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Control Systems on the Orthogonal Group SO(4)

Ross M. Adams, Rory Biggs, Claudiu C. Remsing

Abstract. We classify the left-invariant control affine systems evolving on
the orthogonal group SO(4). The equivalence relation under consideration
is detached feedback equivalence. Each possible number of inputs is con-
sidered; both the homogeneous and inhomogeneous systems are covered.
A complete list of class representatives is identified and controllability of
each representative system is determined.

1 Introduction
A control system is given by a dynamical polysystem together with a class of
“admissible inputs” (also called controls). More precisely, a (smooth) control sys-
tem Σ on M consists of a family X = (Ξu)u∈U of smooth vector fields on the state
space M and an input class U . M is a smooth (real, finite-dimensional) manifold,
and an element of U is a U -valued map (defined on some interval of R) which is
(Lebesgue) measurable or piecewise constant, or of some regularity type between
these two possibilities. The input set U is usually equipped with a separable metric
space structure. For the purposes of this paper, we shall assume that U = R`. In
classical notation, a control system Σ on M is written as

Σ : ẋ = Ξ(x, u) , x ∈ M , u ∈ U .

Here Ξ: M× U → TM, (x, u) 7→ Ξ(x, u) = Ξu(x) ∈ TxM is the map describing the
dynamics (i.e., the vector fields) of the system. We assume that Ξ is a smooth map.
Standard references for nonlinear control systems are [16], [24]. When the state
space is a (real, finite-dimensional) Lie group G and the dynamics Ξu = Ξ(·, u) are
left invariant, the control system is termed as left-invariant. Such control systems
have been studied by a number of authors over the past few decades (see, e.g., [3],
[19], [20], [26], [28]).

A trajectory of Σ (corresponding to an admissible input u(·) ∈ U) is an ab-
solutely continuous curve γ in M such that γ̇(t) = Ξu(t)(γ(t)) for almost all t.
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Carathéodory’s existence and uniqueness theorem guarantees the local existence
and global uniqueness of trajectories. The initial condition (initial state) is just
a starting point for the trajectory; different admissible inputs provide, generally
speaking, different trajectories starting from a fixed state. All these trajectories
fill the set attainable from the given initial state. To characterize such sets is the
first natural problem in control theory: the controllability problem. As soon as
the possibility to attain a certain state is established, we try to do it in the best
possible way. This is the optimal control problem (see, e.g., [3], [19]).

The most natural equivalence relation for control systems is equivalence up to
coordinate changes in the state space. This is called state space equivalence. We
say that two control systems Σ and Σ̃ are state space equivalent if there exists
a diffeomorphism φ between the state spaces which transforms the dynamics Ξu
to Ξ̃u. State space equivalence is well understood ([17]). It establishes a one-to-one
correspondence between the trajectories of the equivalent systems (corresponding
to the same admissible inputs). This equivalence relation is very strong; any gen-
eral classification appears to be very difficult if not impossible. However, some
reasonable classification in low dimensions is possible (see [2], [11]).

Another important equivalence relation for control systems is that of feedback
equivalence. Applying feedback transformations means that we also modify the
controls (which remain unchanged for state space equivalence) in a way that is
state dependent. (Feedback control may be used to achieve desired dynamical
properties of the system, like stabilizability.) We say that two control systems Σ

and Σ̃ are feedback equivalent if there exists a diffeomorphism x̃ = φ(x) between
the state spaces and an invertible transformation ũ = ϕ(x, u) of controls such that

the diffeomorphism Φ(x, u) = (φ(x), ϕ(x, u)) brings Σ into Σ̃. Feedback equivalent
systems have geometrically the same set of trajectories which are parametrized dif-
ferently by admissible inputs. Feedback equivalence has been extensively studied
in the last few decades (see [25] and the references therein). Many problems con-
cerning feedback equivalence are studied and solved for control affine systems (i.e.,
control systems with dynamics affine in controls) and then extended to the general
case (for details, see [17], [25]).

In the context of left-invariant control systems, feedback equivalence is special-
ized by requiring that the feedback transformations are independent of the state
variable. Such transformations are precisely those that are compatible with the Lie
group structure. This is called detached feedback equivalence. It turns out that
two (full-rank) left-invariant control systems are detached feedback equivalent if
and only if there exists a Lie group isomorphism between the state spaces, relating
their dynamics. Several classes of left-invariant control affine systems have recently
been classified (cf. [7], [9]).

In this paper we consider left-invariant control affine systems, evolving on the
(six-dimensional) orthogonal group SO(4). These systems have the form

Σ : ġ = g(A+ u1B1 + · · ·+ u`B`) , g ∈ SO(4) , u ∈ R`

where A,B1, . . . , B` ∈ so(4). (The elements B1, . . . , B` are assumed to be linearly
independent.) The aim is to classify, under detached feedback equivalence, all such
systems; a list of class representatives will be produced. In addition, we identify
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precisely those systems which are controllable. The homogeneous systems are con-
sidered first. The single-input, two-input, and three-input systems are classified by
exploiting the singular value decomposition. The classification of the four-input
and five-input systems follow as corollaries. For the inhomogeneous systems, the
classification is based, in each case, on its homogeneous counterpart.

We conclude the paper with a few remarks. Moreover, we refer briefly to other
works on SO(4) (and its Lie algebra) dealing with some interesting variational
problems as well as integrable Hamiltonian systems (and their applications).

A tabulation of the classification in matrix form is appended.

2 Invariant control systems

An (`-input) left-invariant control affine system Σ on G is a control system of the
form

Σ : ġ = g Ξ(1, u) = g(A+ u1B1 + · · ·+ u`B`) , g ∈ G , u ∈ R`.

Here G is a (real, finite-dimensional) connected matrix Lie group with Lie algebra g.
The parametrization map Ξ(1, ·) : R` → g is an injective affine map (i.e., B1, . . . , B`
are linearly independent). Note that the dynamics Ξu = Ξ(·, u) are invariant under
left translations, i.e., Ξ(g, u) = g Ξ(1, u). Such a system is denoted by Σ = (G,Ξ)
(cf. [6]). Σ is completely determined by the specification of its state space G and
its parametrization map Ξ(1, ·). Hence, for a fixed G, we shall specify Σ by simply
writing

Σ : A+ u1B1 + · · ·+ u`B` .

The trace Γ = im Ξ(1, ·) = A + Γ0 = A + 〈B1, . . . , B`〉 is an affine subspace of g.
A system Σ is called homogeneous if A ∈ Γ0, and inhomogeneous otherwise. Σ has
full rank if the Lie algebra generated by its trace coincides with g.

The admissible inputs are piecewise-continuous maps u(·) : [0, T ]→ R`. A trajec-
tory for an admissible input u(·) is an absolutely continuous curve g(·) : [0, T ]→ G
such that ġ(t) = g(t) Ξ(1, u(t)) for almost every t ∈ [0, T ]. A system Σ is said
to be controllable if, given any pair of points g0, g1 ∈ G, there exists a trajectory
g(·) such that g(0) = g0 and g(T ) = g1. If Σ is controllable, then it has full rank.
Moreover, if Σ is homogeneous or if G is compact, then the full-rank condition
implies controllability. For more details on invariant control systems see, e.g., [19],
[20], [26].

Let Σ = (G,Ξ) and Σ′ = (G,Ξ′) be two systems on G. We say that Σ and Σ′ are
(locally) detached feedback equivalent if there exist open neighbourhoods N and N ′

of (the unit element) 1 and a (local) diffeomorphism Φ = φ×ϕ : N ×R` → N ′×R`
such that φ(1) = 1 and Tgφ ·Ξ(g, u) = Ξ′(φ(g), ϕ(u)) for g ∈ N and u ∈ R`. (Here
Tgφ denotes the tangent map of φ at g.)

Proposition 1 ([12]). Two full-rank systems Σ and Σ′ are detached feedback equiv-
alent if and only if there exists a Lie algebra automorphism ψ : g → g such that
ψ · Γ = Γ′.
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Proof. (Sketch) Suppose Σ and Σ′ are detached feedback equivalent. Then

T1φ · Ξ(1, u) = Ξ′
(
1, ϕ(u)

)
and so T1φ · Γ = Γ′. Let u, v ∈ R`, and let Ξu = Ξ(·, u) and Ξv = Ξ(·, v) denote
the corresponding vector fields. Then φ∗[Ξu,Ξv] = [φ∗Ξu, φ∗Ξv] and so

T1φ · [Ξu(1),Ξv(1)] = [Ξ′ϕ(u)(1),Ξ′ϕ(v)(1)] = [T1φ · Ξu(1), T1φ · Ξv(1)] .

As the elements Ξu(1), u ∈ R`, generate the Lie algebra, it follows that T1φ is a Lie
algebra isomorphism. Conversely, suppose we have a Lie algebra isomorphism ψ
such that ψ ·Γ = Γ′. Then there exist neighbourhoods N and N ′ of 1 and a (local)
group isomorphism φ : N → N ′ such that T1φ = ψ (see, e.g., [21]). The equation
ψ ·Ξ(1, u) = Ξ′(1, ϕ(u)) defines an affine isomorphism ϕ : R` → R`′ . Consequently

Tgφ · Ξ(g, u) = T1Lφ(g) · ψ · Ξ(1, u) = Ξ′(φ(g), ϕ(u)) .

Hence Σ and Σ′ are detached feedback equivalent. �

In this paper, we shall find it convenient to use the above characterization as
the definition of equivalence. More precisely, we say that two (not necessarily
full-rank) systems Σ and Σ′ are equivalent if there exists ψ ∈ Aut(g) such that
ψ · Γ = Γ′. In particular, if Γ = Γ′, then we say that Σ′ is a reparametrization
of Σ. Notice that if two systems are equivalent, then they are detached feedback
equivalent. (The converse, however, does not hold.) Any two equivalent systems are
either both controllable or neither is controllable whenever the full-rank condition
is equivalent to controllability.

3 The orthogonal group SO(4)
The orthogonal group

SO(4) =
{
g ∈ GL(4,R) : g>g = 1, det g = 1

}
is a six-dimensional semisimple compact connected Lie group. Its Lie algebra

so(4) =
{
A ∈ R4×4 : A> +A = 0

}
is isomorphic to so(3)⊕ so(3). Let

E1 =

0 0 0
0 0 −1
0 1 0

 E2 =

 0 0 1
0 0 0
−1 0 0

 E3 =

0 −1 0
1 0 0
0 0 0


be the standard (ordered) basis for so(3). The map ς : so(3)⊕ so(3)→ so(4), given
by  0 −x3 x2

x3 0 −x1
−x2 x1 0

 ,
 0 −y3 y2
y3 0 −y1
−y2 y1 0



7→ 1

2


0 x3 − y3 x2 − y2 x1 − y1

−x3 + y3 0 x1 + y1 −x2 − y2
−x2 + y2 −x1 − y1 0 x3 + y3
−x1 + y1 x2 + y2 −x3 − y3 0


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is a Lie algebra isomorphism. The natural basis of so(4) is given by

Ei = ς · (Ei,0) i = 1, 2, 3

Ej = ς · (0,Ej−3) j = 4, 5, 6.

(This choice of basis proves to be the most convenient, especially for expressing the
group of automorphisms.) The commutator table for so(4) is given below.

E1 E2 E3 E4 E5 E6

E1 0 E3 −E2 0 0 0
E2 −E3 0 E1 0 0 0
E3 E2 −E1 0 0 0 0
E4 0 0 0 0 E6 −E5

E5 0 0 0 −E6 0 E4

E6 0 0 0 E5 −E4 0

The group of inner automorphisms of so(4) is given by

Int(so(4)) =

{[
ψ1 0
0 ψ2

]
: ψ1, ψ2 ∈ SO(3)

}
.

Proposition 2 ([1]). The group of automorphisms Aut(so(4)) is generated by

Int(so(4)) and the swap automorphism ζ =

[
0 I3
I3 0

]
.

Moreover, the group of automorphisms decomposes as a semi-direct product:

Aut(so(4)) = Int(so(4)) o {1, ζ} .

4 Homogeneous systems

In this section we classify the homogeneous systems on SO(4). We may assume
that Ξ(1, 0) = 0; indeed any homogeneous system is equivalent to one for which
this is the case (by use of some reparametrization). We distinguish between the
number ` of controls involved; this yields six types of systems. For each of these
types we simplify an arbitrary system by successively applying automorphisms (as
well as considering reparametrizations of the system). Finally, we verify that all
the candidates for class representatives are distinct and non-equivalent. Families
of representatives are typically parametrized by some vector α = (αi) or some
scalar β.

Any automorphism of so(4) preserves the dot product A•B =
∑6
i=1 aibi. (Here

A =
∑6
i=1 aiEi and B =

∑6
i=1 biEi.) Let Γ⊥ denote the orthogonal complement

of a subspace Γ ⊂ so(4).

Lemma 1. Suppose Γ, Γ̃ are subspaces of so(4) and ψ ∈ Aut(so(4)). Then ψ ·Γ = Γ̃

if and only if ψ · Γ⊥ = Γ̃⊥.
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The classification of the (6 − `)-input systems therefore follows from the clas-
sification of the `-input systems. Hence, we need only classify the single-input,
two-input, and three-input systems. The results for the four-input and five-input
systems then follow as corollaries. (The classification for the six-input systems is
trivial.)

When convenient, an `-input homogeneous system

Σ: u1

6∑
i=1

bi1Ei + · · ·+ u`

6∑
i=1

bi`Ei

will be written (in matrix form) as

Σ:

[
M1

M2

]
=

b
1
1 . . . b1`
...

...
b61 . . . b6`

 .
Here M1,M2 ∈ R3×`.

The evaluation ψ · Ξ(1,u) then becomes a matrix multiplication. Accordingly,

two `-input homogeneous systems Σ:

[
M1

M2

]
and Σ′ :

[
M ′1
M ′2

]
are equivalent if and

only if there exist an automorphism ψ ∈ Aut(so(4)) and K ∈ GL(`,R) such that

ψ ·
[
M1

M2

]
K =

[
M ′1
M ′2

]
.

(K corresponds to a reparametrization Ξ(1,Ku) of the system Σ.) More precisely,
Σ and Σ′ are equivalent if and only if there exist R1, R2 ∈ SO(3) and K ∈ GL(`,R)
such that

(R1M1K = M ′1 and R2M2K = M ′2)

or (R1M2K = M ′1 and R2M1K = M ′2) .

The singular value decomposition (SVD) turns out to be useful in classifying
systems. For any matrix M ∈ Rm×n of rank r, there exist orthogonal matrices
U ∈ Rm×m, V ∈ Rn×n and a diagonal matrix D ∈ Rr×r = diag(σ1, . . . , σr) such

that M = U

[
D 0
0 0

]
V > with σ1 ≥ · · · ≥ σr > 0. Specialized forms of the

SVD (stated as lemmas) will be used in classifying the two-input and three-input
homogeneous systems.

Theorem 1. Any single-input homogeneous system is equivalent to

Σ
(1,0)
β : u1(E1 + βE4)

for some 0 ≤ β ≤ 1. Here β parametrizes a family of class representatives, each
different value corresponding to a distinct non-equivalent representative.

Remark 1. Clearly, no single-input homogeneous system is controllable.
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Proof. Let Σ:

[
M1

M2

]
be a single-input system. (Here M1,M2 ∈ R3×1.) We may

assume that M1 6= 0. (If not, consider Σ: ζ ·
[
M1

M2

]
.) There exist R1, R2 ∈ SO(3)

such that

R1M1
1

‖M1‖
=

1
0
0

 and R2M2
1

‖M1‖
=

‖M2‖
‖M1‖

0
0

 .
Thus Σ is equivalent to Σ′ : u1(E1 + ‖M2‖

‖M1‖E4). If ‖M2‖
‖M1‖ > 1, then we have

ζ ·
〈
E1 +

‖M2‖
‖M1‖

E4

〉
=

〈
E1 +

‖M1‖
‖M2‖

E4

〉
,

and so Σ is equivalent to Σ′′ : u1(E1 + ‖M1‖
‖M2‖E4). Hence Σ is equivalent to Σ

(1,0)
β for

some 0 ≤ β ≤ 1.

Suppose Σ
(1,0)
β and Σ

(1,0)
β′ are equivalent. Then there exist R1, R2 ∈ SO(3) and

k 6= 0 such that R1

1
0
0

 k =

1
0
0

 and R2

β0
0

 k =

β′0
0


or

R1

β0
0

 k =

1
0
0

 and R2

1
0
0

 k =

β′0
0

 .

Therefore |β| = |β′| or |ββ′| = 1. Thus, as 0 ≤ β, β′ ≤ 1, we get β = β′. �

Corollary 1. Any five-input homogeneous system is equivalent to

Σ
(5,0)
β : u1(E4 − βE1) + u2E2 + u3E3 + u4E5 + u5E6

for some 0 ≤ β ≤ 1. Here β parametrizes a family of class representatives, each
different value corresponding to a distinct non-equivalent representative.

Remark 2. Every five-input homogeneous system is controllable.

Lemma 2. For any M ∈ R3×2 there exist orthogonal matrices R1 ∈ SO(3) and

R2 ∈ O(2) such that R1MR2 =

[
D

0 0

]
, where D =

[
a1 0
0 a2

]
and a1 ≥ a2 ≥ 0.

If

R1

[
D

0 0

]
R2 =

[
D′

0 0

]
for some R1 ∈ SO(3) and R2 ∈ O(2), then D = D′ (provided that D and D′ are
diagonal matrices such that a1 ≥ a2 ≥ 0 and a′1 ≥ a′2 ≥ 0).
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Theorem 2. Any two-input homogeneous system is equivalent to exactly one of
the systems

Σ
(2,0)
1 : u1E1 + u2E4

Σ
(2,0)
2,α : u1(E1 + α1E4) + u2(E2 + α2E5)

for some α1, α2 ∈ R, where 0 = α2 ≤ α1 or 1 ≤ 1
α2
≤ α1 or 0 < α2 ≤ α1 < 1. Here

α parametrizes a family of class representatives, each different value corresponding
to a distinct non-equivalent representative.

Remark 3. Σ
(2,0)
1 is not controllable. Σ

(2,0)
2,α is not controllable exactly when α2 = 0

or α1 = α2 = 1.

Proof. Let Σ:

[
M1

M2

]
be a two-input system. (Here M1,M2 ∈ R3×2.) Now ei-

ther rank(M1) = rank(M2) = 1 or max{rank(M1), rank(M2)} = 2. Suppose
rank(M1) = rank(M2) = 1. Then there exists K ∈ GL(2,R) such that

M1K =

b1 0
b2 0
b3 0

 and M2K =

0 b4
0 b5
0 b6

 .
Hence there exists R1, R2 ∈ SO(3) such that

R1

b1 0
b2 0
b3 0

 1√
b21+b

2
2+b

2
3

0

0 1√
b24+b

2
5+b

2
6

 =

1 0
0 0
0 0


and R2

0 b4
0 b5
0 b6

 1√
b21+b

2
2+b

2
3

0

0 1√
b24+b

2
5+b

2
6

 =

0 1
0 0
0 0

 .
Therefore Σ is equivalent to Σ

(2,0)
1 .

On the other hand, suppose rank(M1) = 2 or rank(M2) = 2. We may assume

rank(M1) = 2. (If not, consider Σ: ζ ·
[
M1

M2

]
.) There exists R1 ∈ SO(3) such that

R1M1 =

[
M ′1

0 0

]
. Hence, there exists K ∈ GL(2,R) such that R1M1K = I2,0,

where I2,0 =

[
I2

0 0

]
. Thus Σ is equivalent to Σ′ :

[
I2,0
M ′2

]
. By lemma 2, there

exist R2 ∈ SO(3) and K ∈ O(2) such that K−1
0
0

0 0 detK

1 0
0 1
0 0

K =

1 0
0 1
0 0

 and R2M
′
2K =

α1 0
0 α2

0 0


for some α1 ≥ α2 ≥ 0. If α2 = 0 or 0 ≤ α2 ≤ α1 < 1, then Σ is equivalent to Σ

(2,0)
2,α .
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Suppose 1 < α2 ≤ α1. Then0 1 0
1 0 0
0 0 −1

α1 0
0 α2

0 0

[ 0 1
α1

1
α2

0

]
=

1 0
0 1
0 0


and

0 1 0
1 0 0
0 0 −1

1 0
0 1
0 0

[ 0 1
α1

1
α2

0

]
=

 1
α2

0

0 1
α1

0 0


with 0 < 1

α1
≤ 1

α2
< 1. Thus Σ is equivalent to Σ

(2,0)
2,α′ for some 0 < α′2 ≤ α′1 < 1.

Suppose α2 ≤ 1 ≤ α1. If 1
α2
≤ α1, then we are done. If 1

α2
> α1, then Σ is likewise

equivalent to Σ
(2,0)
2,α′ for some 1 ≤ 1

α′
2
≤ α′1.

We now verify that none of the class representatives are equivalent. As the

traces of Σ
(2,0)
1 and Σ

(2,0)
2,α , respectively, do not generate the same subalgebra (for

any α1, α2 ∈ R), they cannot be equivalent. We claim that Σ
(2,0)
2,α and Σ

(2,0)

2,α′

are equivalent only if α = α′. Indeed, assume there exist R1, R2 ∈ SO(3) and
K ∈ GL(2,R) such that

R1

1 0
0 1
0 0

K =

1 0
0 1
0 0

 and R2

α1 0
0 α2

0 0

K =

α′1 0
0 α′2
0 0

 .
Then K ∈ O(2) and so, by lemma 2, it follows that α1 = α′1 and α2 = α′2. On the
other hand, assume there exist R1, R2 ∈ SO(3) and K ∈ GL(2,R) such that

R1

α1 0
0 α2

0 0

K =

1 0
0 1
0 0

 and R2

1 0
0 1
0 0

K =

α′1 0
0 α′2
0 0

 .
Then α2 6= 0 and α′2 6= 0. Hence, we need only consider the cases:

(i) 1 ≤ 1
α2
≤ α1 and 0 < α′2 ≤ α′1 < 1,

(ii) 0 < α2 ≤ α1 < 1 and 0 < α′2 ≤ α′1 < 1,

(iii) 1 ≤ 1
α2
≤ α1 and 1 ≤ 1

α′
2
≤ α′1.

Assume (i) holds. It follows that R1 =

[
S1 0
0 detS1

]
and R2 =

[
S2 0
0 detS2

]
for some S1, S2 ∈ O(2). Thus K =

[ 1
α1

0

0 1
α2

]
S−11 and so

S2

[ 1
α1

0

0 1
α2

]
S−11 =

[
α′1 0
0 α′2

]
.

By applying the mapping A 7→ AA>, we get

S2

[
1
α2

1
0

0 1
α2

2

]
S>2 =

[
α′1

2
0

0 α′2
2

]
.
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As 1
α2
≥ 1

α1
≥ 0 and α′1 ≥ α′2 ≥ 0, it follows that α2

1α
′
2
2

= 1 and α′1
2
α2
2 = 1. Hence

α′1 ≥ 1, a contradiction.
Similarly, if (ii) or (iii) hold, then we arrive at a contradiction. �

Corollary 2. Any four-input homogeneous system is equivalent to exactly one of
the systems

Σ
(4,0)
1 : u1E2 + u2E3 + u3E5 + u4E6

Σ
(4,0)
2,α : u1(E4 − α1E1) + u2(E5 − α2E2) + u3E3 + u4E6

for some α1, α2 ∈ R, where 0 = α2 ≤ α1 or 1 ≤ 1
α2
≤ α1 or 0 < α2 ≤ α1 < 1. Here

α parametrizes a family of class representatives, each different value corresponding
to a distinct non-equivalent representative.

Remark 4. Σ
(4,0)
1 is controllable. Σ

(4,0)
2,α is not controllable exactly when α1 =

α2 = 0.

Lemma 3. For any M ∈ R3×3 there exist R1, R2 ∈ SO(3) such that

R1MR2 = diag(α1, α2, α3) ,

where α1 ≥ α2 ≥ |α3| ≥ 0. Moreover, if diag(α1, α2, α3) and diag(α′1, α
′
2, α
′
3) are

two such matrices and

R1diag(α1, α2, α3)R2 = diag(α′1, α
′
2, α
′
3)

for some R1, R2 ∈ SO(3), then α1 = α′1, α2 = α′2, and α3 = α′3.

Theorem 3. Any three-input homogeneous system is equivalent to exactly one of
the systems

Σ
(3,0)
1,β : u1(E1 + βE4) + u2E2 + u3E6

Σ
(3,0)
2,α : u1(E1 + α1E4) + u2(E2 + α2E5) + u3(E3 + α3E6)

for some α1, α2, α3, β ∈ R, where 0 ≤ β ≤ 1 and 0 = α3 ≤ α2 ≤ α1 or 0 <
|α3| ≤ α2 < 1 ∧ α2 ≤ α1 or α2 = 1 ≤ 1

|α3| ≤ α1. Here α and β parametrize

families of class representatives, each different value corresponding to a distinct
non-equivalent representative.

Remark 5. Σ
(3,0)
1,β is controllable exactly when β > 0. Σ

(3,0)
2,α is not controllable

exactly when α1 = α2 = α3 = 1 or α2 = 0.

Proof. Let Σ:

[
M1

M2

]
be a three-input system. (Here M1,M2 ∈ R3×3.) Clearly

either max{rank(M1), rank(M2)} = 3 or max{rank(M1), rank(M2)} = 2. Suppose,
rank(M1) = 3 or rank(M2) = 3. We may assume rank(M1) = 3. (If not, consider
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Σ: ζ ·
[
M1

M2

]
.) Then there exists K ∈ GL(3,R) such that M1K = I3. Thus Σ is

equivalent to Σ′ :

[
I3
M ′2

]
. By lemma 3, there exist R2,K ∈ SO(3) such that

R2M
′
2K = diag(α1, α2, α3)

for some α1 ≥ α2 ≥ |α3| ≥ 0.
If α3 = 0 or |α3| ≤ α2 < 1 or 1 = α2 ≤ 1

|α3| ≤ α1, then we are done. Suppose

1 < |α3| ≤ α2 ≤ α1 or 0 < |α3| < 1 < α2 ≤ α1. If α3 > 0, then 0 0 1
0 1 0
−1 0 0

α1 0 0
0 α2 0
0 0 α3

 0 0 − 1
α1

0 1
α2

0
1
α3

0 0

 = I3

and

 0 0 1
0 1 0
−1 0 0

 0 0 − 1
α1

0 1
α2

0
1
α3

0 0

 =

 1
α3

0 0

0 1
α2

0

0 0 1
α1

 .
If α3 < 0, then 0 0 −1

0 1 0
1 0 0

α1 0 0
0 α2 0
0 0 α3

 0 0 1
α1

0 1
α2

0

− 1
α3

0 0

 = I3

and

 0 0 1
0 1 0
−1 0 0

 0 0 1
α1

0 1
α2

0

− 1
α3

0 0

 =

− 1
α3

0 0

0 1
α2

0

0 0 − 1
α1

 .
In both cases 0 < 1

α1
≤ 1

α2
≤ 1
|α3| . Thus Σ is equivalent to some system Σ

(3,0)

2,α′

with 0 < |α′3| ≤ α′2 < 1 and α′2 ≤ α′1. Likewise, if 1
|α3| ≥ α1 ≥ α2 = 1, then Σ is

equivalent to some system Σ
(3,0)

2,α′ with 1 = α′2 ≤ 1
|α′

3|
≤ α′1.

On the other hand, suppose rank(M1) = 2 and rank(M2) ∈ {1, 2}. Again,

a simple argument shows that Σ is equivalent to some system Σ′ :

[
I2,0
M ′1

]
, where

I2,0 =

[
I2 0
0 0

]
. If rank(M ′1) = 1, it is easy to show that Σ is equivalent to Σ

(3,0)
1,0 .

Assume that rank(M ′1) = 2. Then there exist R1, R2 ∈ SO(3) and K ∈ GL(3,R)
such that

R1I2,0K = I2,0 and R2M
′
1K =

a1 a2 0
a3 a4 0
0 0 1

 .
By the SVD there exist S1, S2 ∈ O(2) such that S2

[
a1 a2
a3 a4

]
S1 = diag(β, 0) for

some β ≥ 0. Let

K ′ =

[
S1 0
0 detS1

]
∈ SO(3) and R′2 =

[
S2 0
0 detS2

]
∈ SO(3) .
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Now

(K ′)−1I2,0K
′ = I2,0 and R′2

a1 a2 0
a3 a4 0
0 0 1

K ′ =

β 0 0
0 0 0
0 0 1

 .
If β ≤ 1, then we are done (i.e., Σ is equivalent to Σ

(3,0)
1,β ). Suppose that β > 1.

Then
ζ · 〈E1 + βE4, E2, E6〉 =

〈
1
βE4 + E1, E5, E3

〉
.

It is a simple matter to show that there exists an automorphism ψ such that

ψ ·
〈

1
βE4 + E1, E5, E3

〉
=
〈
E1 + 1

βE4, E2, E6

〉
.

Thus Σ is equivalent to Σ
(3,0)
1,β′ for some 0 ≤ β′ ≤ 1.

We now verify that none of these class representatives are equivalent. As the

traces of Σ
(3,0)
1,β and Σ

(3,0)
2,α , respectively, do not generate the same subalgebra (for

any β, α1, α2 ∈ R), they cannot be equivalent. Suppose two systems Σ
(3,0)
2,α and

Σ
(3,0)

2,α′ , with α1 ≥ α2 ≥ |α3| ≥ 0 and α′1 ≥ α′2 ≥ |α′3| ≥ 0, are equivalent. We claim

that α = α′. Indeed, assume there exist R1, R2 ∈ SO(3) and K ∈ GL(3,R) such
that R1I3K = I3 and R2diag(α1, α2, α3)K = diag(α′1, α

′
2, α
′
3). Then, by lemma 3,

it follows that α = α′. On the other hand, assume there exist R1, R2 ∈ SO(3) and
K ∈ GL(3,R) such that R1diag(α1, α2, α3)K = I3 and R2I3K = diag(α′1, α

′
2, α
′
3).

Then α2
1α
′
3
2

= 1, α2
2α
′
2
2

= 1 and α2
3α
′
1
2

= 1. Clearly, α3, α
′
3 6= 0. Three possibilities

remain, either

(i) 0 < |α3| ≤ α2 < 1 and 0 < |α′3| ≤ α′2 < 1, or

(ii) 0 < |α3| ≤ α2 < 1 and 0 < |α′3| ≤ α′2 < 1 ∧ α′2 ≤ α′1, or

(iii) 0 < |α3| ≤ α2 < 1 ∧ α2 ≤ α1 and 0 < |α′3| ≤ α′2 < 1 ∧ α′2 ≤ α′1.

Again (as in theorem 2), each case leads to a contradiction. �

Remark 6. There is only one six-dimensional affine subspace of so(4), namely so(4).
Therefore any six-input system is equivalent to the system

Σ(6,0) : u1E1 + u2E2 + u3E3 + u4E4 + u5E5 + u6E6 .

Clearly, this system is controllable.

5 Inhomogeneous systems
We now proceed to the classification of the inhomogeneous systems on SO(4). This
classification is, in part, based on our classification of homogeneous systems. As
before, we distinguish between the number ` of controls involved; this yields five
types of systems. (Clearly there are no six-input inhomogeneous systems.) Suppose

Σ: A+ u1B1 + · · ·+ u`B`

is an inhomogeneous system. Then the corresponding homogeneous system

Σ̃: u1B1 + · · ·+ u`B`
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is equivalent to exactly one homogeneous class representative Σ0. Consequently,
Σ is equivalent to a system Σ′ with parametrization map Ξ′(1, u) = A′ + Ξ0(1, u).
Such an (arbitrary) system is then further simplified by applying automorphisms
preserving the trace Γ0 of Σ0. Accordingly, for each homogeneous class represen-
tative Σ0, representatives for the associated class of inhomogeneous systems are
identified. We will, in addition, use vectors ε = (εi) to parametrize class represen-
tatives.

Again, it is convenient to write the condition of equivalence in matrix form. An
`-input inhomogeneous system specified by

Σ:

6∑
i=1

aiEi + u1

6∑
i=1

bi1Ei + · · ·+ u`

6∑
i=1

bi`Ei

will be written (in matrix form) as

Σ:

[
M1

M2

]
=

a
1 b11 . . . b1`
...

...
...

a6 b61 . . . b6`

 .
Here M1,M2 ∈ R3×(`+1). Two `-input inhomogeneous systems Σ:

[
M1

M2

]
and

Σ′ :

[
M ′1
M ′2

]
are equivalent if and only if there exist an automorphism ψ ∈ Aut(so(4))

and K ∈ Aff(`,R) such that

ψ ·
[
M1

M2

]
K =

[
M ′1
M ′2

]
.

Here

Aff(`,R) =

{[
1 0
v N

]
: v ∈ R`×1, N ∈ GL(`,R)

}
.

For an inhomogeneous system

Σ: A+ u1B1 + · · ·+ u`B` ,

with A =
∑6
i=1 εiEi, it follows that

∑6
i=1 ε

2
i 6= 0. We omit this condition in the

statements of the theorems throughout this section. A proof sketch is provided for
theorem 4 to elucidate the approach used in the classification of inhomogeneous
systems. More details are provided in the proof of theorem 5. The proofs of
theorems 6, 7, and 8 are similar and shall therefore be omitted.

Theorem 4. Every single-input inhomogeneous system is equivalent to exactly one
of the systems

Σ
(1,1)
βε : A+ u1(E1 + βE4)

for some 0 ≤ β ≤ 1, where
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(i) if β = 0 then
A = ε2E2 + ε4E4

with ε2, ε4 ≥ 0, and

(ii) if 0 < β ≤ 1 then
A = ε2E2 + ε4E4 + ε5E5

with ε2, ε4, ε5 ≥ 0 and
(
(β = 1 ∧ ε4 = 0)⇒ ε2 ≥ ε5

)
.

Here β and ε parametrize a family of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Remark 7. If β = 0, then Σ
(1,1)
βε is not controllable. If β > 0, then Σ

(1,1)
βε is not

controllable exactly when ε2 = 0 or ε5 = 0 or (ε2 = ε5 ∧ ε4 = 0 ∧ β = 1).

Proof. Let Σ: A+u1B1 be a single-input system. Then, by theorem 1, Σ is equiv-
alent to a system

Σ̂:

6∑
i=2

εiEi + u1(E1 + βE4)

for some 0 ≤ β ≤ 1. Suppose β > 0. Now

R1

1
0
0

 k =

1
0
0

 , R2

β0
0

 k =

β0
0

 , and R1, R2 ∈ SO(3)

exactly when k = detS1 = detS2, R1 =

[
detS1 0

0 S1

]
, R2 =

[
detS2 0

0 S2

]
, and

S1, S2 ∈ O(2). Accordingly, there exist S1, S2 ∈ O(2) such that[
detS1 0

0 S1

] 0 1
ε2 0
ε3 0

[1 0
0 detS1

]
=

 0 1
ε′2 0
0 0


and

[
detS2 0

0 S2

]ε4 β
ε5 0
ε6 0

[1 0
0 detS1

]
=

ε′4 β
ε′5 0
0 0


for some ε′2, ε

′
4, ε
′
5 ≥ 0. Therefore Σ is equivalent to the system

Σ′ : ε′2E2 + ε′4E4 + ε′5E5 + u1(E1 + βE4) .

Moreover, if β = 1 and ε′4 = 0, then Σ can be shown to be equivalent to a
system

Σ′′ : ε′′2E2 + ε′′5E5 + u1(E1 + E4)

for some ε′′2 ≥ ε′′5 ≥ 0.
Likewise, if β = 0, it follows that Σ is equivalent to a system

Σ′ : ε′2E2 + ε′4E4 + u1E1

for some ε′2, ε
′
4 ≥ 0. (Again, as in the homogeneous case, one verifies that all the

systems obtained are distinct and non-equivalent.) �
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Theorem 5. Every two-input inhomogeneous system is equivalent to exactly one
of the systems

(1) Σ
(2,1)
1,ε : ε2E2 + ε5E5 + u1E1 + u2E4 with ε2 ≥ ε5 ≥ 0

(2) Σ
(2,1)
2,αε : A+ u1(E1 + α1E4) + u2(E2 + α2E5)

with α1 ≥ α2 = 0 or 1 ≤ 1
α2
≤ α1 or 0 < α2 ≤ α1 < 1, where

(i) if α1 = α2 = 0 then
A = ε3E3 + ε4E4

with ε3, ε4 ≥ 0, and

(ii) if α1 = α2 > 0 then

A = ε3E3 + ε4E4 + ε6E6

with ε3 = 0⇒ ε6 ≥ 0, ε6 ∈ R, ε3, ε4 ≥ 0, and

(iii) if α1 > α2 = 0 then

A = ε3E3 + ε4E4 + ε5E5 + ε6E6

with (ε4 = 0 ∨ ε5 = 0)⇒ ε6 ≥ 0, ε6 ∈ R, ε3, ε4, ε5 ≥ 0, and

(iv) if α1 > α2 > 0 then

A = ε3E3 + ε4E4 + ε5E5 + ε6E6

with (ε3, ε4 > 0)∨(ε3 > 0∧ε5 ≥ 0)∨(ε4, ε5 ≥ 0)∨(ε5, ε6 ≥ 0), ε5, ε6 ∈ R,
ε3, ε4 ≥ 0.

Here α and ε parametrize families of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Remark 8. Σ
(2,1)
1,ε is controllable exactly when ε5 6= 0. Σ

(2,1)
2,αε is not controllable

exactly when α2 = 0 ∧ (α1 = 0 ∨ ε5 = ε6 = 0) or α1 = α2 = 1 ∧ ε4 = 0 ∧ ε3 = ε6.

Proof. Let Σ: A+ u1B1 + u2B2 be a two-input system. Then, by theorem 2, Σ is
equivalent either to

Σ̂1 :

6∑
i=1

εiEi + u1E1 + u2E4

or

Σ̂2 :

6∑
i=3

εiEi + u1(E1 + α1E4) + u2(E2 + α2E5) .

It is easy to show that Σ̂1 is equivalent to Σ
(2,1)
1,ε . Suppose Σ is equivalent to Σ̂2

and α1 > α2 > 0. Now

R1

1 0
0 1
0 0

N =

1 0
0 1
0 0

 R2

α1 0
0 α2

0 0

N =

α1 0
0 α2

0 0


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R1, R2 ∈ SO(3), and N ∈ GL(2,R) exactly when N = S, R1 = R2 =

[
S 0
0 detS

]
,

and S =

[
σ1 0
0 σ2

]
, σ1, σ2 ∈ {−1, 1}. Accordingly, (a tedious but straightforward

computation shows that) there exists σ1, σ2 ∈ {−1, 1} such thatσ1 0 0
0 σ2 0
0 0 σ1σ2

 0 1 0
0 0 1
ε3 0 0

1 0 0
0 σ1 0
0 0 σ2

 =

 0 1 0
0 0 1
ε′3 0 0


and

σ1 0 0
0 σ2 0
0 0 σ1σ2

ε4 α1 0
ε5 0 α2

ε6 0 0

1 0 0
0 σ1 0
0 0 σ2

 =

ε′4 α1 0
ε′5 0 α2

ε′6 0 0


where ε′3, ε

′
4 ≥ 0 and (ε′3 = 0 ∨ ε′4 = 0) ⇒ ε′5 ≥ 0 and ε′3 = ε′4 = 0 ⇒ (ε′5, ε

′
6 ≥ 0)

and ε′3 = ε′5 = 0 ⇒ ε′6 ≥ 0. These conditions are equivalent to those given in the
theorem.

On the other hand, suppose Σ is equivalent to Σ̂2 and α1 = α2 > 0. Then

R1

1 0
0 1
0 0

N =

1 0
0 1
0 0

 R2

α1 0
0 α1

0 0

N =

α1 0
0 α1

0 0


R1, R2 ∈ SO(3), and N ∈ GL(2,R) exactly when N = S>, R1 = R2 =

[
S 0
0 detS

]
,

and S ∈ O(2). Therefore there exists S ∈ O(2) such that[
S 0
0 detS

] 0 1 0
0 0 1
ε3 0 0

[1 0
0 S>

]
=

 0 1 0
0 0 1
ε′3 0 0


and

[
S 0
0 detS

]ε4 α1 0
ε5 0 α1

ε6 0 0

[1 0
0 S>

]
=

ε′4 α1 0
0 0 α1

ε′6 0 0


where ε′3, ε

′
4 ≥ 0 and ε′3 = 0⇒ ε′6 ≥ 0.

The (families of) equivalence representatives 2(i) and 2(iii) are obtained simi-
larly. (Again, as in the homogeneous case, one verifies that all the systems obtained
are distinct and non-equivalent.) �

Theorem 6. Every three-input inhomogeneous system is equivalent to exactly one
of the systems

(1) Σ
(3,1)
1,βε : A+ u1(E1 + βE4) + u2E2 + u3E6 with 0 ≤ β ≤ 1, where

(i) if β = 0 then

A = ε3E3 + ε4E4 with ε3, ε4 ≥ 0 ,

(ii) if 0 < β ≤ 1 then
A = ε3E3 + ε4E4 + ε5E5

with
(
(ε4 = 0 ∧ β = 1)⇒ ε3 ≥ ε5

)
, ε3, ε4, ε5 ≥ 0.
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(2) Σ
(3,1)
2,αε : A+ u1(E1 + α1E4) + u2(E2 + α2E5) + u3(E3 + α3E6)

with 0 = α3 ≤ α2 ≤ α1 or 0 < |α3| ≤ α2 < 1 ∧ α2 ≤ α1 or α2 = 1 ≤
1
|α3| ≤ α1, where

(i) if α1 = α2 = |α3| then

A = ε4E4 with ε4 ≥ 0 ,

(ii) if α1 > α2 = |α3| then

A = ε4E4 + ε5E5 with ε4, ε5 ≥ 0 ,

(iii) if α1 = α2 > |α3| then

A = ε4E4 + ε6E6 with ε4, ε6 ≥ 0 ,

(iv) if α1 > α2 > |α3| then

A = ε4E4 + ε5E5 + ε6E6 with ε6 ∈ R , ε4, ε5 ≥ 0 .

Here α, β and ε parametrize families of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Remark 9. Σ
(3,1)
1,βε is controllable exactly when β 6= 0 or ε4 6= 0. Σ

(3,1)
2,αε is not

controllable exactly when α2 = 0 and (α1 = 0 ∨ ε5 = 0).

Theorem 7. Every four-input inhomogeneous system is equivalent to exactly one
of the systems

(1) Σ
(4,1)
1,ε : ε1E1 + ε4E4 + u1E2 + u2E3 + u3E5 + u4E6 with ε1 ≥ ε4 ≥ 0

(2) Σ
(4,1)
2,αε : A+ u1(E4 − α1E1) + u2(E5 − α2E2) + u3E3 + u4E6

with α1 ≥ α2 = 0 or 1 ≤ 1
α2
≤ α1 or 0 < α2 ≤ α1 < 1, where

(i) if α1 = α2 then
A = ε1E1 with ε1 ≥ 0 ,

(ii) if α1 > α2 then

A = ε1E1 + ε2E2 with ε1, ε2 ≥ 0 .

Here α and ε parametrize families of class representatives, each different value
corresponding to a distinct non-equivalent representative.

Remark 10. Every four-input inhomogeneous system is controllable.

Theorem 8. Every five-input inhomogeneous system is equivalent to exactly one
of the systems

Σ
(5,1)
βε : ε1E1 + u1(E4 − βE1) + u2E2 + u3E3 + u4E5 + u5E6

with 0 ≤ β ≤ 1, ε1 ≥ 0. Here β and ε parametrize families of class representatives,
each different value corresponding to a distinct non-equivalent representative.

Remark 11. Every five-input inhomogeneous system is controllable.
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6 Conclusion
We have classified all left-invariant control affine systems on the orthogonal group
SO(4) (cf. [1]). Specifically, we have shown that any system is equivalent to exactly
one of a list of equivalence representatives. In addition, we have identified exactly
which of the representative systems are controllable.

As a simple by-product of the classification of homogeneous systems, we re-
cover a classification of subalgebras of so(4). (Two subalgebras a1, a2 ⊂ so(4) are
equivalent if there exists ψ ∈ Aut(so(4)) such that ψ · a1 = a2). Any (non-trivial)
subalgebra of so(4) is equivalent to exactly one of the following subalgebras

a(1)α = 〈E1 + αE4〉 = ς · 〈(E1, αE1)〉
a(2) = 〈E1, E4〉 = ς · 〈E1〉 ⊕ 〈E1〉

a
(3)
1 = 〈E1, E2, E3〉 = ς · so(3)⊕ {0}

a
(3)
2 = 〈E1 + E4, E2 + E5, E4 + E6〉= ς · {(A,A) : A ∈ so(3)}

a(4) = 〈E1, E2, E3, E4〉 = ς · so(3)⊕ 〈E1〉 .

Here 0 ≤ α ≤ 1 parametrizes a family of nonequivalent class representatives. (Only

a
(3)
1 is an ideal.)

The classification of (controllable) systems should prove useful in the study of
certain classes of invariant optimal control problems on SO(4). Generally, an (affine
quadratic) invariant optimal control problem is given by the specification of

(1) a left-invariant control system Σ = (G,Ξ)

(2) an affine quadratic cost function χ : R` → R, u 7→ Q(u− µ)
(here Q is assumed positive definite and µ ∈ R`)

(3) boundary data (g0, g1, T ), consisting of an initial state g0 ∈ G, a target state
g1 ∈ G, and a (usually fixed) terminal time T > 0.

Explicitly, we want to minimize the functional

J =

∫ T

0

χ(u(t)) dt

over the trajectories of Σ subject to the boundary conditions. The equivalence of
such problems has been considered in [8], [10]; this is called cost equivalence. It
establishes a one-to-one correspondence between the associated optimal trajectories
(resp. associated extremal curves) of equivalent problems. For two cost equivalent
problems, the underlying left-invariant control systems must be equivalent. Hence
(once a classification of systems has been found), only the transformations leaving
each system invariant need be considered when investigating cost equivalence.

Some specific (invariant) optimal control problems on SO(4) have been stud-
ied by diverse authors in several contexts. For instance, D’Alessandro studied a
particular (time) optimal control problem associated with a homogeneous three-
-input control affine system in the context of quantum control ([15]), whereas Puta
et al. considered a particular optimal control problem for a homogeneous four-
-input control affine system in the broad context of motion control ([4]). Recently,
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Holderbaum et al. made attempts to compare different trajectories of some par-
ticular control systems on SE(3),SO(1, 3) and SO(4), in the context of rigid body
dynamics ([5], [23]). Various variational problems associated with SO(4) (and its
Lie algebra), like the Kowalewki’s top or the integrable Suslin problem, have also
been treated (see, e.g., [18], [22]). With a classification of controllable systems at
hand a more unified approach to control problems on SO(4) may be feasible. This
is a topic for future research.

Invariant optimal control problems naturally give rise to Hamilton-Poisson sys-
tems, via the Pontryagin Maximum Principle. Moreover, if two invariant optimal
control problems are cost equivalent, then the associated Hamilton-Poisson sys-
tems are linearly equivalent ([8], [10]). In the context of Hamiltonian systems,
Raţiu et al. studied the stability of equilibria for the so(4) free rigid body ([13]).
Furthermore, integrability (and explicit integration) of certain Euler equations on
so(4) and their physical applications were considered in [14], whereas (general)
integrable quadratic Hamiltonians on so(4) were also studied in [27].

Appendix: Classification of systems on SO(4) in matrix form

In the following tables, the homogeneous systems correspond to A = 0.

Single-input

Ξ0(1, u) A

Σ
(1,1)
βε


1
0
0
β
0
0




0
ε2
0
ε4
0
0


β=0


0
ε2
0
ε4
ε5
0


0<β≤1

Two-input

Ξ0(1, u) A

Σ
(2,1)
1,ε


1 0
0 0
0 0
0 1
0 0
0 0




0
ε2
0
0
ε5
0



Σ
(2,1)
2,αε


1 0
0 1
0 0
α1 0
0 α2
0 0




0
0
ε3
ε4
0
0


α1=α2=0


0
0
ε3
ε4
0
ε6


α1=α2>0


0
0
ε3
ε4
ε5
ε6


α1>α2=0


0
0
ε3
ε4
ε5
ε6


α1>α2>0
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Three-input

Ξ0(1, u) A

Σ
(3,1)
1,αε


1 0 0
0 1 0
0 0 0
β 0 0
0 0 0
0 0 1




0
0
ε3
ε4
0
0


β=0


0
0
ε3
ε4
ε5
0


0<β≤1

Σ
(3,1)
2,αε


1 0 0
0 1 0
0 0 1
α1 0 0
0 α2 0
0 0 α3




0
0
0
ε4
0
0


α1=α2=|α3|


0
0
0
ε4
ε5
0


α1>α2=|α3|


0
0
0
ε4
0
ε6


α1=α2>|α3|


0
0
0
ε4
ε5
ε6


α1>α2>|α3|

Four-input

Ξ0(1, u) A

Σ
(4,1)
1,ε


0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1



ε1
0
0
ε4
0
0



Σ
(4,1)
2,αε


−α1 0 0 0

0 −α2 0 0
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1



ε1
0
0
0
0
0


α1=α2


ε1
ε2
0
0
0
0


α1>α2

Five-input

Ξ0(1, u) A

Σ
(5,1)
βε


−β 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1



ε1
0
0
0
0
0


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Six-input

Ξ0(1, u)

Σ
(6,0)
βε


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



Σ: A+ Ξ0(1, u) Ξ0(1, u) = u1B1 + · · ·+ u`B` ←→
[
B1 · · · B`

]
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