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A Reproducing Kernel and Toeplitz Operators

in the Quantum Plane

Stephen Bruce Sontz

Abstract. We define and analyze Toeplitz operators whose symbols are the
elements of the complex quantum plane, a non-commutative, infinite di-
mensional algebra. In particular, the symbols do not come from an algebra
of functions. The process of forming operators from non-commuting sym-
bols can be considered as a second quantization. To do this we construct
a reproducing kernel associated with the quantum plane. We also discuss
the commutation relations of creation and annihilation operators which are
defined as Toeplitz operators. This paper extends results of the author for
the finite dimensional case.

1 Introduction
Based on the formalism developed in [3], we have introduced and studied in a pair
of papers (see [9], [10]) a reproducing kernel and its associated Toeplitz operators
which have symbols in a non-commutative algebra which is a finite dimensional
truncated version of the complex quantum plane called a paragrassmann algebra.
We extend those results now to the case of the complex quantum plane, which
is an infinite dimensional, non-commutative algebra. Creation and annihilation
operators are defined as certain Toeplitz operators, and their commutation relations
are discussed.

This is much like a quantization scheme according to a common intuition of
what those words should mean: “operators instead of functions”. However, here
one must modify this catch phrase to say “operators instead of elements in a non-
commutative algebra”. This is so because here the symbols are not elements in an
algebra isomorphic to an algebra of functions, since the latter is commutative. So,
as we remarked in [10], the quantization scheme discussed here is more akin to what
in physics is known as a second quantization, where one goes from one quantum
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theory to another quantum theory, rather than a first quantization, where one goes
from a classical theory to a quantum theory.

The paper is organized as follows: The next section introduces the basic defini-
tions and properties. Section 3 is about the reproducing kernel while in Section 4
we define and study Toeplitz operators, including the creation and annihilation
operators. Section 5 is about the commutation relations of the creation and anni-
hilation operators. The concluding remarks in Section 6 give some brief indications
for possible future research.

2 Definitions and such
We study here the complex quantum plane defined as the algebra

CQq(θ, θ) := C{θ, θ}/〈θθ − qθθ〉

where C{θ, θ} is the free algebra over C on the two generators θ and θ while
〈θθ − qθθ〉 is the two sided ideal generated by the element θθ − qθθ for some
q ∈ C \ {0}. This is a non-commutative algebra provided that q 6= 1. It has a
vector space basis AW := {θjθk | j, k ∈ N}, known as the anti-Wick basis, and so
is infinite dimensional. In Ref. [3] the authors call this the anti-normal ordering,
which is synonymous with anti-Wick ordering. This agrees with the definition of
quantum plane in [5] (putting the field k = C there) and with the quantum q-plane
in [6], except for notation. However, we will not be studying co-actions of quantum
groups on this quantum space as is often done, but rather how its elements serve
as the symbols for Toeplitz operators.

Moreover, we also define a conjugation (also called a ∗-operation) in CQq(θ, θ)
on the basis AW by putting

(θjθk)∗ := θkθj (1)

and then by extending anti-linearly to linear combinations with coefficients in C.
This is easily shown to be an involution, i.e., f∗∗ = f for all f ∈ CQq(θ, θ). This
conjugation makes θ and θ into a pair of variables, each being the conjugate of the
other. We will see that this ∗-operation relates well with the operation of taking
the adjoint of a Toeplitz operator. However, we are not saying (nor do we need)
that this ∗-operation converts CQq(θ, θ) into a ∗-algebra, that is (fg)∗ = g∗f∗ for
all f, g ∈ CQq(θ, θ). We do note without giving proof that this is a ∗-algebra if and
only if q ∈ R \ {0}.

We let w = {wj | j ∈ N} be a sequence of strictly positive real numbers, that
is, wj > 0. These will be referred to as weights. We use these weights to define
an inner product on CQq(θ, θ) as the sesquilinear extension (anti-linear in the first
entry, linear in the second) of

〈θaθb, θcθd〉w := wa+d δa+d,b+c = wa+d δa−b,c−d for all a, b, c, d ∈ N, (2)

with δ being the Kronecker delta. Notice that the condition a − b = c − d is
necessary and sufficient for the inner product in (2) to be non-zero. Clearly, given
a pair a, b ∈ N there are infinitely many pairs c, d ∈ N such that c− d = a− b and
also satisfying (c, d) 6= (a, b). Therefore AW is not even an orthogonal basis, let
alone an orthonormal basis.
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We wish to note, although without giving the relatively straightforward proof,
that there is this compatibility between the inner product (2) and the conjuga-
tion (1), namely: 〈f, g〉∗w = 〈f∗, g∗〉w for all f, g ∈ CQq(θ, θ), where the ∗-operation
on the left side is complex conjugation in C. We note that we also have the identity
〈f, g〉∗w = 〈g, f〉w.

The definition (2) is partly motivated by the inner product introduced in [3]
and studied in [9] and [10]. There one has the paragrassmann algebra defined by

PGl,q(θ, θ) = C(θ, θ)/〈θθ − qθθ, θl, θl〉

with l ≥ 2 an integer. This is a quotient (as an algebra) of CQq(θ, θ) by the
nilpotency relations θl = 0 and θl = 0. In that case, using the notation in [9], the
inner product used there satisfies

〈θaθb, θcθd〉w = 〈θa+d, θb+c〉 = wa+d δa+d,b+cχl(a+ d). (3)

Here χl is the characteristic function for the set of integers {0, 1, . . . , l − 1}. Its
presence is due to the nilpotency relations. Equation (3) was not the actual defi-
nition of this inner product, although it could have been. Instead the definition of
this inner product was given in terms of a Berezin type integral, thereby present-
ing PGl,q(θ, θ) as something quite analogous to a classical L2 space. It seems to
be impossible to write (2) as a Berezin type integral, since now there are no ‘top
classes’ in the theory. However, it might be useful to express (2) as some sort of
generalized L2 inner product.

Now another motivation for the inner product (2) is seen in the well known
example of the Hilbert space

H := L2(C, π−1e−|z|
2

dx dy) (4)

where the monomials zjzk form a basis (linearly independent set such that the
closure of their algebraic span is the entire Hilbert space). Then using a result
that goes back at least as far to Bargmann’s paper [2] in the second equality, for
a, b, c, d ∈ N this basis satisfies

〈zazb, zczd〉H = 〈za+d, zb+c〉H = (a+ d)! δa+d,b+c,

where we are using here the standard L2 inner product 〈·, ·〉H in H. Hence we can
think of wj as some sort of deformation of j!, the usual factorial of j ∈ N. Notice
that an immediate consequence is that 〈za, zd〉H = 0 if either a > 0 or d > 0, while
for a = b = c = d = 0 we have 〈1, 1〉H = 1. In turn this implies for f holomorphic
and g anti-holomorphic that

〈f, g〉H = f(0)∗g(0).

In particular such a pair of f and g is orthogonal if and only if either f(0) = 0
or g(0) = 0. This example has an interesting consequence. Suppose that we
take the weights in the quantum plane to be wj = j! for all j ∈ N. Then the
inner product on the quantum plane CQq(θ, θ) is positive definite since in this case
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CQq(θ, θ) is unitarily isomorphic to a dense subspace D of the Hilbert space H for
any q ∈ C \ {0}. In fact the map U : CQq(θ, θ) → H given on the basis AW by
U(θiθj) := zizj is an isometry. Actually D is the commutative subalgebra C[z, z] of
complex polynomials in two commuting variables, and so the unitary isomorphism

U : CQq(θ, θ)
∼=−→ D = C[z, z]

is not an algebra isomorphism for q 6= 1. Also the completion of CQq(θ, θ) with
respect to the corresponding metric is unitarily isomorphic to the Hilbert space H,
again for any q ∈ C \ {0}. And hence there are cases where the inner product
defined by (2) is positive definite. Motivated in part by this example we call θ a
holomorphic variable and θ an anti-holomorphic variable. (Compare also with the
usage of these terms in [9] and [10].)

However there are also cases for which the inner product (2) is not positive
definite. To see how this can happen, we first note some elementary calculations:

〈1, 1〉w = w0,

〈θθ, 1〉w = 〈1, θθ〉w = w1, (5)

〈θθ, θθ〉w = w2.

As an aside, we note that 1 is a normalized state (the ‘ground state’) if and only if
w0 = 1. Let α ∈ R be a real number to be specified in more detail later. Then

〈1 + αθθ, 1 + αθθ〉w = w0 + 2αw1 + α2w2, (6)

a quadratic polynomial in α which has distinct real roots if and only if its discrimi-
nant is positive, that is, w2

1−w0w2 > 0. Picking weights that satisfy this condition
we see that the inner product in (6) will be zero for two distinct values of α ∈ R
and negative for values strictly between those two values. (Recall that w2 > 0.) In
short, the inner product will not be positive definite in such a case. This example
also shows that w2

1 − w0w2 < 0 is a necessary condition for the inner product to
be positive definite.

The remarks in the previous paragraphs show that the situation for the quantum
plane is rather different from the finite dimensional theory, where the inner product
is never positive definite, but always non-degenerate, as shown in [9]. We now wish
to establish a necessary and sufficient condition on the weights wk so that the inner
product 〈·, ·〉w defined in (2) is non-degenerate. Here it is:

Theorem 1. The inner product (2) is non-degenerate on CQq(θ, θ) if and only if
for every integer R ≥ 1 and every n ∈ Z we have that{

WR,s ∈ CR
∣∣ s ≥ |n|}⊥ = 0,

where WR,s = (wr+s−|n|)|n|≤r≤|n|+R−1 is a vector in CR for every s ≥ |n|.

Proof. To facilitate this argument we define a partition of the basis AW so that
elements in disjoint subsets of the partition are orthogonal with respect to the inner
product (2). So for each integer n ∈ Z we define

Pn :=
{
θaθb

∣∣ a ≥ 0, b ≥ 0, a− b = n
}
.
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Then we have Pn ⊥ Pm for all n,m ∈ Z satisfying n 6= m as well as

AW =
⋃
n∈Z

Pn,

a disjoint union. So we have an algebraic orthogonal decomposition

CQq(θ, θ) =
⊕
n∈Z
Pn,

where Pn := spanCPn. (Here we let spanC S denote the operation of forming the
algebraic subspace over C generated by the indicated set S. So, we are taking
here only finite linear combinations of elements in S.) It follows that the inner
product (2) is non-degenerate if and only if it is non-degenerate on each of the
summands Pn.

It will be convenient for us to define the max-degree of each basis element in
AW by

maxdeg(θaθb) := max(a, b) ≥ 0 .

Then Pn contains exactly one element of max-degree |n|+k for k = 0, 1, 2, . . . (and
no other elements). For example, for the integers n ≤ 0 we have

Pn =
{
θ
(−n)

, θθ
(−n+1)

, . . . , θkθ
(−n+k)

, . . .
}
.

A similar expression holds for n > 0. We denote the unique element of Pn of
max-degree r by εr for each integer r ≥ |n|. The reader can check that for n ≥ 0
we have εr = θrθr−n, while for n < 0 we have εr = θr+nθr, where r ≥ |n| in both
cases. We omit n from the notation εr.

Taking the pair of elements εr, εs ∈ Pn for a given n ∈ Z and r, s ≥ |n| and
then computing their inner product gives (as the reader can check) that

〈εr, εs〉w = wr+s−|n|.

In the example (5) given earlier the two elements 1 and θθ lie in P0 and satisfy
maxdeg 1 = 0 and maxdeg θθ = 1. So ε0 = 1 and ε1 = θθ in P0.

Suppose that n ∈ Z is given. We then consider the inner product (2) restricted
to Pn. Take an arbitrary element f ∈ Pn with f 6= 0. We write

f =
∑
r≥|n|

arεr,

where each ar ∈ C, but only finitely many are non-zero. But at least one of these
coefficients ar is non-zero, since f 6= 0. The inner product is non-degenerate on Pn
if and only there exists g ∈ Pn (depending on f , of course) such that 〈g, f〉w 6= 0.
We expand g as

g =
∑
s≥|n|

bsεs
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for complex coefficients bs only finitely many of which are non-zero. Then we
evaluate

〈g, f〉w =
∑

r≥|n|, s≥|n|

arb
∗
s〈εs, εr〉w =

∑
s≥|n|

b∗s

(∑
r≥|n|

arwr+s−|n|

)
. (7)

For example, if wk = 1 (or any other constant value) for all k ≥ 0, then taking f
above such that

∑
r ar = 0 but some ar 6= 0 gives us an element f 6= 0 satisfying

〈g, f〉w = 0 for all g. So in this particular case the inner product is degenerate.
Notice that the expression in parentheses on the right in (7) is given to us, while

the coefficients bs are ours to choose as we please provided that only finitely many
of them are non-zero. So we define

vs(f) :=
∑
r≥|n|

arwr+s−|n| ∈ C (8)

for every s ≥ |n|. (Recall that n is a given integer so we do not include it in the
notation vs(f). The sum is well defined since only finitely many of the ar’s are
non-zero.) If just one of these numbers is non-zero, say vs0(f) 6= 0, then we can
put bs = 0 for all s 6= s0 and bs0 = 1. And therefore (7) is non-zero. And such a
choice indeed has only finitely many (namely, one) of the bs’s different from zero.
The element g corresponding to this choice of the bs’s is g = εs0 , which satisfies
〈g, f〉w 6= 0. Therefore in this case {f}⊥ 6= Pn. (Recall that we have restricted the
inner product to Pn.)

So if the inner product is degenerate on Pn (which means that {h}⊥ = Pn for
some 0 6= h ∈ Pn), then there must exist some f 6= 0 (actually, f = h works) such
that vs(f) = 0 for all s ≥ |n|. Conversely, if there exists some f 6= 0 such that
vs(f) = 0 for all s ≥ |n|, then for every g we have 〈g, f〉w = 0 by (7) and so the
inner product is degenerate on Pn. We now re-write the definition (8) for vs(f) as

vs(f) =
∑

|n|≤r≤|n|+R−1

arwr+s−|n| ∈ C (9)

for some integer R ≥ 1. Notice that the existence of R is given to us implicitly as
part of the information about f , since only finitely many of the ar’s are non-zero.
R is not unique, but that is not important for this argument.

So we can consider AR(f) := (a∗r)|n|≤r≤|n|+R−1 as a vector in CR. Similarly,
WR,s := (wr+s−|n|)|n|≤r≤|n|+R−1 is considered as a vector in CR. Recall that n
is fixed since we are working in Pn. However, s ≥ |n| is arbitrary. We will now
use the standard Hermitian inner product 〈·, ·〉CR on CR. Then equation (9) is the
same as

vs(f) = 〈AR(f),WR,s〉CR .
Now {WR,s}s≥|n| is an infinite sequence of vectors in the finite dimensional vector
space CR. Since f =

∑
r≥n arεr is an arbitrary non-zero element in Pn with

|n| ≤ max({r | ar 6= 0}) ≤ |n|+R− 1,

it follows that AR(f) is an arbitrary non-zero vector in CR. Therefore the following
statements are equivalent provided that n ∈ Z is given:
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• The inner product is degenerate on Pn.

• For some f ∈ Pn with f 6= 0, we have vs(f) = 0 for all s ≥ |n|.

• For some sequence {ar | r ≥ |n|}, not identically zero but with only finitely
many terms not equal to zero, we have vs = 0 for all s ≥ |n|, where we define
vs :=

∑
r≥|n| arwr+s−|n| for s ≥ |n|.

• There exist some integer R ≥ 1 and some vector A ∈ CR \ {0} such that for
all s ≥ |n| we have 〈A,WR,s〉CR = 0.

• There exists some integer R ≥ 1 so that {WR,s ∈ CR | s ≥ |n|}⊥ 6= 0.

Equivalently, the inner product is non-degenerate on Pn if and only if for every
integer R ≥ 1 we have {

WR,s ∈ CR
∣∣ s ≥ |n|}⊥ = 0 .

We have already established that the inner product (2) is non-degenerate on
CQq(θ, θ) if and only if it is non-degenerate on Pn for every integer n ∈ Z. And so
this finishes the proof. �

Remark 1. This result gives an algebraic necessary and sufficient condition on
the weights wk for their associated inner product to be non-degenerate. While
it looks clumsy, it should be amenable to verification in applications. Intuitively,
the condition that an infinite sequence in a finite dimensional vector space spans
the vector space seems to be a generic condition. And so countably many such
conditions should also be generic. Theorem 1 contrasts with the result for the
paragrassmann algebra in [9], where we proved that the inner product (3) is non-
degenerate for all positive weights.

Inside the subalgebra

Pre(θ) := spanC{θj | j ∈ N} ∼= C[θ] ⊂ CQq(θ, θ)

generated by all powers of the holomorphic variable θ, we have as a particular case
of the definition (2) that

〈θj , θk〉w = δj,kwj

for all j, k ∈ N. So the inner product restricted to the ‘holomorphic’ subspace Pre(θ)
is positive definite. This means that Pre(θ) is a pre-Hilbert space. Moreover, an
orthonormal basis of Pre(θ) is given by

φj(θ) :=
1

w
1/2
j

θj for j ∈ N.

Similar comments hold for the anti-holomorphic subalgebra Pre(θ) defined in a
completely analogous way:

Pre(θ) := spanC{θ
j | j ∈ N} ∼= C[θ] ⊂ CQq(θ, θ)
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We let
B(θ) = B := compC Pre(θ)

denote the holomorphic space (or the Segal-Bargmann space) of the quantum plane.
By the operation compC we mean the completion of the indicated pre-Hilbert space.
The set {φj(θ) | j ∈ N} is also an orthonormal basis for B(θ). Unlike the fi-
nite dimensional case studied in [3], [9] and [10], the Segal-Bargmann space B(θ)
here is not necessarily an algebra. However, it does contain the dense subspace
Pre(θ) ∼= C[θ] which is an algebra, namely the algebra of polynomials in θ. But the
multiplication map for C[θ] is not necessarily continuous in the topology induced
by the norm associated to the inner product (2) and, if that is the case, then it is
not extendible by continuity to B(θ).

Analogously, we define the anti-holomorphic space (or the anti-Segal-Bargmann
space) of the quantum plane by

B(θ) := compC Pre(θ).

These two spaces B(θ) and B(θ) should be understood as ‘almost’ disjoint. Their
‘intersection’ is the one dimensional subspace spanned by 1 = θ0 = θ0.

3 Reproducing kernel
As a first step towards the definition of Toeplitz operators, we shall find a repro-
ducing kernel for the Segal-Bargmann space. First of all we will need to define a
functional calculus for the Segal-Bargmann space. As is well-known, there always
is a functional calculus for polynomials f ∈ C[x] associated to any element in any
associative algebra. Here we write

f =

m∑
j=0

ajx
j ∈ C[x]

with coefficients aj ∈ C and then use the standard definition

f(θ) :=

m∑
j=0

ajθ
j .

But there are some elements in B(θ) that are not so representable, since they
are infinite sums of elements in the orthogonal basis {θj}. However, any element
u ∈ B(θ) can be expanded as an infinite sum with respect to the orthonormal basis
{φj(θ)} giving

u =

∞∑
j=0

ajφj(θ) =

∞∑
j=0

ajw
−1/2
j θj

with aj ∈ C and
∑
j |aj |2 <∞. Equivalently, for all u ∈ B(θ) we have

u =

∞∑
j=0

fjθ
j
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with fj ∈ C and
∑
j |fj |2wj < ∞. So associated to any sequence of positive real

numbers w = {wj | j ≥ 0} we define a weighted little l2 space:

l2(w) :=
{
f = {fj | j ∈ N}

∣∣ ∑
j

|fj |2wj <∞
}
.

Then the full functional calculus of θ is the linear mapping

Φ: l2(w)→ B(θ)

defined by

Φ(f) = Φ
(
{fj}

)
:=

∞∑
j=0

fjθ
j .

So Φ is a unitary isomorphism of Hilbert spaces. We also use the more suggestive
notation f(θ) := Φ(f) for all f ∈ l2(w).

Now the reproducing kernelK(θ, η) is supposed to satisfy the reproducing kernel
formula, namely

f(θ) = 〈K(θ, η), f(η)〉w ∈ B(θ) (10)

for all f ∈ l2(w) and where η ∈ B(η) is another ‘independent copy’ of a holomorphic
variable. The intuitive idea behind the inner product in (10) is that it should only
take η into consideration while letting θ have a free ride as a ‘passenger’. The
usual structure of reproducing kernel functions in spaces of holomorphic functions
suggests that we should have

K(θ, η) ∈ B(θ)⊗ B(η),

the standard tensor product of Hilbert spaces. This expresses the intuition that
K(θ, η) should be anti-holomorphic in θ and holomorphic in η. So we want to define
an inner product 〈L(θ, η), f(η)〉w for all L(θ, η) ∈ B(θ) ⊗ B(η) and all f ∈ l2(w).
Actually, we will start off this discussion by suppressing the Hilbert space structures
and simply considering f(η) =

∑
k fkη

k, a formal infinite sum, and

L(θ, η) =
∑
ij

λij θ
i ⊗ ηj ,

another formal infinite sum (that is, no convergence requirements). We now make
the following formal calculation in order to motivate a definition:

〈L(θ, η), f(η)〉w =
∑
ijk

λ∗ijfk〈θi ⊗ ηj , ηk〉w

=
∑
ijk

λ∗ijfk〈ηj , ηk〉wθi

=
∑
ijk

λ∗ijfkδj,kwjθ
i

=
∑
i

(∑
j

λ∗ijfjwj

)
θi. (11)
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The inner sum in (11) over j ≥ 0 is an infinite sum of complex numbers for every
i ≥ 0 and so will not be considered as a formal infinite sum. But to consider
it as an absolutely convergent series, say, we will have to impose conditions on
the coefficients λij and fk of the above formal expressions. (The weights wj are
considered as given.) After all the inner sums in (11) have been well defined we
are left with a formal expression, namely a formal power series in the variable θ.
This can be used as such. Or, if one prefers, some more conditions can be imposed
so that this series converges in some topological vector space, which could be B(θ)
with one of its many topological structures (norm topology, weak topology, etc.).

For example, we can use Hölder’s inequality to get the estimate∑
j

|λ∗ijfjwj | ≤
(∑

j

|λij |pwj
)1/p(∑

j

|fj |p
′
wj

)1/p′
(12)

for any 1 < p < ∞, where p′ is the usual dual index of p. Consequently, if there
exists some 1 < p <∞ such that the first sum on the right side of (12) is finite for
every i ≥ 0 and such that the second sum is finite, then we have that the formula
(11) defines the inner product 〈L(θ, η), f(η)〉w as a formal power series in θ.

We next consider the canonical orthogonal basis of l2(w) given by

εj = (0, . . . , 0, 1, 0, . . . )

(all zeros with one single occurrence of 1 in entry j ∈ N). Then we have

εj(θ) = Φ(εj) = θj .

So a necessary condition for (10) to hold is that

θj = 〈K(θ, η), ηj〉w (13)

for all j ∈ N. We look for a solution K(θ, η) =
∑
kl aklθ

k ⊗ ηl, a formal series, for
unknown coefficients akl ∈ C. So we use our formal definition (11) to get

〈K(θ, η), ηj〉w =
∑
k

a∗kj wjθ
k,

a formal power series in θ. So (13) holds if and only if

θj =
∑
k

a∗kjwj θ
k (14)

for all j ∈ N. Of course, the left side of (14) is a finite series. Clearly, (14) is
satisfied if and only if ajk = δj,k/wj .

Putting this into the formula for the reproducing kernel gives us

K(θ, η) =
∑
kl

aklθ
k ⊗ ηl =

∑
kl

δk,l
wk

θk ⊗ ηl =
∑
k

1

wk
θk ⊗ ηk

=
∑
k

φk(θ)⊗ φk(η). (15)
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But this series is not convergent in the norm topology of the Hilbert space
B(θ)⊗ B(η), since the terms satisfy∥∥φk(θ)⊗ φk(η)

∥∥ = 1.

However, there is another topology on B(θ)⊗B(η) for which this series is convergent.
This other topology corresponds to the strong operator topology (see [7]) in the
space End(Pre(θ)) of bounded linear operators mapping B(η) to B(θ). Without
going into a lot of technical details, let us simply note that the formula (15) induces
a unitary isomorphism S : B(η)→ B(θ) given in Dirac notation by

S =
∑
k

|φk(θ)〉〈φk(η)|

which is an infinite sum of rank one operators, each of which has operator norm 1,
and so is not convergent in the operator norm topology.

Nonetheless this infinite series of operators is convergent in the strong opera-
tor topology. It satisfies S : φk(η) 7→ φk(θ) for the basis elements and therefore
S : f(η) 7→ f(θ) for f ∈ l2(w). This is quite tautological, since this is exactly
what the mapping induced by the reproducing kernel, as given by the right side of
equation (10), is supposed to do! And so it does. Intuitively, the expression in (15)
expresses in this context the formula for the kernel of the Dirac delta as a ‘smooth’
object.

This section may seem like a lot of work to arrive at a result that appears to
lack substance. However, the formula (15) will be used in the next section to define
Toeplitz operators in a rather natural way. And these Toeplitz operators have some
substantial, non-trivial properties. There may be other ways, still to be discovered,
for defining these Toeplitz operators. But for the time being we seem to have found
a reasonable approach.

Also, it is worth mentioning that the reproducing kernel K in (15) is not a
function of two variables in the usual sense of those words. If it were, then f(θ)
would be the ‘value’ of f at the ‘point’ θ. But f(θ) is an element in B(θ) for
all f ∈ l2(w). And θ itself is an element in the very same space B(θ). So the
sort of reproducing kernel as given in (15) is not included in the classical theory
of reproducing kernel functions such as found in [1] and [8]. For example, the
usual point-wise estimate, which follows immediately from the Cauchy-Schwarz
inequality in the classical case, seems to have no good analogue here. Anyway,
the Cauchy-Schwarz inequality does not apply to the general reproducing kernel
formula in (10) nor to its special case (13).

But there are some properties of the reproducing kernel (15) that are analogous
to standard properties of reproducing kernel functions. (See [1] and [8].) The
correct interpretation of the following properties entails defining with some care
notations which superficially appear obvious. We will not go into that analysis,
but refer the reader to [9] where a similar analysis was made. We now present
these properties:

1. Positive definite:
∑N
n,m=1 λ

∗
nλmK(θn, θm) ≥ 0 for λ1, . . . , λN ∈ C.
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2. Complex symmetry: K(θ, η)∗ = K(η, θ).

3. Self reproducing: K(θ, η) = 〈K(η, ·),K(θ, ·)〉w.

4. Positivity on the diagonal: K(θ, θ) =
∑
k |φk(θ)〉〈φk(θ)| = IB(θ) ≥ 0.

Also, there is the question of constructing a space with a given K(θ, η) (sat-
isfying properties 1 and 2) as its reproducing kernel. While this is a well known
result in the theory of reproducing kernel functions, it appears that the analogous
construction can not be made here since we are not dealing with functions.

4 Toeplitz Operators
Much of the above material about the reproducing kernel appears to be somewhat
tautological in nature, though with a lot of technical details since here we are
dealing with infinite dimensional spaces rather than the finite dimensional theory
in [9]. But the real point of the reproducing kernel for us is that it can be extended
in a ‘natural’ manner to the quantum plane and as such becomes one of the principle
ingredients in defining a non-trivial theory of Toeplitz operators with symbols in
the complex quantum plane, a non-commutative algebra for q 6= 1. As noted earlier
in [10], passing from a symbol in a non-commutative algebra to its Toeplitz operator
is an example of second quantization, since it is the quantization of a theory that
is itself a non-commutative (i.e., quantum) theory to begin with. Nonetheless, the
initial theory is still often referred to as the classical theory.

To start off this discussion we define the inner product of any finite sum or any
infinite (formal) sum of the form

M(θ, η) =
∑
jk

mjk θ
j ⊗ ηk

with coefficients mjk ∈ C for j, k ≥ 0 and a basis element ηaηb ∈ CQq(η, η) in AW
by

〈M(θ, η) , ηaηb〉w :=
∑
j

(∑
k

m∗jk〈ηk, ηaηb〉w
)
θj

=
∑
j

(∑
k

m∗jk〈ηk+b, ηa〉w
)
θj

=
∑
j

(∑
k

m∗jkδk+b,awa

)
θj

= wa
∑
j

m∗j,a−b θ
j (16)

provided that the sum on j converges in B(θ), which is equivalent to∑
j

wj |mj,a−b|2 <∞ .
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Or we could simply take (16) to be a formal series. Here we have introduced the
convention that mjk = 0 if k < 0. Then for any given arbitrary element

F =
∑
ab

cabη
aηb ∈ CQq(η, η)

(which is always a finite sum) such that for each pair (a, b) satisfying cab 6= 0 we
have convergence in (16), we define

〈M(θ, η) , F 〉w :=
∑
ab

cab〈M(θ, η) , ηaηb〉w ,

which is also a finite sum. Notice that this inner product in general takes values in
B(θ) provided that we impose the convergence conditions, though in some specific
cases the inner product could lie in some subspace of B(θ).

Next we define the operator associated with the reproducing kernel K. This is
the extension of the reproducing kernel to the quantum plane that we mentioned
earlier.

Definition 1. The linear operator associated to the reproducing kernel of Pre(θ),
PK : CQq(θ, θ)→ CQq(θ, θ), is defined for all F (θ, θ) ∈ CQq(θ, θ) by

PKF (θ) := 〈K(θ, η), F (η, η)〉w. (17)

This definition comes down to a special case of the discussion in the previous
paragraph. So we must show that the inner product in (17) is well defined. Also
PK is actually a symmetric projection as we prove next.

Theorem 2. PK is well defined and is a projection, that is, P 2
K = PK . Also, PK is

symmetric with respect to the inner product 〈·, ·〉w.

Remark 2. Since this inner product is not necessarily non-degenerate, we do not
always have that the adjoint of PK exists. Nonetheless, it makes sense to speak of
the symmetry of PK . And in those cases when the inner product is non-degenerate,
we do have P ∗K = PK .

Proof. We write Fab(θ, θ) := θaθb for the elements in the basis AW . We extend
the notation established above by setting θn = 0 and wn = 1 for all integers n < 0.
As we noted earlier, this basis AW is not orthogonal.

Acting with PK on the basis elements Fab in AW we obtain

(PKFab)(θ) = 〈K(θ, η), Fab(η, η)〉w = 〈K(θ, η), ηaηb〉w

=
∑
j

1

wj
〈ηj , ηaηb〉w θj =

∑
j

1

wj
δj+b,awa θ

j =
wa
wa−b

θa−b. (18)

This result corresponds in this case to the convergence in (16) for all a, b. In this
particular case, the infinite series collapses to at most one non-zero term, and so we
have convergence not only in B(θ) but even to an element in its subspace Pre(θ).
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So by extending linearly to finite sums we see that the definition (17) makes sense.
Moreover, (18) shows that RanPK ⊂ Pre(θ). In particular by putting b = 0 in (18)
we find that (PKFa,0)(θ) = Fa,0(θ), which says PK : θa 7→ θa, that is, PK acts as
the identity on Pre(θ). So, P 2

K = PK and RanPK = Pre(θ) follow immediately.
For the symmetry of PK we calculate various matrix elements for PK with

respect to the elements in the basis AW . First for PK acting on the right entry we
obtain:

〈Fab, PKFcd〉w =
〈
θaθb,

wc
wc−d

θc−d
〉
w

=
wc
wc−d

δa,b+c−dwaH(c− d)

=
wawc
wc−d

δa−b,c−dH(c− d), (19)

where H is the (discrete) Heaviside function H : Z→ {0, 1} defined by H(n) := 1
for n ≥ 0 and H(n) := 0 for n < 0.

Next we calculate the matrix elements for PK acting on the left entry:

〈PKFab, Fcd〉w =
〈 wa
wa−b

θa−b, θcθd
〉
w

=
wa
wa−b

H(a− b)δa−b+d,cwc

=
wawc
wa−b

H(a− b)δa−b,c−d. (20)

Since the matrix entries (19) and (20) with respect to the elements in the vector
space basis AW of CQq(θ, θ) are equal, we can pass to finite linear combinations
to get

〈F, PKG〉w = 〈PKF,G〉w
for all F,G ∈ CQq(θ, θ), which is the desired symmetry of PK . �

Because of the previous proof we can think of PK as a mapping

PK : CQq(θ, θ)→ Pre(θ) ⊂ B(θ).

For any g ∈ CQq(θ, θ) we define the linear map Mg : Pre(θ) → CQq(θ, θ) to be
multiplication by g on the right, that is

Mgφ := φg

for all φ ∈ Pre(θ). It is straightforward to show that RanMg ⊂ CQq(θ, θ).
Definition 2. We define the Toeplitz operator associated to a symbol g ∈ CQq(θ, θ)
to be

Tg = PKMg,

that is, right multiplication by g followed by the projection operator associated to
the reproducing kernel K. We also write

Tg : Pre(θ)→ B(θ)

with the domain of Tg defined by Dom(Tg) := Pre(θ) ⊂ B(θ) to indicate that
Tg is a densely defined linear operator acting in (but not on) the Segal-Bargmann
space B(θ). An equivalent way to write this definition is

Tgf(θ) =
〈
K(θ, η) , f(η) g(η, η)

〉
w
,

where f ∈ Pre(θ).
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Actually, we have that RanTg ⊂ Pre(θ), but we prefer to consider the codomain
to be the larger space B(θ) in order to be able to apply the theory of densely defined
linear operators acting in a Hilbert space. For example, see [7]. The definition of Tg
can be expressed as this composition:

Dom(Tg) = Pre(θ)
Mg−→ CQq(θ, θ)

PK−→ Pre(θ) ⊂ B(θ)

One of the first considerations here is to find necessary and sufficient conditions
on g in order that Tg is bounded and so has a unique bounded extension to B(θ).
And when Tg is bounded, one would like some information, at best a formula but
at least an estimate, about the operator norm of Tg. While bounded operators are
important, we will also be interested in certain operators that are not bounded.

We have used the common way of defining Toeplitz operators: multiply by
a symbol and then project back into the Hilbert space. However, we are making
choices here that are somewhat arbitrary. For example, we could have used left mul-
tiplication instead of right multiplication. Also the choice of the Segal-Bargmann
space is arbitrary too. We could just as well have chosen the anti-Segal-Bargmann
space, which also has a reproducing kernel. And having chosen instead that space,
we would again have two possible choices for the multiplication operator: left and
right. In all, there are four different choices for the definition of Toeplitz operators,
and we simply have opted for one of these. The other three choices lead to very
similar theories and will not be discussed further.

Next we define the Toeplitz mapping T : g 7→ Tg giving us a linear function

T : CQq(θ, θ)→ End(Pre(θ)),

where End(Pre(θ)) is the complex vector space of all linear densely defined opera-
tors S acting in the Hilbert space B(θ) with Dom S = Pre(θ) and leaving Pre(θ)
invariant, that is S(Pre(θ)) ⊂ Pre(θ). Because of this last condition End(Pre(θ))
is closed under composition and so is an algebra. We also call T the Toeplitz
quantization.

One verifies that T1 = IPre(θ), the identity, as an immediate consequence of the
fact that K is the reproducing kernel of Pre(θ). However, even though T is a map
from one algebra to another algebra, it is not an algebra morphism. The product
on the domain space is determined by q ∈ C \ {0}, while the operator Tg is defined
using the inner product which depends on the weights wk. Even when the weights
are functions of q (and so are not independent quantities) it is not expected that T
preserves products, given what happens with Toeplitz operators in other contexts.
Here is a result which shows what is happening in a ‘nice’ case.

Theorem 3. Suppose that we have symbols g1 and g2, but with g2 ∈ Pre(θ), that
is g2 ‘depends’ only on θ. Then Tg1Tg2 = Tg2g1 .

Proof. The point is since g2 ∈ Pre(θ) we have that Tg2 = PKMg2 = Mg2 , because
multiplication by g2 leaves Pre(θ) invariant. So we calculate

Tg1Tg2 = PKMg1PKMg2 = PKMg1Mg2 = PKMg2g1 = Tg2g1 ,

where the second to last equality is left to the reader to check. �
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Remark 3. In the standard theories of Toeplitz operators, the symbols are func-
tions and so commute. So essentially the same argument in such cases (with the
corresponding hypothesis!) gives Tg1Tg2 = Tg1g2 . The fact that the map T in this
context reverses the order of multiplication in this special case is not important as
such. The equation PKMg = Mg is not true for all symbols g and this is what is
behind the fact that T does not respect multiplication. In fact, Theorem 3 implies
that TθTθ = Tθθ. In the next calculation we actually will use something ever so
slightly stronger, namely TθTθ = Tθθ 6= 0, but this will become clear later on. So
for q 6= 1 we have

Tθθ = Tq−1θθ = q−1Tθθ = q−1TθTθ 6= TθTθ.

Later on we will also calculate TθTθ and see that this is yet another operator also
not equal, in general, to Tθθ.

Theorem 4. The linear map T : CQq(θ, θ)→ End(Pre(θ)) is a vector space mono-
morphism if and only if the inner product (2) is non-degenerate.

Proof. We are looking for a necessary and sufficient for ker T = 0. So we take
g ∈ ker T , which means that Tg = 0. In particular, this is equivalent to Tgfd = 0
for all d ≥ 0, where fd = θd, an orthogonal basis of Pre(θ) = Dom(Tg). We
calculate

Tgfd(θ) = 〈K(θ, η) , fd(η) g(η, η)〉w =
∑
c

1

wc
〈θc ⊗ ηc, ηdg(η, η)〉w

=
∑
c

1

wc
〈ηcηd, g(η, η)〉w θc.

So, Tgfd(θ) = 0 for all d ≥ 0 if and only if 〈ηcηd , g(η, η)〉w = 0 for all c, d ≥ 0 if

and only if g(η, η) is orthogonal to CQq(θ, θ). So ker T =
(
CQq(θ, θ)

)⊥
and the

result follows. �

Remark 4. One way to interpret this theorem is that it tells us when the symbol
of a Toeplitz operator is uniquely determined by the operator. In the finite di-
mensional theory presented in [9] the inner product is always non-degenerate and
the corresponding result proved there is that the Toeplitz quantization is always
a monomorphism. Moreover in the context of [9] the domain and codomain vec-
tor space of the Toeplitz quantization have the same finite dimension; therefore
that Toeplitz quantization is automatically a vector space (but not algebra) iso-
morphism. Here one expects the situation to be more complicated due to the fact
that the domain and codomain of T have infinite dimension. To be more precise
one expects that T is not surjective, that is, there exist operators which are not
Toeplitz. Moreover, in the current context Toeplitz operators are not necessarily
bounded as we shall see momentarily.

We calculate next the Toeplitz operators for the basis elements θiθj of the
symbol space PGl,q(θ, θ).
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Theorem 5. The action of the Toeplitz operator Tθiθj on the orthonormal basis

elements φa(θ) = w
−1/2
a θa ∈ Pre(θ) with a ≥ 0 is given by

(Tθiθjφa)(θ) =
wi+a

(wa wi+a−j)1/2
φi+a−j(θ). (21)

Proof. We evaluate as follows:

(Tθiθjφa)(θ) = 〈K(θ, η) , φa(η) ηiηj〉w

=
〈∑

k

φk(θ)⊗ φk(η) , w−1/2a ηaηiηj
〉
w

= w−1/2a

∑
k

w
−1/2
k 〈ηj+k , ηi+a 〉w φk(θ)

= w−1/2a

∑
k

w
−1/2
k δj+k,i+a wj+k φk(θ)

=
wi+a

(wa wi+a−j)1/2
φi+a−j(θ).

Recall that θn = 0 and wn = 1 for n < 0. So we also have put φn(θ) = 0 for n < 0
in the above calculation. �

This result determines Tg for all symbols g ∈ CQq(θ, θ) by linearity. Also, this
result exhibits Tθiθj as a weighted shift operator with the degree of the shift being
i− j. Next to see when this operator is bounded or compact we apply some basic
functional analysis to obtain immediately:

Corollary 1. First, Tθiθj is a bounded operator if and only if

||Tθiθj ||op = sup
{ wi+a

(wa wi+a−j)1/2

∣∣∣ a ≥ 0
}
<∞,

where || · ||op denotes the operator norm. Secondly, Tθiθj is a compact operator if
and only if

lim
a→∞

wi+a
(wa wi+a−j)1/2

= 0.

Knowing this, it is now easy to construct examples of Toeplitz operators which are
not bounded provided that we are free to choose the weights wk. Similarly, it is
now straightforward to construct Toeplitz operators which are bounded, but not
compact, given the same freedom. We also showed earlier that T1 = IPre(θ), which
is bounded but not compact.

We next obtain a consequence which relates the adjoint of a Toeplitz operator with
symbol g to the Toeplitz operator with the conjugate symbol g∗.

Theorem 6. Let g ∈ CQq(θ, θ) be arbitrary. Then

〈Tgf1, f2〉w = 〈f1, Tg∗f2〉w (22)

for all f1, f2 ∈ Pre(θ).
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Proof. It suffices to prove this for g = θiθj where i, j ≥ 0 and for f1 = φa and
f2 = φb where a, b ≥ 0. So we compute each side of (22) for these choices. For the
left side we get

〈Tθiθjφa, φb〉w =
wi+a

(wa wi+a−j)1/2
〈φi+a−j , φb〉w

=
wi+a

(wa wi+a−j)1/2
δi+a−j,b. (23)

Note that the Kronecker delta is enforcing the condition that i + a − j = b ≥ 0.
Next for the right side we have

〈φa, T(θiθj)∗φb〉w = 〈φa, Tθjθiφb〉w

=
wj+b

(wb wj+b−i)1/2
〈φa, φj+b−i〉w

=
wj+b

(wb wj+b−i)1/2
δa,j+b−i. (24)

This time the delta imposes the condition j + b − i = a ≥ 0. So in each case we
have the combined conditions a, b ≥ 0 and i + a = b + j. Using these conditions
one can see that the expressions in (23) and (24) are equal. �

Remark 5. This result holds even when the inner product is degenerate. However,
even when the inner product is non-degenerate all it says about the adjoint of Tg
is that Tg∗ ⊂ (Tg)

∗, that is, the adjoint of Tg is an extension of Tg∗ . Of course,
such details are typical of densely defined operators. We recall that the Toeplitz
operators are densely defined operators, all of which have the same dense domain,
namely Pre(θ). Also, this relation Tg∗ ⊂ (Tg)

∗ shows a compatibility between our
definition of the conjugation in CQq(θ, θ) and the adjoint of a Toeplitz operator.

Corollary 2. If g ∈ CQq(θ, θ) is a self-adjoint element (meaning g∗ = g), then the
Toeplitz operator Tg is a symmetric operator.

Proof. By Theorem 6 and g∗ = g we have

〈Tgf1, f2〉w = 〈f1, Tgf2〉w

for all f1, f2 ∈ Pre(θ) = Dom(Tg). And this is exactly what it means for a densely
defined operator to be symmetric. (See [7].) �

Remark 6. If g∗ = g, then it behooves us to study the self-adjoint extensions of
the symmetric operator Tg. This remains an open problem.

Corollary 3. Every Toeplitz operator Tg is closable. Moreover, its closure satisfies
T g = (Tg)

∗∗ ⊂ (Tg∗)
∗.

Proof. This follows rather directly from Theorem VIII.1b in [7]. We get from that
reference that Tg is closable if and only if Dom(Tg)

∗ is a dense subspace. But
this is so since Dom(Tg)

∗ ⊃ Dom Tg∗ = Pre(θ) and Pre(θ) is dense. The equality
T g = (Tg)

∗∗ follows from the cited theorem. The inclusion (Tg)
∗∗ ⊂ (Tg∗)

∗ follows
from Theorem 6. �
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We now analyze various particular cases of (21). First for i = j = 0 we have

(T1φa)(θ) =
wa

(wa wa)1/2
φa(θ) = φa(θ)

for all a ≥ 0, so that T1 = IPre(θ), the identity map, as already noted above.
For the case i = j of (21) we obtain for all a ≥ 0 that

(Tθiθiφa)(θ) =
wi+a

(wa wi+a−i)1/2
φi+a−i(θ) =

wi+a
(wa wa)1/2

φa(θ) =
wi+a
wa

φa(θ).

Hence the basis φa(θ) diagonalizes simultaneously the family of symmetric opera-
tors Tθiθi for i ≥ 0. By Corollary 2 we see that Tθiθi is symmetric.

Next we consider (21) for the case j = 0 and get

(Tθiφa)(θ) =
wi+a

(wa wi+a)1/2
φi+a(θ) =

w
1/2
i+a

w
1/2
a

φi+a(θ)

or, equivalently, Tθi : θa 7→ θi+a which itself can be written as Tθi = Mθi . Of
course, this also follows from the definition Tθi = PKMθi = Mθi , since Mθi leaves
Pre(θ) invariant and PK acts as the identity on Pre(θ). A subcase here is Tθ = Mθ,
which merits the name creation operator since it increases by 1 the degree of the
elements in Pre(θ), which are exactly the polynomials in θ. Moreover, Tθi = (Tθ)

i

also is immediate. (Recall that Tθ leaves Pre(θ) invariant, and so (Tθ)
i is defined.)

So, if Tθ is bounded (resp., compact), then Tθi is bounded (resp., compact) for
all i ≥ 1. In the Hilbert space introduced by Bargmann in [2], one has wa = a!
and θ = z, so that Tθi = Tzi is not bounded for i ≥ 1 in that space. One might
expect that with wa being some reasonable deformation of the factorial function the
corresponding operators Tθi would also not be bounded. However, the boundedness
of these operators depends completely on the choice of weights wa, nothing else.
So for some choices (such as, for example, wa constant) these operators will be
bounded.

Yet another interesting special case of (21) is when i = 0. Then we have

(Tθjφa)(θ) =
wa

(wa wa−j)1/2
φa−j(θ) =

(
wa
wa−j

)1/2

φa−j(θ)

or, in terms of the unnormalized monomials,

Tθj : θa 7→ wa
wa−j

θa−j

for all a ≥ 0. In particular, for j = 1 we can see that

Tθ : θa 7→ wa
wa−1

θa−1

deserves to be called an annihilation operator, since it lowers the degree of any non-
constant polynomial by 1 and sends constants to zero. A simple argument shows
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that Tθj = (Tθ)
j . And similar to the above situation, we see that if Tθ is bounded

(resp., compact), then Tθj is bounded (resp., compact) for all j ≥ 1. Again, the
space in [2] is an important example for which the operators Tθj are not bounded.
And again, the boundedness of these operators depends solely on the weights.

Using Theorem 3 in the first equality and two properties established above in
the second equality, we see that

Tθiθj = TθjTθi = (Tθ)
j(Tθ)

i.

The last expression here is in anti-Wick order, which by definition means a product
of creation and annihilation operators such that all of the creation operators are to
the right of all of the annihilation operators. By linearity every Toeplitz operator Tg
will then be a sum of terms, each of which is in anti-Wick order. Because of this
property one says that the Toeplitz quantization is an anti-Wick quantization.

There is another way of viewing the annihilation operator Tθ. We note that in
the case when wa = a! as in [2], we have that

Tθ : θa 7→ wa
wa−1

θa−1 =
a!

(a− 1)!
θa−1 = a θa−1,

which is the derivative operator from elementary calculus. So we can think of Tθ
in this more general context as a deformation of the classical derivative. We call
it the w-deformed derivative and denote it by ∂w. If we define the w-deformed
integers to be [n]w := wn/wn−1 for every integer n ≥ 1 and [0]w := 0, then we have

∂w = Tθ : θa 7→ [a]w θ
a−1.

The upshot of this paragraph is merely a change to another notation that is more
compatible with notations used elsewhere in the literature, nothing else really.

Notice again that TθjTθi = Tθiθj follows from Theorem 3. We now calculate
TθiTθj using the individual formulas derived above for Tθi and Tθj . So,

φa
Tθj−→

(
wa
wa−j

)1/2

φa−j
Tθi−→

(
wa
wa−j

)1/2(
wi+a−j
wa−j

)1/2

φa−j+i

which gives

TθiTθjφa =
(wawi+a−j)

1/2

wa−j
φa−j+i.

This is different from the formula (21) derived above for Tθiθj . In particular, for
the case i = j = 1 which we left unfinished earlier we have

TθTθφa =
wa
wa−1

φa = [a]wφa.

For the sake of completeness we note that the operator Nθ := TθTθ is called the
w-deformed number operator. On the other hand from equation (21) we have that

TθTθφa = Tθθφa =
wa+1

wa
φa = [a+ 1]wφa.
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5 Canonical Commutation Relations
This final section is a continuation of the two calculations just made at the end of
the last section. First, we define the q-commutator of any two elements a and b in
any (associative, say) algebra over C by

[a, b]q := ab− qba,

where q ∈ C \ {0}. This is the commutator which is appropriate for the study of
q-deformations.

The Toeplitz quantization starts with the ‘classical’ space CQq(θ, θ) of sym-
bols and from them produces operators acting in the ‘quantum’ Segal-Bargmann
space B(θ). The point here is that before the Toeplitz quantization we have the
homogeneous q-commutation relation in CQq(θ, θ), namely

[θ, θ]q = θθ − qθθ = 0. (25)

Speaking roughly without going into the rigorous details, in quantum theory we
have creation operators and annihilations operators which come in pairs, say A for
an annihilation operator and A∗ for its corresponding creation operator. Then a
typical commutation relation is something more or less like

[A,A∗] = I, the identity.

This is called a canonical commutation relation. So in general in a quantum theory
we expect inhomogeneous canonical commutation relations.

Now the Toeplitz quantization of the q-commutator [θ, θ]q is

[Tθ, Tθ]q = TθTθ − qTθTθ.

But recall that Tθ is the creation operator and that Tθ is the annihilation operator;
so this q-commutator has the form [A∗, A]q. And this is not the form of a canonical
commutation relation. However, since it is homogeneous and q 6= 0 we can trivially
rewrite (25) as

[θ, θ]q−1 = θθ − q−1θθ = 0. (26)

In fact we have an identification CQq(θ, θ) ∼= CQq−1(θ, θ). What this means is that
at the classical level we can not distinguish the q-deformed theory associated to the
holomorphic (resp., anti-holomorphic) variable θ (resp., θ) from the q−1-deformed
theory associated to the holomorphic (resp., anti-holomorphic) variable θ (resp., θ).
(The previous sentence does not contain a typographical error. It makes perfect
sense to consider θ as a holomorphic variable whose associated anti-holomorphic
variable is θ.) Another way of saying this is that as far as our theory is concerned
only with the classical level we have no way to distinguish between q-deformations
and q−1-deformations nor between holomorphic and anti-holomorphic variables.

However, the quantizations of θ and θ are distinguishable. In this sense Toeplitz
quantization breaks a symmetry. And the choice of quantization determines exactly
how the symmetry is broken. For example, if we define a Toeplitz quantization as
in this paper, but using instead the anti-Segal-Bargmann space B(θ) as the Hilbert
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space in which the quantized operators act, then θ quantizes to the annihilation
operator while θ quantizes to the creation operator, just the reverse of what we have
obtained with the present Toeplitz quantization in the Segal-Bargmann space B(θ).
These comments indicate that naming a particular order in CQq(θ, θ) the anti-Wick
ordering (that is, all creation operators to the right of all annihilation operators)
is not justifiable in terms of mathematical structures of CQq(θ, θ) alone. We have
simply decided to follow the nomenclature used in [3] as indicated earlier.

Now the Toeplitz quantization of the q−1-commutator [θ, θ]q−1 is

[Tθ, Tθ]q−1 = TθTθ − q
−1TθTθ.

And this has the virtue of being of the form [A,A∗]. So we require this canonical
commutation relation to hold:

[Tθ, Tθ]q−1 = TθTθ − q
−1TθTθ = IPre(θ), the identity on Pre(θ). (27)

This gives us the recursion relation

[a+ 1]w − q−1[a]w = 1

for all a ≥ 0. But we already have [0]w = 0. So the sequence [a]w is uniquely
determined by q (or by q−1 if one wishes to consider this as the primary parameter).
It is rather straightforward to find an explicit formula for [a]w. The next definition
is standard, though not universal. See [3] for a different, more symmetric definition.

Definition 3. Let r ∈ C. For each integer n ≥ 0 we define

[n]r := 1 + r + r2 + · · ·+ rn−1 if n ≥ 1

and [0]r := 0. This is called the r-deformation of n.

For example, [1]r = 1 and [2]r = 1+r. Taking r = 1 gives [n]r = n for every integer
n ≥ 0. This justifies saying that these are deformations of the integers and that
r in the deformation parameter. If r 6= 1, then we have the alternative expression
[n]r = 1−rn

1−r , which often appears in the literature.

Proposition 1. The unique solution of the recursion relation

[a+ 1]w − q−1[a]w = 1

for all integers a ≥ 0 with [0]w = 0 is [a]w = [a]q−1 .

Proof. The recursion relation for [n]r is [n+1]r−r[n]r = 1, as the reader can easily
check. Taking r = q−1 shows that the sequences [a]w and [a]q−1 satisfy the same
recursion relation. But they both start out with [0]w = 0 = [0]q−1 , which ends the
proof. �

Now it is a matter of going from the deformed integers [a]w = [a]q−1 to the
weights wk. Now for every integer a ≥ 1 we have

[a]q−1 = [a]w =
wa
wa−1

(28)
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by definition of [a]w. It turns out that [0]w = 0 carries no information about the
weights. Then (28) gives a sequence of identities

w1 = [1]q−1w0, w2 = [2]q−1w1, w3 = [3]q−1w2,

and so on. The solution for k ≥ 1 is clearly

wk = [k]!q−1w0,

where the q−1-deformed factorial is defined by

[k]!q−1 := [k]q−1 [k − 1]q−1 · · · [2]q−1 [1]q−1

and where w0 > 0 is arbitrary. In this way we have defined a unique sequence (up
to a multiplicative positive constant) of weights wk = wk(q), which are functions
of the one parameter q such that

[Tθ, Tθ]q−1 = TθTθ − q
−1TθTθ = IPre(θ).

In particular, [Tθ, Tθ]q−1 is bounded. By putting the deformation parameter q equal

to 1 and normalizing 1 ∈ CQq(θ, θ) by putting w0 = 1, we recover the weights
wk = k! of the Hilbert space H defined in (4). Recall that the Segal-Bargmann
space based on the phase space C in [2] is the closed subspace of H consisting of
the holomorphic functions in H.

If we wish to have some other operator instead of the identity on the ‘right
side’ of the canonical commutation relation, the same method applies to give the
corresponding weights.

6 Concluding Remarks
Since the Toeplitz operators introduced here are only densely defined, one has the
standard problems in the analysis of such operators. For example, we know they
are closable, but can we identify exactly what the closure is? And if a Toeplitz
operator is symmetric, then we would like to know what its self-adjoint extensions
are. In particular, we would like to know exactly what are the conditions for a
Toeplitz operator to be essentially self-adjoint.

We have given necessary and sufficient conditions for the Toeplitz Tθiθj to be
bounded or compact. But the full story remains to be told for Tg where g is
an arbitrary symbol, though our results allow us to form sufficient conditions for
boundedness and compactness by expanding Tg as a linear combination of Tθiθj ’s.
We expect such conditions to be far from necessary.

Another possibility for further research is to define coherent states in this con-
text, much as was done in [3] in a similar finite dimensional case. This would allow
the introduction of a coherent state transform and a coherent state quantization.
(Also see [4].) This would relate the material in this paper with yet another aspect
of mathematical physics. Also it might be of interest to study in more detail the
classical space CQq(θ, θ) from a physics point of view as a sort of non-commutative
phase space.
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Given the positive result in the finite dimensional case presented in [9] it seems
reasonable to conjecture that CQq(θ, θ) also has its own reproducing kernel, at
least in the case when its inner product is non-degenerate. We also leave this as a
problem for another day.
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