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Products of small modules

Peter Kálnai, Jan Žemlička

Abstract. Module is said to be small if it is not a union of strictly increasing
infinite countable chain of submodules. We show that the class of all small
modules over self-injective purely infinite ring is closed under direct products
whenever there exists no strongly inaccessible cardinal.

Keywords: small module; self-injectivity; von Neumann regular ring

Classification: 16D10, 16S50

It is easy to verify that every finitely generated module M satisfies the natural
compactness condition that the covariant functor Hom(M,−) commutes with all
direct sums of modules. Nevertheless, there are known large classes of infinitely
generated modules satisfying this condition, for instance, every uncountable union
of a chain of finitely generated modules forms an infinitely generated example.
Every module M satisfying the functorial compactness condition is called small
in this paper.

It is well known that a finite direct sum of small modules is small in general and
infinite direct sum of arbitrary nonzero modules is not small. Nevertheless, the
case of product of small modules is rather more complicated. In the work [9] it is
proved that over each ring which contains a right ideal isomorphic to a 2-generated
free module (hence there exists a right ideal isomorphic to infinitely generated free
module) every injective module is small. As the class of all injective modules is
closed under all direct products, this observation leads to the natural question
formulated explicitly in [2, Remark 3.2] whether there exists a ring R such that
the class of all small right modules over R is closed under direct products.

The main objective of the present paper is to give a partial answer to this
question, dependently on a model of set theory. We use for this purpose mainly
tools and methods developed in the works [1], [5], [6], [8], [9], [11], [13], which
study properties of classes of all small modules for some particular classes of
rings.

Recall that a ring is called right steady if every small (right) module is finitely
generated. Obviously, a ring over which every product of small modules is small is
very far from being steady. Before we start searching rings over which small right
modules are closed under direct products, we prove first that we may restrict our
consideration to the case of simple self-injective regular rings (Proposition 2.3).
Our main result (Theorem 3.4) proves necessary condition on set theory which
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holds true if over a right self-injective right purely infinite ring there exists non-
small product of small modules. As this set theoretical condition contradicts
to the hypothesis that there is no strongly inaccessible cardinal, which is con-
sistent with ZFC, we can easily see that under the hypothesis of non-existence
of a strongly inaccessible cardinal the class of all small modules is closed under
products (Theorem 3.5).

1. Preliminaries

Throughout the paper, a ring R means an associative ring with unit, a module

is a right R-module and an ideal means a two-sided ideal. We say that R ⊆ Q is
a ring extension if R is a subring of Q, note that Q has a natural structure of R-
algebra. Moreover,E(M) denotes an injective envelope of an arbitrary moduleM .
We say that a module M is (less than, at most) κ-generated if the least cardinality
of any set of generators is (less than, at most) κ and we write gen(M) = κ (< κ,
≤ κ).

As we have remarked, a module M is said to be small whenever the natural Z-
monomorphism

⊕
i Hom(M,Ni) → Hom(M,

⊕
i Ni) is surjective for every system

of modules Ni. We will usually deal with the following equivalent condition of
smallness:

Lemma 1.1 ([8, Lemma 1.2]). A module is small iff it is not a union of a strictly

increasing infinite countable chain of submodules.

We will use freely an easy consequence of Lemma 1.1 that any factor of small
module is small. Observation that every union of an uncountable strictly increas-
ing chain of finitely generated modules forms an infinitely generated small module
naturally leads to the useful definition of a λ-reducing module for an infinite cardi-
nal λ as a module M such that every at most λ-generated submodule is contained
in some finitely generated submodule of M . Recall that the classes of all small
as well as λ-reducing modules are closed under homomorphic images and finite
(direct) sums [12, Proposition 1.3].

The following elementary observations about λ-reducing modules are used
freely in the sequel.

Lemma 1.2. Let λ ≤ κ be infinite cardinals and M an infinitely generated

κ-reducing module. Then:

(i) M is small and λ-reducing,
(ii) gen(M) > κ,
(iii) M contains a κ+-generated κ-reducing submodule,

(iv) M contains an ω1-generated ω-reducing submodule.

For a module M we define singular submodule Z(MR) := {m ∈ M | rannR(m)
E R} where rann denotes an annihilator and submodule U E V means that U is
an essential submodule of V , i.e. U ∩W = 0 implies W = 0 for a submodule W
of V .
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We say that a ring R is right non-singular , if Z(RR) = 0, R is called (von
Neumann) regular if for every x ∈ R there exists y ∈ R such that x = xyx, and
R is right self-injective, provided it is injective as a right module over itself. We
observe that simple rings form examples of non-singular rings. As a fact we state
a deep statement about their maximal right rings of quotients. For a definition of
maximal right ring of quotients and other properties of this notion we refer to [7].

Proposition 1.3 ([7, Proposition XII.2.1]). The maximal right ring of quotients

Qmax(R) of a right non-singular ring R is regular and right self-injective and it is

injective as a right R-module.

Description and examples of self-injective regular rings are given in [3, Chapters
9, 10].

Finally, recall several set-theoretical notions and facts which we will need in
the final part of this paper. A filter on a set X is a nonempty family of nonempty
subsets of X closed under finite intersections and supersets. An ultrafilter on
X is a filter which is not properly contained in any other filter on X . We say
that a filter F is λ-complete, if

⋂
G ∈ F for every subsystem G ⊆ F such that

|G| < λ and F is countably complete, if it is ω1-complete. A cardinal λ is said to
be measurable if there exists a λ-complete nonprincipal ultrafilter on λ and it is
Ulam-measurable if there exists a countably complete nonprincipal ultrafilter on
λ. A regular cardinal κ is strongly inaccessible if 2λ < κ for each λ < κ.

Theorem 1.4. The following holds.

(i) Every Ulam-measurable cardinal is greater or equal to the first measurable

cardinal.

(ii) Every measurable cardinal is strongly inaccessible.

(iii) It is consistent with ZFC that there is no strongly inaccessible cardinal.

Proof: (i) [10, Theorem 2.43.]. (ii) [10, Theorem 2.44.]. (iii) [4, Corollary
IV.6.9]. �

2. Non-singular rings with (DS-P)

We say that a ring R satisfies the condition (DS-P) if every product of an
arbitrary family of small R-modules is small. Let us start with an easy observa-
tion which states correspondence between small modules over a ring and over its
extension.

Lemma 2.1. Let R ⊆ Q be a ring extension, M be a Q-module and QR be

small as an R-module. Then M is a small Q-module if and only if it is a small

R-module.

Proof: Assume that M is a small Q-module. Let M =
⋃

i<ω Mi for a countable
chain of R-submodules M0 ⊆ M1 ⊆ . . . . We put Ni = {m ∈ M | mQ ⊆ Mi} for
each i < ω. Obviously, N0 ⊆ N1 ⊆ . . . forms a chain of Q-submodules of M and
Ni ⊆ Mi for every i < ω. Let m ∈ M . Since (mQ)R is a homomorphic image of
the small R-module QR, there exists n such that mQ ⊆ Mn. Thus M =

⋃
i<ω Ni.
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Now, by the hypothesis there exists n < ω such that Nn = M , hence Mn = M
and M is small R-module by Lemma 1.1.

The converse is clear, because every Q-module has also a natural structure of
an R-module. �

The next assertion describes closure properties of the class of all rings satisfying
(DS-P).

Lemma 2.2. Let R satisfy (DS-P).

(i) Every injective right R-module is small.

(ii) If R is a right non-singular ring with the maximal right ring of quotients

Q, then Q satisfies (DS-P).
(iii) Every factor ring of R satisfies (DS-P).

Proof: (i) Let ER be an injective R-module. Then there exists a cardinal κ
and a surjective homomorphism π : R(κ) → E. Since the canonical embedding
R(κ) → Rκ is injective, π can be extended to an epimorphism Rκ → E by the
injectivity of E. Since (RR)

κ is small by the hypothesis, the module E is a
homomorphic image of a small module and therefore small as well.

(ii) By Proposition 1.3 QR is injective, so by (i) it is small as an R-module.
Thus every product of small Q-modules is small as an R-module by the hypothesis
and Lemma 2.1, hence it is a small Q-module.

(iii) Since every (small) module over any factor ring has a natural structure of
a (small) R-module, the assertion is clear. �

Now, we are able to show that searching of rings satisfying (DS-P) may be
restricted to the case of simple self-injective regular rings.

Proposition 2.3. If a ring R satisfies (DS-P) and I is a maximal two-sided

ideal, then R/I is (right) non-singular and Qmax(R/I) is a non-artinian right

self-injective simple ring satisfying (DS-P).

Proof: As R/I is simple, it is (right) non-singular, hence Qmax(R/I) is right
self-injective by Proposition 1.3. By applying Lemma 2.2(ii), Qmax(R/I) satisfies
(DS-P), hence it is non-artinian. Finally, let J be a nonzero ideal of Qmax(R/I).
Since R is essential in Qmax(R/I)R, the intersection R/I ∩ J is a nonzero ideal
of R. Thus 1 ∈ R/I ⊆ J and J = Qmax(R/I). �

Corollary 2.4. If R is simple ring satisfying (DS-P), then Qmax(R/I) satisfies
(DS-P) as well.

3. Self-injective rings

We say that a ring R is right purely infinite if there is a right ideal K ≤ R such
that K ≃ R(ω) as right R-modules, i.e., there is an exact sequence 0 → R(ω) → R
in Mod-R.

It is easy to see that the endomorphism ring of an infinite-dimensional vector
space forms an example of a right purely infinite regular ring. Recall that there
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exist right purely infinite simple regular self-injective rings [3, Example 10.11].
Moreover, note that every simple self-injective ring which is not directly finite is
purely infinite by [3, Proposition 10.21]

First recall a key fact about the smallness of injective modules.

Lemma 3.1 ([9, Example 2.8]). Every injective module over a right purely infinite

ring is small.

Lemma 3.2. Let κ be an infinite cardinal, R be a right purely infinite self-

injective ring and (Mα | α < κ) be a system of R-modules.

(i) If Mα is ω1-reducing for every α < κ, then
∏

α<κ Mα is ω1-reducing as

well.

(ii) If κ = ω, then
∏

α<ω Mα/
⊕

α<ω Mα is ω1-reducing.

(iii) The product of any system of finitely generated modules is ω1-reducing.

Proof: Put M =
∏

α<κ Mα. For any product
∏

α<κ Mα denote by να : Mα →∏
α<κ Mα the natural embedding and πα :

∏
α<κ Mα → Mα the natural projec-

tion.
Similarly we define νJ and πJ for any subset J of κ.

(i) Note that
∏

α<κ R
(nα) ∼= Rκ is injective for all finite nα, hence ω1-reducing

by Lemma 3.1. Fix a countable set D := {mn | n < ω} ⊆ M . By hypothesis
on Mα, for each α < κ there is some finitely generated submodule Fα of Mα

such that {πα(mn) | n < ω} ⊆ Fα and there is some nα such that we can
write Fα as a factormodule of a finitely generated free R-module R(nα). Hence
D ⊆

∏
α<κ Fα and the exact sequence

∏
α<κ R

(nα) →
∏

α<κ Fα → 0 shows that
the middle term is a factor-module of an ω1-reducing R-module, hence it is itself
ω1-reducing. Then there exists a finitely generated submodule F of

∏
α<κ Fα such

that D ⊆ F (⊆ M).

(ii) Put S =
⊕

α<ω Mα. Fix a countable set D := {mn | n < ω} ⊆ M and for
each α < ω define (a finitely generated) R-moduleGα =

∑
j≤α πα(mj)R. Observe

that D ⊆ S +
∏

α<ω Gα. By (i)
∏

α<ω Gα is ω1-reducing, hence a factor-module∏
α<ω Gα+S/S is also ω1-reducing. Then there exists a finitely generated module

F ⊆
∏

α<ω Gα(⊆ M) such that mn + S ∈ F + S/S for all n < ω.

(iii) As finitely generated modules are ω1-reducing, (iii) is a direct consequence
of (ii). �

Let I be a non-empty system of subsets of a set X . We recall that I is said to
be an ideal if it is closed under subsets (i.e. if A ∈ I and B ⊆ A, then B ∈ I) and
under finite unions, (i.e. if A,B ∈ I, then A∪B ∈ I). I is a prime ideal if it is a
proper ideal and for all subsets A, B of X , A ∩B ∈ I implies A ∈ I or B ∈ I. If
Y ⊆ X , the system P (Y ) of all subsets of Y forms an ideal on X which is called
principal . We say that the set I | Y = {Y ∩ A | A ∈ I} is a trace of I on Y .

It is easy to see that the trace of an ideal is also an ideal and that I is a prime
ideal if and only if for every A ⊆ X , A ∈ I or X\A ∈ I. Moreover, a principal
prime ideal on X is of the form P (X \ {x}) for some x ∈ X . Note that there
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is a dual one-to-one correspondence between ultrafilters and prime ideals on X
defined by I 7→ P(X)\I for an ideal I.

Lemma 3.3. Let R be a right purely infinite right self-injective ring and let

(Mα | α ∈ I) be a family of small modules. Let M =
∏

α∈I Mα be the direct

product and assume that M is not small, namely M =
⋃

n<ω Nn for a countable

strictly increasing chain of submodules (Nn | n < ω). Denote An = {J ⊆ I |∏
α∈J Mα ⊆ Nn} and A =

⋃
n<ω An. Then the following holds:

(i) An is an ideal for each n,
(ii) A is closed under countable unions of sets,

(iii) there exists n < ω for which A = An,

(iv) there exists a subset I0 ⊆ I such that the trace of A on I0 is a non-

principal prime ideal.

Proof: (i) Obviously ∅ ∈ An and because M is not small, I /∈ An. The closure
of An under subsets is obvious by the definition. The closure of An under finite
unions follows from the decomposition

∏
α∈J∪K Mα =

∏
α∈J Mα⊕

∏
α∈K\J Mα ⊆

Nn.

(ii) First we show that A is closed under countable unions of pairwise disjoint
sets. Let Kj ∈ A be pairwisely disjoint subsets of I for all j < ω. We show
that there exists k < ω such that Kj ∈ Ak for each j < ω. Assume by con-
tradiction that for every n < ω there exists (possibly distinct) i(n) such that
Ki(n) /∈ An. Hence there is fn ∈

∏
α∈Ki(n)

Mα for which νKi(n)
(fn) /∈ Nn. Since

∏
j<ω fjR =

⋃
n<ω(

∏
j fjR ∩Nn) is small by Lemma 3.2(iii) there is k < ω such

that νKi(k)
(fk) ∈

∏
j<ω fjR ⊆ Nk, a contradiction.

Put Pj =
∏

α∈Kj
Mα for j < ω. We have proved that there is some k < ω

such that Pj ⊆ Nk and it follows that
⊕

j<ω Pj ⊆ Nk. Let P =
∏

j<ω Pj =
∏

j

∏
α∈Kj

Mα. As P/
⊕

j<ω Pj is small by Lemma 3.2(i) there exists some l ≥ k

such that P =
⋃

j<ω(P ∩Nj) ⊆ Nl.
Now let Jj , j < ω be any system of subsets of I and put J0 = K0 and

Ji = Ki\
⋃

j<i Kj for i > 0. So
⋃

j<ω Jj =
⋃

j<ω Kj and by the preceding we get
the result.

(iii) Assume that A 6= An for every n. Then there exists a sequence (Jj ∈
A\Aj | j ∈ ω). By (ii) J :=

⋃
j<ω Jj ∈ A and there is some n < ω such that

J ∈ An. Since Jj ⊆ J ∈ An for each j < ω, we obtain a contradiction.

(iv) We will show that there exists I0 ⊆ I such that for every K ⊆ I0,K ∈ A
or I0\K ∈ A. Assume that such I0 does not exist. Then we may construct a
countably infinite sequence of disjoint sets (Ki | i < ω) where Ki are non-empty
for i > 0 in the following way: Put K0 = ∅ and J0 = I0. There exist disjoint sets
Ji+1,Ki+1 ⊂ Ji such that Ji = Ji+1 ∪Ki+1 where Ji+1,Ki+1 /∈ A. Now, for each
n ≥ 1 there exists gn ∈

∏
α∈Kn

Mα such that νKn
(gn) /∈ Nn which contradicts to

the fact that
∏

n<ω gnR ⊆ Nm for some m < ω (cf. the proof of (ii)).
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Finally, assume that the trace of A on I0 is principal. Since it is a prime ideal,
there exists i ∈ I0 such that A | I0 = P (I0 \ {i}). Thus I0 \ {i} ∈ An. Now∏

j∈I0\{i}
Mj ⊆ Nn for some n and {i} ∈ A, so I0 ∈ A | I0 a contradiction. �

Theorem 3.4. Let R be a right self-injective right purely infinite ring. Then the

following holds.

(i) A countable product of small R-modules is small.

(ii) If there exists a system (Mα | α < κ) of small R-modules such that the

product
∏

α<κMα is not small, then there exists an uncountable cardinal

λ < κ and a countable complete ultrafilter on λ.

Proof: (i) It follows immediately from Lemma 3.3(iii).

(ii) Suppose thatM =
∏

α∈I Mα is not a small module. Then by Lemma 3.3(iv)
there exists I0 ⊆ I and a non-principal prime ideal A0 on I0 which is closed under
countable unions of sets by Lemma 3.3(ii). If we define F = {I0 \ A | A ∈ A0}
then F forms a countable complete non-principal ultrafilter on I0. �

Before we prove our main result, which combines the last theorem and set-
theoretical assertions, note that its hypothesis is consistent with ZFC by Theo-
rem 1.4(iii).

Theorem 3.5. Let R be a non-artinian right self-injective, right purely infinite

ring. If we assume that there is no strongly inaccessible cardinal, then the class

of all small R-modules is closed under direct products.

Proof: If the product of an uncountable system of small modules is not small,
then by Theorem 3.4(ii) there exists a countable complete ultrafilter on λ. Hence
there exists a measurable cardinal µ ≤ λ by Theorem 1.4(i), which is strongly
inaccessible by Theorem 1.4(ii). �
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