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Abstract. An impulsive differential equation with time varying delay is proposed in this
paper. By using some analysis techniques with combination of coincidence degree theory,
sufficient conditions for the permanence, the existence and global attractivity of positive
periodic solution are established. The results of this paper improve and generalize some
previously known results.
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1. Introduction

In natural world, for studying the control of a single population of cells, Nazarenko

[9] proposed the following model:

(1) x′(t) + px(t) −
qx(t)

r + xn(t − τ)
= 0.

The author established conditions for oscillation of all positive solutions about the

unique positive fixed point and proved that every nonoscillatory solution tend to the

fixed point.

Considering the effects of the periodically varying environment [11], [5], and the

abrupt change of state (i.e., the effects of impulse, see [7], [1]), Saker and Alzabut
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(11161015, 11161011, 11361012) and Natural Science Foundation of Guangxi

(2013GXNSFAA019003, 2013GXNSFAA019349).

85



[10] proposed the following impulsive delay population model:

(2)





x′(t) + p(t)x(t) −
q(t)x(t)

r + xn(t − mω)
= λ(t), t 6= tk,

x(t+k ) =
1

1 + bk

x(tk).

By using Brouwer’s fixed point theorem and the comparison method, they studied

the qualitative behavior of the model including the existence of periodic solutions,

global attractivity and oscillation.

Delays often affect the dynamics of ecological systems, see [6]. The authors of

[9], [10] investigated the effect of time delay on the dynamical behavior, but they

all assumed that the delay is constant. However, in real world, delay is not always

constant. It is often time-varying [2], [12]. Then how a time-varying delay affects

the dynamical behavior of the system?

Motivated by the above discussion, in this paper we study the impulsive differential

equation with periodic parameters and time-varying delay

(3)






x′(t) + p(t)x(t) −
q(t)x(t)

r + xn(t − σ(t))
= 0, t 6= tk,

x(t+k ) =
1

1 + bk

x(tk).

Eq. (3) is accompanied with the initial condition

y(t) = ϕ(t), −r 6 t 6 0, ϕ ∈ L([−r, 0], [0,∞)), ϕ(0) > 0,

where x(t+k ) = lim
t→t

+

k

x(t), L([−r, 0], [0,∞)) denotes the set of Lebesgue measurable

functions on [−r, 0] and −r = inf
t>0

{t − σ(t)}.

By employing Mawhin’s continuation theorem and a comparison theorem, we aim

at studying the permanence, existence and global attractivity of positive periodic

solutions of system (3). It is of biological significance.

Obviously, by the transformation x(t) = 1/(y(t)), model (3) leads to the impulsive

delay differential equation

(4)





y′(t) = y(t)
(
p(t) −

Q(t)yn(t − σ(t))

R + yn(t − σ(t))

)
, t 6= tk,

y(t+k ) = (1 + bk)y(tk),

where Q(t) = q(t)/r, R = 1/r.

Hence, in order to study the dynamics of (3), it suffices to study the qualitative

behavior of system (4).
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For system (4), we assume that:

(H1) 0 < t1 < t2 < . . . are fixed impulsive points such that lim
k→∞

tk = ∞;

(H2) p(t), Q(t) ∈ ([0,∞), (0,∞)) are locally summable functions, σ ∈ ([0,∞), (0,∞))

is a Lebesgue measurable function;

(H3) R > 0 is a constant, {bk} is a real sequence such that bk > −1, k = 1, 2, . . .;

(H4) p(t), Q(t), σ(t),
∏

0<tk<t

(1 + bk) are positive periodic functions with period ω,

and if the number of factors is zero, then the product is equal to unit.

In this paper, for convenience, we use the following notation:

fL = min
06t6ω

f(t), fM = max
06t6ω

f(t), f =
1

ω

∫ ω

0

f(t) dt,

where f is a positive ω-periodic function.

This paper is organized as follows. In Section 2, preliminaries are introduced. In

Section 3, the permanence and existence of a periodic solution of system (4) are

studied. In Section 4, the uniqueness and global attractivity of a positive periodic

solution of (4) are investigated. Finally, in Section 5, a brief discussion and an

example are given to conclude this paper.

2. Preliminaries

In this section, we introduce some definitions and lemmas.

Definition 1. A function y(t) ∈ ([−r,∞), (0,∞)) is said to be a solution of (4)

on [−r,∞), if

(i) y(t) is absolutely continuous on each interval [0, t1] and (tk, tk+1], k = 1, 2, . . .,

(ii) for any tk, y(t+k ) and y(t−k ) exist and y(t−k ) = y(tk), k = 1, 2, . . .,

(iii) y(t) satisfies (4).

Definition 2. Suppose that y1(t) and y2(t) are two positive solutions of (4) on

[−r,∞). The solution y2(t) is said to be asymptotically attractive to y1(t) provided

that

lim
t→∞

(y1(t) − y2(t)) = 0.

Further, y2(t) is called globally attractive if y2(t) is asymptotically attractive to all

positive solutions of (4).

Definition 3. A solution y1(t) of (4) is said to oscillate about y2(t) if y1(t)−y2(t)

has arbitrarily large zeros. Otherwise, y1(t) is called nonoscillatory.
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Consider the nonimpulsive delay differential equation

(5) z′(t) =
(
p(t) −

Q(t)zn(t − σ(t))

R(t) + zn(t − σ(t))

)
z(t)

with the initial condition

(6) z(t) = ϕ(t), −r 6 t 6 0, ϕ ∈ L([−r, 0), (0,∞)), ϕ(0) > 0,

where R(t) = R/
∏

0<tk<t−σ(t)

(1 + bk)n. By a solution of (5) and (6), we mean an ab-

solutely continuous function z(t) defined on [−r,∞) satisfying (5) almost everywhere

for t > 0 and z(t) = ϕ(t) on [−r, 0].

The following lemma will be used in the proof of our results; its proof is similar

to that of Theorem 1 in [13] and hence is omitted.

Lemma 1. Assume that (H1)–(H4) hold. Then

(1) if y(t) is a solution of (4) on [−r,∞), then z(t) =
∏

0<tk<t

(1+ bk)y(t) is a solution

of (5) on [−r,∞);

(2) if z(t) is a solution of (5) on [−r,∞), then y(t) =
∏

0<tk<t

(1 + bk)−1z(t) is a

solution of (4) on [−r,∞).

It is clear that the transformation z(t) =
∏

0<tk<t

(1 + bk)y(t) preserves the asymp-

totic properties of Eq. (4). Thus, in the proof of the asymptotic properties of (4), it

suffices to consider the asymptotic properties of (5).

Lemma 2. Assume that (H1)–(H4) hold. Then the solutions of (4) are defined

on [−r,∞) and are positive on [0,∞).

P r o o f. Clearly, by Lemma 1, we only need to prove that the solutions of (5)

and (6) are defined on [−r,∞) and are positive on [0,∞). From (5) and (6), it is

easy to obtain

z(t) = ϕ(0) exp

( ∫ t

0

(
p(s) −

Q(s)zn(s − σ(s))

R(s) + zn(s − σ(s))

)
ds

)
.

The assertion of the lemma follows immediately for all t ∈ [0,∞). The proof is

complete. �

The following lemma will be used repeatedly in the proof of our results. Its proof

is straightforward and is omitted.

88



Lemma 3. Assume that p, q, r are positive constants and let

f(x) = p −
qxn

r + xn
, x > 0.

Then

(i) there exists a unique positive constant x0 such that f(x0) = 0 and

f(x) > 0 for 0 6 x < x0; f(x) < 0 for x0 < x < ∞.

(ii) f(x) attains its maximum at x = 0. Further, f(x) is decreasing for x > 0.

Lemma 4 ([3]). Let X and Z be two Banach spaces, L : DomL ⊂ X → Z a

Fredholm operator with index zero. Let Ω ⊂ X be an open bounded set, and let

N : Ω → Z be L-compact on Ω. Assume that:

(a) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ Dom L, Lx 6= λNx;

(b) for each x ∈ ∂Ω ∩ KerL, QNx 6= 0;

(c) deg{JQN, Ω ∩ KerL, 0} 6= 0.

Then the equation Lx = Nx has at least one solution in Ω ∩ Dom L.

Lemma 5 ([4]). Let a, σ satisfy

(i) a, σ ∈ ([0,∞), [0,∞)), a is a locally summable function, σ is a bounded Lebesgue

measurable function, σ∗ = sup
t>0

σ(t);

(ii)

lim sup
t→∞

∫ t+σ∗

t

a(s) ds <
3

2
and lim inf

t→∞

∫ t+σ∗

t

a(s) ds > 0.

Then all nontrivial solutions of y′(t) + a(t)y(t − σ(t)) = 0 satisfy lim
t→∞

y(t) = 0.

3. Permanence and existence of periodic solution

In this section, the permanence and existence of periodic solution of (4) are inves-

tigated.

First, we study the permanence of model (4). By Lemma 1, we only need to

establish the permanence of (5). For p(t) and Q(t), we define two functions as

follows:

(7) f1(z) = pL −
QMzn

RL + zn
, f2(z) = pM −

QLzn

RM + zn
.
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Due to Lemma 3, there exist z1 and z2 such that

f1(z1) = 0, f2(z2) = 0 with 0 < z1 6 z2,

where z1, z2 are the unique zero points respectively for f1(z) and f2(z). In the rest

of this paper, we always assume that the roots of f1(z) = 0 and f2(z) = 0 are z1 and

z2, respectively.

Theorem 1. Assume that (H1)–(H4) hold. Then system (4) is permanent, that

is, if y(t) is a solution of (4), then there exists T > r > 0 such that

(8)
∏

0<tk<t

(1 + bk)z1e
−µ1 6 y(t) 6

∏

0<tk<t

(1 + bk)z2e
µ2 , t > T,

where

µ2 = sup
t→∞

∫ t

t−σ(t)

p(s) ds, µ1 = sup
t→∞

∫ t

t−σ(t)

( Q(s)zn
2 enµ2

R(s) + zn
2 enµ2

− p(s)
)

ds.

P r o o f. First, we study the permanence of (5). Then by using Lemma 1 we

prove that (8) holds for t > T , which leads to the permanence of system (4). By

Lemma 2, the solutions of (5) are positive on [0,∞). There are four cases.

Case 1: the solution z(t) of (5) oscillates about z2 and satisfies sup
t>0

z(t) > z2.

Then there exist two sequences of {tn} and {ξn} such that

r < t1 < t2 < . . . < tn < tn+1 < . . . , lim
n→∞

tn = ∞ and z(tn) = z2,

z(ξn) is the maximum of z(t) on (tn, tn+1) with z(ξn) > z2, n = 1, 2, . . . Thus, for

any ε > 0 small enough, there exist δ > 0 and ξ∗n such that ξ∗n ∈ (ξn − δ, ξn] with

z′(ξ∗n) > 0, z(ξ∗n) > z2 and

(9) z(ξn) − z(ξ∗n) < ε, n = 1, 2, . . .

From (5) we have

0 6 z′(ξ∗n) 6 z(ξ∗n)
(
pM −

QLzn(ξ∗n − σ(ξ∗n))

RM + zn(ξ∗n − σ(ξ∗n))

)
.

Hence,

pM −
QLzn(ξ∗n − σ(ξ∗n))

RM + zn(ξ∗n − σ(ξ∗n))
> 0.
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By Lemma 3 we get z(ξ∗n−σ(ξ∗n)) < z2. Let ξ
0
n be a zero of z(t)−z2 in (ξ∗n−σ(ξ∗n))∩

[tn, ξ∗n), i.e., z(ξ0
n) = z2.

According to Lemma 3 and (5), for any t > r we have

(10) z′(t) = z(t)
(
p(t) −

Q(t)zn(t − σ(t))

R(t) + zn(t − σ(t))

)
6 z(t)p(t).

Integrating (10) from ξ0
n to ξ∗n leads to

(11) 0 < ln
z(ξ∗n)

z(ξ0
n)

6

∫ ξ∗

n

ξ0
n

p(s) ds 6

∫ ξ∗

n

ξ∗

n
−σ(ξ∗

n
)

p(s) ds 6 µ2, n = 1, 2, . . .

It follows from (9) and (11) that z(ξn) 6 z(ξ0
n)eµ2 , that is

(12) z(t) 6 z2e
µ2 .

Case 2: the solution z(t) of (5) is nonoscillatory about z2.

Then we claim that for any ε > 0 there exists T1 > r such that

(13) z(t) < z2 + ε for all t > T.

Otherwise, since z(t) > z2, by (6) and Lemma 3 we have

z′(t) 6 z(t)
(
pM −

QLzn(t − σ(t))

RM + zn(t − σ(t))

)
6 z(t)

(
pM −

QL(z2 + ε)n

RM + (z2 + ε)n

)
< 0,

which contradicts z(t) > 0 for all t > 0. This implies that (13) holds. Then there

exists T2 > T1 such that for all t > T2, z(t) 6 z2e
µ2 .

Case 3: the solution z(t) of (5) oscillates about z1 and inf
t>0

z(t) < z1.

Then there exist two sequences {sn} and {ηn} such that

0 < s1 < s2 < . . . < sn < sn+1 < . . . , lim
n→∞

sn = ∞, z(sn) = z1,

and z(ηn) is the minimum of z(t) on (sn, sn+1) with z(ηn) < z1, n = 1, 2, . . . Similarly,

for any ε > 0 small enough, there exist δ > 0 and η∗

n ∈ (ηn − δ, ηn] with z′(η∗

n) 6 0,

z(η∗

n) < z1 and

(14) z(η∗

n) − z(ηn) < ε, n = 1, 2, . . .

From (5) we have

0 > z′(η∗

n) > z(η∗

n)
(
pL −

QMzn(η∗

n − σ(η∗

n))

RL + zn(η∗
n − σ(η∗

n))

)
.
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In view of Lemma 3, then z(η∗

n − σ(η∗

n)) > z1 and there exists η0
n ∈ (η∗

n − σ(η∗

n), η∗

n)

such that z(η0
n) = z1, n = 1, 2, . . . Integrating (5) from η0

n to η∗

n for any η0
n > T2, we

can derive that

0 > ln
z(η∗

n)

z(η0
n)

>

∫ η∗

n

η0
n

(
p(s) −

Q(s)zn
2 enµ2

R(s) + zn
2 enµ2

)
ds.

Therefore,

z(η∗

n) > z1 exp

∫ η∗

n

η0
n

(
p(s) −

Q(s)zn
2 enµ2

R(s) + zn
2 enµ2

)
ds

> z1 exp

∫ η∗

n

η∗

n
−σ(η∗

n
)

(
p(s) −

Q(s)zn
2 enµ2

R(s) + zn
2 enµ2

)
ds

> z1e
−µ1 .

Thus for any t > T2, z(t) > z(ηn) > z(η∗

n) − ε holds, that is

(15) z(t) > z1e
−µ1 .

Case 4: the solution z(t) of (5) is nonoscillatory about z1 and z(t) < z1.

We prove that for any ε > 0 there exists T3 > T2 such that z(t) > z1 − ε.

If not, since z(t) < z1, in view of Lemma 3, for any t > T̃ there exists T̃ > T3 such

that

z′(t) > z(t)
(
pL −

QMzn(t − σ(t))

RL + zn(t − σ(t))

)
> z(t)

(
pL −

QM (z1 − ε)n

RL + (z1 − ε)n

)
> 0,

which leads to contradiction with z(t) 6 z2e
µ2 . By using Lemma 3 again, we have

p(t) −
Q(t)zn

2 enµ2

R(t) + zn
2 enµ2

< 0.

Hence,

µ1 = sup
t→∞

∫ t

t−σ(t)

( Q(s)zn
2 enµ2

R(s) + zn
2 enµ2

− p(s)
)

ds > 0.

This implies that there exists T3 > T2 such that z(t) > z1e
−µ1 holds for all T > T3.

According to (12) and (15), we conclude that

(16) z1e
−µ1 6 z(t) 6 z2e

µ2 for all sufficiently large t.

By Lemma 1, then (8) holds. The proof of Theorem 1 is complete. �

92



Theorem 2. Suppose that (H1)–(H4) hold. Then system (4) has at least one

ω-periodic solution y(t).

P r o o f. By Lemma 1, we only need to prove that (5) has at least one ω-periodic

solution z(t). Using the transformation z(t) = ex(t), (5) leads to

(17) x′(t) = p(t) −
Q(t)enx(t−σ(t))

R(t) + enx(t−σ(t))
, t > 0.

TakeX = Z = {x ∈ C([0,∞), R) : x(t+ω) = x(t)} with the norm ‖x‖ = max
t∈[0,ω]

|x(t)|.

Then both X and Z are Banach spaces. Define

L : DomL ∩ X → Z, Lx = x′, N : X → Z, Nx = p(t) −
Q(t)enx(t−σ(t))

R(t) + enx(t−σ(t))
,

where Dom L = {x ∈ C′[0, ω] : x(t + ω) = x(t)}. Define operators P , Q as follows:

Px =
1

ω

∫ ω

0

x(t) dt, Qz =
1

ω

∫ ω

0

z(t) dt.

Then KerL = {x ∈ X : x = h ∈ R}, Im L =
{
z ∈ Z :

∫ ω

0
z(t) dt = 0

}
, and

dimKerL = codim Im L = 1. It is easy to obtain that the operators P, Q are

continuous and satisfy Im P = KerL, Im L = KerQ = Im(I − Q). Hence, Im L is

closed in Z and L is a Fredholm mapping of index zero.

Denote Lp = L|Dom L∩KerP . Then the generalized inverse Kp = L−1
P is given by

KP (z) =

∫ t

0

z(s) ds −
1

ω

∫ ω

0

∫ t

0

z(s) ds dt.

Therefore,

QNx =
1

ω

∫ ω

0

(
p(t) −

Q(t)enx(t−σ(t))

R(t) + enx(t−σ(t))

)
dt,

KP (I − Q)Nx =

∫ t

0

(
p(s) −

Q(s)enx(s−σ(s))

R(s) + enx(s−σ(s))

)
ds

−
1

ω

∫ ω

0

∫ t

0

(
p(s) −

Q(s)enx(s−σ(s))

R(s) + enx(s−σ(s))

)
ds dt

−
( t

ω
−

1

2

) ∫ t

0

(
p(s) −

Q(s)enx(s−σ(s))

R(s) + enx(s−σ(s))

)
ds.

Clearly both QN and KP (I −Q)N are continuous. By employing the Arzela-Ascoli

theorem, it is easy to show that for any open set Ω ⊂ X, KP (I −Q)N(Ω) is compact

and QN(Ω) is bounded. Thus N is L-compact on Ω for any open set Ω ⊂ X .
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Now we are in the position to seek a domain Ω satisfying the requirements given

by Lemma 4. Corresponding to the operator equation Lx = λNx, λ ∈ (0, 1), we

have

(18) x′(t) = λ
(
p(t) −

Q(t)enx(t−σ(t))

R(t) + enx(t−σ(t))

)
.

Suppose that x(t) ∈ X is a solution of system (18) for a certain λ ∈ (0, 1). Integrat-

ing (18) over the interval [0, ω], we have

∫ ω

0

(
p(t) −

Q(t)enx(t−σ(t))

R(t) + enx(t−σ(t))

)
dt = 0.

That is,

(19)

∫ ω

0

p(t) dt =

∫ ω

0

Q(t)enx(t−σ(t))

R(t) + enx(t−σ(t))
dt.

From (18) and (19) we have

(20)

∫ ω

0

|x′(t)| dt = λ

∫ ω

0

∣∣∣p(t) −
Q(t)enx(t−σ(t))

R(t) + e(nx(t−σ(t)))

∣∣∣ dt

6

∫ ω

0

p(t) dt +

∫ ω

0

Q(t)enx(t−σ(t))

R(t) + enx(t−σ(t))
dt = 2ωp̄ := M1.

Since x ∈ X , there exist t0 ∈ [0, ω] and a constant M2 such that x(t0) < M2. Then

(21) x(t) 6 x(t0) +

∫ ω

0

|x′(t)| dt < M1 + M2.

By a similar argument, there exist t1 ∈ [0, ω] and M3 > 0 such that x(t1) > −M3

and

(22) x(t) > x(t1) −

∫ ω

0

|x′(t)| dt > −(M1 + M3).

It is clear thatMi is independent of the choice of λ for i = 1, 2, 3. TakeH =
4∑

i=1

Mi,

where M4 is chosen sufficiently large so that the solution u of

p(t) −
Q(t)enu

R(t) + enu
= 0

satisfies |lnu| < M4; then ‖x‖ < H .

94



Let Ω = {x ∈ X : ‖x‖ < H}. Obviously condition (a) of Lemma 4 is satisfied. If

x ∈ ∂Ω ∩ KerL, ‖x‖ = H , where H is a constant, then

QNx =
1

ω

∫ ω

0

(
P (t) −

Q(t)enx(t−σ(t))

R(t) + enx(t−σ(t))

)
dt 6= 0.

Therefore, (b) of Lemma 4 holds. Further, by easy calculation,

deg{JQNx, Ω ∩ KerL, 0} 6= 0,

where the isomorphism J is the identity mapping due to Im P = KerL. Hence (c)

of Lemma 4 is also satisfied. By Lemma 4, we conclude that Lx = Nx has at least

one solution in X , i.e., system (17) has at least one ω-periodic solution. That means

(5) has at least one ω-periodic solution. By Lemma 1, therefore, system (4) has at

least one ω-periodic solution. The proof is complete. �

R em a r k 1. From the proof of Theorem 1, one can see that the deviating argu-

ment σ(t) has no effect on the existence of a positive periodic solution of (4). Further,

for the case σ(t) = mω, the restricted condition QM > pm, Qm > pM (Theorem 6 of

[10]) ensuring the existence of a positive periodic solution is not needed here. Hence,

we have improved and generalized Theorem 6 of [10].

4. Uniqueness and global attractivity

In this section, we obtain an explicit sufficient condition for the uniqueness and

global attractivity of a periodic solution with respect to all other positive solutions

of (4).

Theorem 3. Suppose that (H1)–(H4) hold. Further, let

(23) lim sup
t→∞

∫ t+σ∗

t

nQ(s)zn
2 enµ2

R(s)
ds <

3

2
,

where µ2 is defined in (8), σ∗ = sup
t>0

σ(t). Then there exists a unique ω-periodic

positive solution y(t) of (4) such that

(24) lim
t→∞

y(t) − y(t) = 0

for all other positive solutions y(t) of (4).
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P r o o f. Obviously, it is immediate that if y(t) satisfies (24), then the positive

periodic solution y(t) will be unique. Therefore, to complete the proof of Theorem 3,

it suffices to prove that lim
t→∞

y(t) − y(t) = 0. By Lemma 1, we only need to prove

that lim
t→∞

(z(t)− z(t)) = 0, where z(t) is the periodic positive solution and z(t) is an

arbitrary positive solution of (5).

From Theorem 2, under the conditions of Theorem 3, (5) has a positive periodic

solution z(t). Set z(t) = z(t)ex(t). Then (5) reduces to

(25) x′(t) =
Q(t)zn(t − σ(t))

R(t) + zn(t − σ(t))
−

Q(t)zn(t − σ(t))enx(t−σ(t))

R(t) + zn(t − σ(t))enx(t−σ(t))

for almost all t > 0. Let

G(t, u) = −
Q(t)zn(t − σ(t))enu

R(t) + zn(t − σ(t))enu
.

Then (25) can be rewritten as

x′(t) = G(t, x(t − σ(t)) − G(t, 0)).

By the mean-value theorem, we have

(26) x′(t) − F (t)x(t − σ(t)) = 0,

where

−F (t) =
−∂G(t, u)

∂u
|u=ζ(t) =

nR(t)Q(t)zn(t − σ(t))enζ(t)

(R(t) + zn(t − σ(t))enζ(t))2

=
nR(t)Q(t)ηn(t)

(R(t) + ηn(t))2
<

nQ(t)ηn(t)

R(t)
,

η(t) lies between z(t − σ(t)) and z(t − σ(t)). By (23), using Theorem 1 we have

lim sup
t→∞

∫ t+σ∗

t

−F (s) ds 6 lim sup
t→∞

∫ t+σ∗

t

nQ(s)zn
2 enµ2

R(s)
ds <

3

2
.

By Lemma 5 then lim
t→∞

x(t) = 0, i.e., lim
t→∞

z(t)− z(t) = 0. In view of Lemma 1, then

lim
t→∞

y(t) − y(t) = 0. The proof is complete. �

96



5. Discussion

In this paper, by using the comparison theorem, Mawhin’s continuation theorem

and some analysis techniques, we study the permanence, existence and global at-

tractivity of a positive periodic solution for an impulsive model with periodicity of

environment and time-varying delays. Theorem 1 and Theorem 2 show that the de-

lay and impulse have no effect on the permanence and existence of positive periodic

solutions, but Theorem 3 implies that they affect the attractivity of the periodic

solution. On the other hand, for the special case of σ(t) = mω, the restricted con-

dition QM > pm, Qm > pM (Theorem 6 of [10]) ensuring the existence of a positive

periodic solution is unnecessary. For example, consider the system

(27)





y′(t) = y(t)
(
2 + sin t −

(3 + sin t)y3(t − 2π)

2 + y3(t − 2π)

)
, t 6= tk,

y(t+k ) = (1 + bk)y(tk),

where tk represents fixed impulsive points with 0 < t1 < t2 < . . . and lim
k→∞

tk = ∞.

Suppose
∏

0<tk<t

(1+bk) is 2π-periodic, then by Theorem 2.1 of [8] there exists a q ∈ N

such that tk+q = tk + 2π, bk+q = bk,
∏

0<tk<2π

(1 + bk) = 1. Let q = 2, b1 = −0.5,

b2 = 1. It is easy to verify that (H1)–(H4) hold. Hence, by Theorem 2, system (27)

has at least one positive periodic solution. For p(t) = 2 + sin t, Q(t) = 3 + sin t,

R = 2, σ(t) = 2π, q = 2, b1 = −0.5, b2 = 1, by Matlab we can give the simulation

of (27), see Fig. 1. However, by computation, (27) does not satisfy the conditions

of Theorem 6 of [10]. It shows that the main results improve and generalize some

previously known results [10].

0 10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

t-axis

y
(t

)

Fig. 1. Dynamics of (27) with tk+2 = tk + 2p, p(t) = 2 + sin t, Q(t) = 3 + sin t, σ(t) = 2p,
R = 2, b1 = −0.5, b2 = 1.
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