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Structure equations on generalized Finsler manifolds

Johanna Pék

Abstract. In this paper we generalize the classical structure equations of
Riemannian geometry to generalized Finsler manifolds.

1 Introduction
In this paper we deduce structure equations on a manifold which is endowed with
a generalized Finsler metric and an Ehresmann connection. In Riemannian geom-
etry, the classical structure equations were adopted by Élie Cartan. However Car-
tan’s formalism was hard to understand for the next generations. In the pull-back
formalism of Finsler geometry used by us, it causes a problem that in Grassmann
algebra of forms along projection τ : TM →M we do not have the classical exterior
derivative. The vertical and horizontal derivatives, which substitute for exterior
derivative, were introduced in 1992 ([8], [14]), and these help us to generalize the
structure equations. By using the index-free calculus, it turns out that out of the
five partial torsions introduced by Makoto Matsumoto in Finsler geometry only
two ones have ’real’ torsion property ([7] Chapter II.10, Lemma 1).

2 Preliminaries
We follow the notation and conventions of [14] and [6] as far as feasible. However,
for the readers’ convenience, in this section we fix some terminology and recall
some basic facts.

Throughout this paper, we use the Einstein summation convention. ‘Manifold’
will always mean a connected, second countable, Hausdorff, smooth manifold of
dimension n, n ≥ 1. If M is a manifold, C∞(M) will denote the ring of smooth

functions on M . The tangent bundle of M is τ : TM → M , while
◦
τ :

◦
TM → M

denotes the slit tangent bundle, where
◦
TM stands for the set of nonzero tangent

vectors to M .
The vertical lift of a function f ∈ C∞(M) is f v := f ◦ τ , the complete lift

f c ∈ C∞(TM) of f is defined by f c(v) := v(f), v ∈ TM .

2010 MSC: 53C05, 53C22
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X(M) denotes the C∞(M)-module of smooth vector fields on M . Any vector
field X on M gives rise canonically two vector fields on TM , the vertical lift Xv

of X and the complete lift Xc of X, determined by Xvf c = (Xf)v, Xvf v = 0 and
Xcf c = (Xf)c, Xcf v = (Xf)v; f ∈ C∞(M).

Let Ak(M) be C∞-module of k-forms on M . Then A(M) :=
⊕n

k=0A
k(M) is

a graded algebra over C∞(M), with multiplication given by the wedge product ∧.
If f ∈ C∞(M) then the one-form df given by df(X) = Xf (X ∈ X(M)) is the
differential of f .

Let τ∗TM := TM ×M TM := {(u, v) ∈ TM × TM | τ(u) = τ(v)}, and let
τ∗τ(u, v) := u for (u, v) ∈ τ∗TM . Then τ∗τ is a vector bundle with total space
τ∗TM and base space TM , the pull-back of τ : TM →M over τ . The C∞(TM)-
module of sections of τ∗τ will be denoted by Sec(τ∗τ). Any vector field X on M
determines a smooth section

X̂ : v ∈ TM 7−→
(
v,X ◦ τ(v)

)
∈ TM ×M TM ,

called the basic section associated to X. The C∞(TM)-module Sec(τ∗τ) is gen-
erated by the basic sections. Generic sections in Sec(τ∗τ) will be denoted by

X̃, Ỹ , . . .

The dual of Sec(τ∗τ) will be denoted by A1(τ∗τ), and its elements is called
one-forms along τ . A(τ∗τ) is the Grassmann algebra of differential forms along τ .

Starting from the slit tangent bundle
◦
τ :

◦
TM → M , the pull-back bundle

◦
τ
∗
τ :

◦
TM ×M TM → TM is constructed in the same way. Omitting the routine

details, we remark that Sec(τ∗τ) may naturally be embedded into the C∞(
◦
TM)-

module Sec(
◦
τ
∗
τ).

There exists a canonical injective bundle map i : TM×M TM → TTM given by

i(u, v) := ċ(0) , if c(t) := u+ tv (t ∈ R) ,

and a canonical surjective bundle map

j : TTM → TM ×M TM ,

w ∈ TvTM 7−→ j(w) := (v, τ∗(w)) ∈ {v} × Tτ(v)M .

Then j ◦ i = 0. However, while J := i ◦ j is a further important canonical object,
the vertical endomorphism of TTM . The bundle maps i and j induce the tensorial
maps (denoted by the same symbols)

X̃ ∈ Sec(τ∗τ) 7−→ iX̃ := i ◦ X̃ ∈ X(TM) and

ξ ∈ X(TM) 7−→ jξ := j ◦ ξ ∈ Sec(τ∗τ) ,

so J may also be interpreted as a C∞(TM)-linear endomorphism of X(TM).
Xv(TM) := iSec(τ∗τ) is the module of vertical vector fields on TM . The ver-
tical vector fields form a subalgebra of the Lie algebra X(TM) at the same time.

For any vector field X on M we have iX̂ = Xv and jXc = X̂.
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An Ehresmann connection H over a manifold M is a right splitting of the
canonical exact sequence

0 −→ TM ×M TM
i−→ TTM

j−→ TM ×M TM −→ 0 ,

which is smooth only on
◦
TM×M TM , and given on o(M)×M TM by H

(
o(p), v

)
:=

(o∗)p(v); p ∈ M , v ∈ TpM , where o ∈ X(M) is the zero vector field. We associate
to any Ehresmann connection H the horizontal projector h := H ◦ j, the vertical
projector v = 1TTM − h and the vertical map V := i−1 ◦ v. The horizontal lift of

a vector field X ∈ X(M) with respect to H is Xh := H(X̂) = hXc ∈ X(
◦
TM).

The map `h : X ∈ X(M) 7−→ `h(X) := Xh is said to be the horizontal lifting
with respect to H.

An Ehresmann connection H determines a covariant derivative operator ∇ in
the pull-back bundle τ∗τ by the rule

∇ξỸ := j[vξ,HỸ ] + V[hξ, iỸ ] ; ξ ∈ X(TM), Ỹ ∈ Sec(τ∗τ) .

∇ is said to be the Berwald derivative induced by H. Its v-part ∇v and h-part ∇h

are defined by

∇v
X̃
Ỹ := ∇iX̃ Ỹ = j[iX̃,HỸ ]

and

∇h
X̃
Ỹ := ∇

HX̃ Ỹ = V[HX̃, iỸ ]

(X̃, Ỹ ∈ Sec(τ∗τ)). If X and Y are vector fields on M , then ∇v
X̂
Ŷ = 0 and

i∇h
X̂
Ŷ =

[
Xh, Y v

]
.

The importance of the Berwald derivative lies, among others, in the fact that
the basic geometric data (torsions, curvature, etc.) of an Ehresmann connection H

may conveniently be defined in terms of the Berwald derivative induced by H. In
this paper we need the following (X̃, Ỹ ∈ Sec(τ∗τ)):

T(X̃, Ỹ ) := ∇h
X̃
Ỹ −∇h

Ỹ
X̃ − j[HX̃,HỸ ] − the torsion of H,

R(X̃, Ỹ ) := −V[HX̃,HỸ ] − the curvature of H .

3 Generalized Finsler manifolds and torsions of a Finsler
connection

As in general, by covariant derivative operator in the vector bundle τ∗τ we mean
an R-bilinear map

D : (ξ, X̃) ∈ X(TM)× Sec(τ∗τ) 7−→ DξX̃ ∈ Sec(τ∗τ)

which is tensorial in its first variable and derivation in its second variable.
The curvature of D is the

RD(ξ, η)X̃ := DξDηX̃ −DηDξX̃ −D[ξ,η]X̃
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C∞(TM)-trilinear map.

A pseudo-Riemannian metric on τ∗τ is a mapping g that sends a non-degenerate
symmetric bilinear form

gv :
(
{v} × Tτ(v)M

)
×
(
{v} × Tτ(v)M

)
−→ R

(or simply gv : Tτ(v)M × Tτ(v)M → R) to every vector v ∈
◦
TM such that the

function

g(X̃, Ỹ ) :
◦
TM → R, v 7−→ g(X̃, Ỹ )(v) := gv

(
X̃(v), Ỹ (v)

)
is smooth for any two sections X̃, Ỹ ∈ Sec(

◦
τ
∗
τ).

The pair (M, g) is said to be a generalized Finsler manifold, if g is a pseudo-
Riemannian metric in τ∗τ . Then we also say that g is a generalized metric.

A covariant derivative operator D : X(TM)× Sec(τ∗τ)→ Sec(τ∗τ) in (M, g) is
said to be metric if

Dξg(X̃, Ỹ ) = ξg(X̃, Ỹ )− g(DξX̃, Ỹ )− g(X̃,DξỸ ) = 0 .

Let H be an Ehresmann connection over M and let D be a covariant derivative
operator in τ∗τ . Then the pair (D,H) is called a Finsler connection. By the torsion
of D we mean the map

TD(ξ, η) := Dξjη −Dηjξ − j[ξ, η] , (ξ, η ∈ X(TM)) .

By the V-torsion of D we mean the map

TDV (ξ, η) := DξVη −DηVξ − V[ξ, η] , (ξ, η ∈ X(TM)) .

It is easy to see that TD and TDV are tensor fields.

We define the following five ‘partial torsions’ which are introduced by M. Mat-
sumoto ([7] Chapter II.10):

T (X̃, Ỹ ) := TD(HX̃,HỸ ) h-horizontal torsion,

S(X̃, Ỹ ) := TD(HX̃, iỸ ) h-mixed torsion/Finsler torsion,

R1(X̃, Ỹ ) := TDV (HX̃,HỸ ) v-horizontal torsion,

P1(X̃, Ỹ ) := TDV (HX̃, iỸ ) v-mixed torsion,

Q1(X̃, Ỹ ) := TDV (iX̃, iỸ ) v-vertical torsion;

(X̃, Ỹ ∈ Sec(τ∗τ)).

The following formulae can be obtained by a straightforward calculation.
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Lemma 1. Let (D,H) be a Finsler connection over M and let ∇ be the Berwald

derivative induced by H. Then for every X̃, Ỹ ∈ Sec(τ∗τ)

T (X̃, Ỹ ) = D
HX̃ Ỹ −DHỸ X̃ − j[HX̃,HỸ ] ,

S(X̃, Ỹ ) = ∇iỸ X̃ −DiỸ X̃ ,

R1(X̃, Ỹ ) = R(X̃, Ỹ ) ,

P1(X̃, Ỹ ) = D
HX̃ Ỹ −∇HX̃ Ỹ ,

Q1(X̃, Ỹ ) = DiX̃ Ỹ −DiỸ X̃ − i−1[iX̃, iỸ ] .

We have an important remark that among the above mentioned five partial
torsions only two ones have ‘real’ torsion property: the h-horizontal torsion T and
the v-vertical torsion Q1.

Proposition 1. Let (M, g) be a generalized Finsler manifold endowed with an
Ehresmann connection H. Then exists a unique covariant derivative operator D
such that

(i) D is metric,

(ii) T (X̃, Ỹ ) = T(X̃, Ỹ ) ,

(iii) Q1(X̃, Ỹ ) = 0 ,

for any X̃, Ỹ ∈ Sec(τ∗τ) .

For a proof we refer to [6].

We say that D is the canonical covariant derivative for the structure (M, g,H).

4 Structure equations

The following concepts and results can be found in [14] Chapter 2, Section E.

Lemma and Definition 2. There is a unique graded derivation dv : A(τ∗τ)→ A(τ∗τ)
of degree 1 such that

(dvf)(X̃) := df(iX̃) , and

dvα̃(X̃1, . . . , X̃k+1) :=

k+1∑
i=1

(−1)i+1(iX̃i)α̃(X̃1, . . . ,
ˆ̃
Xi, . . . , X̃k+1)

+
∑

1≤i<j≤k+1

(−1)i+jα̃(i−1[iX̃i, iX̃j ], . . . ,
ˆ̃
Xi, . . . ,

ˆ̃
Xj , . . . , X̃k+1)

for all f ∈ C∞(TM), X̃, X̃i ∈ Sec(τ∗τ) (i = 1, . . . , k + 1) and α̃ ∈ Ak(τ). dv is
said to be the vertical exterior derivative on A(τ∗τ).
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Lemma and Definition 3. Let H be an Ehresmann connection. There is a unique
graded derivation dh : A(τ∗τ)→ A(τ∗τ) of degree 1 such that

(dhf)(X̃) := df(HX̃) , and

dhα̃(X̃1, . . . , X̃k+1) :=

k+1∑
i=1

(−1)i+1(HX̃i)α̃(X̃1, . . . ,
ˆ̃
Xi, . . . , X̃k+1)

+
∑

1≤i<j≤k+1

(−1)i+jα̃(j[HX̃i,HX̃j ], . . . ,
ˆ̃
Xi, . . . ,

ˆ̃
Xj , . . . , X̃k+1)

for all f ∈ C∞(TM), X̃, X̃i ∈ Sec(τ∗τ) (i = 1, . . . , k + 1) and α̃ ∈ Ak(τ). dh is
called the horizontal exterior derivative on A(τ∗τ) with respect to H.

In the above formulas the notation
ˆ̃
X means that the argument X̃ is deleted.

If k = 1, we obtain

dvα̃(X̃1, X̃2) = (iX̃1)α̃(X̃2)− (iX̃2)α̃(X̃1)− α̃(V[iX̃1, iX̃2]) , (1)

dhα̃(X̃1, X̃2) = (HX̃1)α̃(X̃2)− (HX̃2)α̃(X̃1)− α̃(j[HX̃1,HX̃2]) . (2)

Let (M, g) be a generalized Finsler manifold. Let (Ẽi)
n
i=1 be a family of g-

orthonormal sections in Sec(τ∗τ) on open subset U ⊂ TM :

Ẽi : v ∈ U 7−→ Ẽi(v) ∈ Tτ(v)M ,

g(Ẽi, Ẽj) = δij (1 ≤ i, j ≤ n) .

Let (Θ̃i)ni=1 be denote the family of dual 1-forms of (Ẽi)
n
i=1. Then

Θ̃i(Ẽj) = δij , 1 ≤ i, j ≤ n .

Using these local frame fields, every section X̃ of
◦
τ
∗
τ over U can be expressed as

X̃ = Θ̃i(X̃)Ẽi . (3)

Indeed,

Θ̃i(X̃)Ẽi = Θ̃i(X̃jẼj)Ẽi = X̃jΘ̃i(Ẽj)Ẽi = X̃jδijẼi = X̃jẼj = X̃ .

If H is an Ehresmann connection on M , then there exist 2-forms ϑ̃i along τ
(on U) such that

T(X̃, Ỹ ) = ϑ̃i(X̃, Ỹ )Ẽi , (4)

for any sections X̃, Ỹ of τ∗τ over U .
Let RD be the curvature tensor of D. Then there exist 2-forms Ω̃ij along τ such

that

RD(ξ, η)Ẽj = Ω̃ij(ξ, η)Ẽi . (5)

We say that ϑ̃i are the torsion two-forms, Ω̃ij are the curvature two-forms of

the Ehresmann connection with respect to (Ẽi)
n
i=1.
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Theorem and Definition 1. Let (M, g) be a generalized Finsler manifold. Let H

be an Ehresmann connection and let D be the canonical covariant derivative for
(M, g,H). Suppose that g is positive definite and let U be an open subset of TM .

Define (Ẽi)
n
i=1 and (Θ̃i)ni=1 as above. Then there exists a unique family

(
ω̃ij
)
1≤i,j≤n

of 1-forms on U such that

ω̃ij = −ω̃ji , (6)

dvΘ̃i = −(ω̃ij ◦ i) ∧ Θ̃j (1 ≤ i ≤ n) , (7)

dhΘ̃i = −(ω̃ij ◦H) ∧ Θ̃j − ϑ̃i (1 ≤ i ≤ n) , (8)

Ω̃ij = dω̃ij + ω̃ik ∧ ω̃kj . (9)

The 1-forms ω̃ij are said to be the connection forms. Relations (7) and (8) are
called the first structure equations. Relations (9) are mentioned as the second
structure equations.

Remark 1. Owing to Proposition 1, the structure equations of v-vertical torsion
Q1 are not relevant.

Proof. Define the 1-forms ω̃ij by

ω̃ij(ξ) := Θ̃i(DξẼj) (ξ ∈ X(TM)) .

(1) Since D is metric, we have

0 = (Dξg)(Ẽi, Ẽj)

= ξg(Ẽi, Ẽj)− g(DξẼi, Ẽj)− g(DξẼj , Ẽi)

(3)
= ξδij − g(Θ̃k(DξẼi)Ẽk, Ẽj)− g(Θ̃k(DξẼj)Ẽk, Ẽi)

= −g(ω̃ki Ẽk, Ẽj)− g(ω̃kj Ẽk, Ẽi)

= −ω̃ki g(Ẽk, Ẽj)− ω̃kj g(Ẽk, Ẽi)

= −ω̃ji − ω̃
i
j ,

whence (6).

(2) Equations (7). The left-hand side of (7) can be manipulated as follows:

dvΘ̃i(Ẽk, Ẽl)
(1)
= (iẼk)Θ̃iẼl − (iẼl)Θ̃

iẼk − Θ̃i(V[iẼk, iẼl])

= (iẼk)δil − (iẼl)δ
i
k − Θ̃i(V[iẼk, iẼl])

= −Θ̃i(V[iẼk, iẼl]) .

Evaluating the right-hand side at (Ẽk, Ẽl) we find(
(ω̃ij ◦ i) ∧ Θ̃j

)
(Ẽk, Ẽl) = ω̃ij(iẼk)Θ̃jẼl − ω̃ij(iẼl)Θ̃jẼk = ω̃il(iẼk)ω̃ik(iẼl)

= Θ̃i(DiẼk
Ẽl)− Θ̃i(DiẼl

Ẽk)

= Θ̃i(DiẼk
Ẽl −DiẼl

Ẽk) = Θ̃i(V[iẼk, iẼl]) ,
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taking into account in the last step that Q1 = 0 by Proposition 1, and hence
0 = Q1(Ẽk, Ẽl) = DiẼk

Ẽl −DiẼl
Ẽk − V[iẼk, iẼl] .

(3) Equations (8).

dhΘ̃i(Ẽk, Ẽl)
(2)
= (HẼk)Θ̃iẼl − (HẼl)Θ̃

iẼk − Θ̃i(j[HẼk,HẼl])

= (HẼk)δil − (HẼl)δ
i
k − Θ̃i(j[HẼk,HẼl])

= −Θ̃i(j[HẼk,HẼl])

Since T(X̃, Ỹ )
Prop. 1 (ii)

= D
HX̃ Ỹ −DHỸ X̃ − j[HX̃,HỸ ], we get(

(ω̃ij ◦H) ∧ Θ̃j − ϑ̃i
)
(Ẽk, Ẽl) = ω̃ij(HẼk)Θ̃jẼl − ω̃ij(HẼl)Θ̃jẼk − ϑ̃i(Ẽk, Ẽl)

= ω̃il(HẼk)− ω̃ik(HẼl)− ϑ̃i(Ẽk, Ẽl)

= Θ̃i(D
HẼk

Ẽl)− Θ̃i(D
HẼl

Ẽk)− ϑ̃i(Ẽk, Ẽl)

= Θ̃i(D
HẼk

Ẽl −DHẼl
Ẽk)− ϑ̃i(Ẽk, Ẽl)

= Θ̃i(T(Ẽk, Ẽl) + j[HẼk,HẼl])− ϑ̃i(Ẽk, Ẽl)
(4)
= Θ̃i(ϑ̃s(Ẽk, Ẽl)Ẽs) + Θ̃i(j[HẼk,HẼl])− ϑ̃i(Ẽk, Ẽl)

= Θ̃i(j[HẼk,HẼl]) .

(4) Equations (9). By using the definition of D and RD, relation (3), we find

Ω̃ij(ξ, η)Ẽi
(5)
= RD(ξ, η)Ẽj = DξDηẼj −DηDξẼj −D[ξ,η]Ẽj

= Dξ(Θ̃
k(DηẼj)Ẽk)−Dη(Θ̃k(DξẼj)Ẽk)− Θ̃i(D[ξ,η]Ẽj)Ẽi

= ξ(Θ̃k(DηẼj))Ẽk + Θ̃k(DηẼj)DξẼk

− η(Θ̃k(DξẼj))Ẽk − Θ̃k(DξẼj)DηẼk − Θ̃i(D[ξ,η]Ẽj)Ẽi

= ξ(Θ̃i(DηẼj))Ẽi − η(Θ̃i(DξẼj))Ẽi − Θ̃i(D[ξ,η]Ẽj)Ẽi

+ ω̃kj (η)DξẼk − ω̃kj (ξ)DηẼk

= ξ(Θ̃i(DηẼj))Ẽi − η(Θ̃i(DξẼj))Ẽi − Θ̃i(D[ξ,η]Ẽj)Ẽi

+ ω̃kj (η)Θ̃i(DξẼk)Ẽi − ω̃kj (ξ)Θ̃i(DηẼk)Ẽi

= ξ(ω̃ij(η))Ẽi − η(ω̃ij(ξ))Ẽi − ω̃ij([ξ, η])Ẽi

+ ω̃kj (η)ω̃ik(ξ)Ẽi − ω̃kj (ξ)ω̃ik(η)Ẽi

=
(
ξ(ω̃ij(η))− η(ω̃ij(ξ))− ω̃ij([ξ, η]) + ω̃ik(ξ)ω̃kj (η)− ω̃ik(η)ω̃kj (ξ)

)
Ẽi .

On the other hand,

(dω̃ij + ω̃ik ∧ ω̃kj )(ξ, η) = dω̃ij(ξ, η) + ω̃ik(ξ)ω̃kj (η)− ω̃ik(η)ω̃kj (ξ)

= ξ(ω̃ij(η))− η(ω̃ij(ξ))− ω̃ij([ξ, η])

+ ω̃ik(ξ)ω̃kj (η)− ω̃ik(η)ω̃kj (ξ) ,

which concludes the proof of (9).
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(5) Uniqueness of the family (ω̃ij). We use the fact that any 1-form of an open
subset of TM is completely determined by its action over vertical and hori-
zontal vector fields.

First we prove that the effect of the connection forms on vertical vector fields
is well-defined. We start on (7) and paragraph 2 of this proof.

dvΘ̃i(Ẽj , Ẽk) = ω̃ij(iẼk)− ω̃ik(iẼj) ,

dvΘ̃j(Ẽk, Ẽi) = ω̃jk(iẼi)− ω̃ji (iẼk) ,

dvΘ̃k(Ẽi, Ẽj) = ω̃ki (iẼj)− ω̃kj (iẼi) .

Now we add the first two equalities, and subtract the third. Taking into
account (6), we obtain

ω̃ij(iẼk) =
1

2

(
dvΘ̃i(Ẽj , Ẽk) + dvΘ̃j(Ẽk, Ẽi)− dvΘ̃k(Ẽi, Ẽj)

)
,

and this relation proves the statement.

Similarly, we have

dhΘ̃i(Ẽj , Ẽk) = ω̃ij(HẼk)− ω̃ik(HẼj) + ϑ̃i(Ẽj , Ẽk) ,

dhΘ̃j(Ẽk, Ẽi) = ω̃jk(HẼi)− ω̃ji (HẼk) + ϑ̃j(Ẽk, Ẽi) ,

dhΘ̃k(Ẽi, Ẽj) = ω̃ki (HẼj)− ω̃kj (HẼi) + ϑ̃k(Ẽi, Ẽj) .

Adding the first two equalities, and subtracting the third, by using (6) we
find

ω̃ij(HẼk) =
1

2

(
dhω̃i(Ẽj , Ẽk) + dhω̃j(Ẽk, Ẽi)− dhω̃k(Ẽi, Ẽj)

)
− 1

2

(
ϑ̃i(Ẽj , Ẽk) + ϑ̃j(Ẽk, Ẽi)− ϑ̃k(Ẽi, Ẽj)

)
. �
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[6] R.L. Lovas, J. Pék, J. Szilasi: Ehresmann connections, metrics and good metric
derivatives. Advanced Studies in Pure Mathematics 48 (2007) 263–308. Finsler
Geometry, Sapporo 2005 – In Memory of Makoto Matsumoto.

[7] M. Matsumoto: Foundations of Finsler Geometry and Special Finsler Spaces. Kaiseisha
Press, Otsu (1986).



106 Johanna Pék
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