T.

The idea of the test is also similar to the tests considered for the hypotheses
testing at two-sided alternatives with theWiener process—if there is any positive
or negative trend, then the absolute value of the process Ut will grow fast, and
otherwise not. The critical function of the test of H ′

6 will be

I
({

τmin
B (U) < T

} ∪ {UT 	= 0}) .
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From the requirement for the maximal type I error α and the equation (5.3) we
get

α = P
(
τmin
B

(
BT

)
< T

)
= P

(
sup

0≤t≤T

∣∣BT
t

∣∣ ≥ B

)

=
∑
k �=0

(−1)k+1 exp
{−2k2B2/T

}
. (5.5)

From this equation we can calculate the boundary B > 0, and test the hypoth-
esis H ′

6.

0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

t

U
t

B

−B

H’ :  a ≤ 05

K’ :  a > 05

H’ :  a ≤ 05

K’ :  a > 05
τB

min

Process

a

Fig. 4: Sequential method considering 2 boundaries in the process Ut = at+B1
t , and

for the hypothesis testing H ′
5 : a ≤ 0 against the alternative K ′

5 : a > 0.

According to the equation (5.5) we have T of the form
√
T = d(α)B, where

d(α) is a positive constant given by (5.5), depending only on α, and satisfying
limα→0 d(α) = 0, limα→1 d(α) = ∞. If we evaluate the process Ut at the last
time, we will get

UT = aT = a
√
T
√
T = a

√
Td(α)B.

To hit or exceed the absolute value of the boundary B before time T we need

|a| > 1√
Td(α)

=
B

T
. (5.6)

We see that the test has similar properties as that for one-sided alternatives if we
are unable to wait the whole time T . We are not able to detect all (small) trends
before time T for the small absolute value of a. However, we are able to detect
the positive and negative trends before time T with certainty for a which has
the absolute value greater than the bound (5.6). This bound can be numerically
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computed, and depends on the level α and on the maximal observed time T .
The sequential methods considering two boundaries for the Brownian bridge are
more appropriate, as that for the Wiener process, from the time-efficiency point
of view, than the sequential methods considering one boundary.

6 Conclusions and extensions

The hypotheses about the parameter a in the process Yt = at + Bt, where
Bt is either the Wiener process or the Brownian bridge, can be successfully
tested by means of the sequential methods with two boundaries until some fi-
nite time. Although the method is a little complicated, its time-efficiency is
more appropriate then in the classical statistical approach. The consistent es-
timators of the parameter a can be obtained by different methods with similar
results. For the hypotheses testing the sequential methods can be generalized to
different processes Bt. We usually require for such processes to be continuous
and symmetric. Moreover, if the process is a martingale, we can use the max-
imal martingale inequality to extend the sequential procedure. This holds, for
example, for the process Bt =

∫ t

0
b(s) dWs, where b(s) is a given deterministic

function, and Wt is the Wiener process.
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