
Czechoslovak Mathematical Journal

Romeo Meštrović
Congruences involving the Fermat quotient

Czechoslovak Mathematical Journal, Vol. 63 (2013), No. 4, 949–968

Persistent URL: http://dml.cz/dmlcz/143609

Terms of use:
© Institute of Mathematics AS CR, 2013

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143609
http://dml.cz


Czechoslovak Mathematical Journal, 63 (138) (2013), 949–968

CONGRUENCES INVOLVING THE FERMAT QUOTIENT

Romeo Meštrović, Kotor
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Abstract. Let p > 3 be a prime, and let qp(2) = (2
p−1

− 1)/p be the Fermat quotient of
p to base 2. In this note we prove that

p−1
∑

k=1

1

k · 2k
≡ qp(2)−

pqp(2)
2

2
+

p2qp(2)
3

3
−

7

48
p2Bp−3 (mod p3),

which is a generalization of a congruence due to Z.H. Sun. Our proof is based on certain
combinatorial identities and congruences for some alternating harmonic sums. Combining
the above congruence with two congruences by Z.H. Sun, we show that

qp(2)
3
≡ −3

p−1
∑

k=1

2k

k3
+
7

16

(p−1)/2
∑

k=1

1

k3
(mod p),

which is just a result established by K.Dilcher and L. Skula. As another application, we

obtain a congruence for the sum
p−1
∑

k=1
1/(k2 · 2k) modulo p2 that also generalizes a related

Sun’s congruence modulo p.

Keywords: Fermat quotient; nth harmonic number of order m; Bernoulli number

MSC 2010 : 11A07, 05A19, 05A10, 11B65

1. Introduction and main results

The Fermat Little Theorem states that if p is a prime and a is an integer not

divisible by p, then ap−1 ≡ 1 (mod p). This gives rise to the definition of the Fermat

quotient of p to base a,

qp(a) :=
ap−1 − 1

p
,
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which is an integer according to the Fermat Little Theorem. This quotient has

been extensively studied because of its links to numerous question in number theory.

It is well known that divisibility of the Fermat quotient qp(a) by p has numerous

applications which include the Fermat Last Theorem and squarefreeness testing (see

[1], [4], [6], [12], [16], [22], [27] and [30]). In particular, solvability of the congruence

qp(2) ≡ 0 (mod p) for a prime p with p ≡ 1 (mod 4) and the congruences qp(a) ≡ 0

(mod p) with a ∈ {2, 3, 5} were studied by S. Jakubec in [18] and [19], respectively.

A classical congruence, due to F.G.Eisenstein [11] in 1850, asserts that for a prime

p > 3,

qp(2) ≡
1

2

p−1
∑

k=1

(−1)k−1

k
(mod p),

which was extended in 1861 by J. J. Sylvester [41] and in 1901 by Glaisher [14,

pp. 21–22] as

qp(2) ≡ −
1

2

(p−1)/2
∑

k=1

1

k
(mod p).

The above congruence was generalized in 1905 by M.Lerch in the first paper of sub-

stance on Fermat quotients [23] (see also [1, pp. 32–35]). Lerch developed equivalent

results entailing fewer terms (that is, related to the sums of the form s(k, N) =:
[(j+1)p/N ]

∑

k=[jp/N ]+1

1/k), and his result was recently generalized by L. Skula [31] and by

J. B.Dobson [9]. Notice that the congruences s(0, 4) ≡ −3qp(2) (mod p), s(0, 3) ≡

−(3/2)qp(3) (mod p) and s(0, 6) ≡ −2qp(2) − 3
2qp(3) (mod p) were established by

Glaisher [14, p. 23], Lerch [23, p. 476, equation 14] and E. Lehmer [22, p. 356], re-

spectively. A complete list of Lerch’s sums s(k, N) (with k < N/2) which can be

evaluated solely in terms of Fermat quotients is given in [9, p. 23, Table 1].

For an odd prime p not dividing xyz, A.Wieferich [43] showed that xp+yp+zp = 0

implies qp(2) ≡ 0 (mod p). The only known such primes (the so called Wieferich

primes) 1093 and 3511 have long been known, and it was reported in [5] that there

exist no new Wieferich primes p < 4×1012. Quite recently, F. G.Dorais and D.Klyve

[10] extended this bound up to 6.7 × 1015.

The connection of Fermat quotients with the first case of the Fermat Last Theorem

retains its historical interest despite the complete proof of this theorem by A.Wiles

in 1995, and Skula’s demonstration in 1992 [30] that the failure of the first case

of the Fermat Last Theorem would imply the vanishing of many similar sums but

with much smaller ranges (sums of Lerch’s type which cannot be evaluated in terms

of Fermat quotients). Some criteria concerning the first case of the Fermat Last

Theorem on Lerch’s type sums were established in Ribenboim’s book [27], in 1995

by Dilcher and Skula [6] (cf. [9, Section 8]) and quite recently by J.B.Dobson [9].
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Further, the Fermat quotient was extended and investigated for composite moduli

in 1997 by T.Agoh, K.Dilcher and L. Skula [1] and in 1998 by L. Skula [29] (see

also [2, Section 5]). Moreover, using the p-adic limit, L. Skula [29] transferred the

notion of the Fermat quotient for composite moduli to those for p-adic integers and

established related results.

Some combinatorial congruences for harmonic type sums modulo p3 involving both

the Fermat quotients qp(a) (with a = 2 or/and a = 3) and the Bernoulli number

Bp−3 can be found in [34, Theorem 5.2 (c) and Remark 5.3] and [35, Theorem 3.1

(i)–(iii) and Corollaries 3.1 and 3.2]. Also, certain similar combinatorial congruences

modulo p3 (or p2) expressed in terms of Fermat quotients qp(a) (with a = 2 or/and

a = 3) and some Euler numbers En (and/or the Bernoulli number Bp−3) can be

found in [20] and [35, Theorems 3.2 (i)–(iii), 3.7 and Corollaries 3.3 and 3.9].

This paper is focussed on another type of sums arising from congruences modulo

prime powers involving the Fermat quotient qp(2). In 1900 J.W. L.Glaisher [13]

proved that for a prime p > 3 we have a curious congruence

(1.1) qp(2) ≡ −
1

2

p−1
∑

k=1

2k

k
(mod p).

Observe that comparing this congruence and Eisenstein’s congruence given above,

using the substitution trick k → p − k and the fact that by Fermat Little Theorem

2p ≡ 2 (mod p), we immediately obtain

(p−1)/2
∑

k=1

1

k
≡

p−1
∑

k=1

2k

k
≡ −2

p−1
∑

k=1

1

k · 2k
(mod p)

which was also established in 1997 by W.Kohnen [21].

Recently L. Skula [17] conjectured that

(1.2) qp(2)2 ≡ −

p−1
∑

k=1

2k

k2
(mod p).

Applying a certain polynomial congruence, Granville [17] proved the congruence

(1.2). In [25] we established a simple and elementary proof of the congruence (1.2).

In [17] Granville also remarked that, based on calculations, an obvious extension

of (1.1) and (1.2) probably does not exist. However, using methods similar to those

in [17], Dilcher and Skula ([7, Theorem 1, the congruence (5)]) established that

(1.3) qp(2)3 ≡ −3

p−1
∑

k=1

2k

k3
+

7

16

(p−1)/2
∑

k=1

1

k3
(mod p).
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As noticed in [7], the congruences (1.1)–(1.3) give rise to the obvious question

whether there exist similar formulas for higher powers of qp(2). The authors also

remarked that their method of Section 2 in [7] does not appear to extend to higher

powers. Recently, Agoh and Skula [3, Theorem 3.3] deduced an explicit formula for

qp(2) (mod p4) represented by a linear combination of Mirimanoff polynomial values

(including Bernoulli numbers).

Further, note that by the Fermat Little Theorem and (1.1), we have

(1.4)

p−1
∑

k=1

1

k · 2k
≡ 2p−1

p−1
∑

k=1

1

k · 2k
=

1

2

p−1
∑

k=1

2p−k

k

≡ −
1

2

p−1
∑

k=1

2p−k

p − k
= −

1

2

p−1
∑

k=1

2k

k
≡ qp(2) (mod p).

Notice also that the above congruence may be extended by the following well known

congruences (e.g., see [39, Proof of Corollary 1.2]):

qp(2) ≡
1

2

p−1
∑

k=1

(−1)k−1

k
≡ −

1

2

(p−1)/2
∑

j=1

1

j
(mod p).

Similarly, using (1.2), we obtain

(1.5)

p−1
∑

k=1

1

k2 · 2k
≡ −

1

2
qp(2)2 (mod p),

and using (1.3), we get

(1.6)

p−1
∑

k=1

1

k3 · 2k
≡

1

6
qp(2)3 +

7

48
Bp−3 (mod p).

In [35] Z.H. Sun presented the following extension of the previous congruences.

Theorem 1.1 ([35, Theorem 4.1]). Let p > 3 be a prime. Then

(i)

p−1
∑

k=1

2k

k
≡ −2qp(2) −

7p2

12
Bp−3 (mod p3),

(ii)

p−1
∑

k=1

2k

k2
≡ −qp(2)2 + p

(2

3
qp(2)3 +

7

6
Bp−3

)

(mod p2),

(iii)

p−1
∑

k=1

1

k · 2k
≡ qp(2) −

p

2
qp(2)2 (mod p2),
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(iv)

p−1
∑

k=1

1

k2 · 2k
≡ −

1

2
qp(2)2 (mod p),

where Bp−3 is the (p − 3)rd Bernoulli number.

Recall that the Bernoulli numbers Bk are defined by the generating function

∞
∑

k=0

Bk
xk

k!
=

x

ex − 1
.

It is easy to find the values B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, and Bn = 0

for odd n > 3. Furthermore, (−1)n−1B2n > 0 for all n > 1 (see, e.g., [8]).

Note that the congruences (iv) and (1.5) are the same, while the congruences (i),

(ii) and (iii) are generalizations of congruences (1.1), (1.2) and (1.4), respectively.

In this paper we generalize Sun’s congruence (iii) modulo p3 as follows.

Theorem 1.2. Let p > 3 be a prime. Then

(1.7)

p−1
∑

k=1

1

k · 2k
≡ qp(2) −

p

2
qp(2)2 +

p2

3
qp(2)3 −

7p2

48
Bp−3 (mod p3).

As an application, we prove the congruence (1.3) due to Dilcher and Skula in [7].

Corollary 1.1 ([7, Theorem 1]). Let p > 3 be a prime. Then

(1.8) qp(2)3 ≡ −3

p−1
∑

k=1

2k

k3
+

7

16

(p−1)/2
∑

k=1

1

k3
(mod p)

≡ −3

p−1
∑

k=1

2k

k3
−

7

8
Bp−3 (mod p).

Remark 1.1. In [35, Remark 4.1] Z.H. Sun noticed that our congruence (1.7)

may be derived from the congruence (1.8) and the congruence (4.5) in [35] related

to the value of the Mirimanoff polynomial associated with p (for more information

on Mirimanoff polynomials see [28]). Observe that congruential properties of Miri-

manoff polynomials are in fact used in all the methods by Agoh and Skula [3], Dilcher

and Skula [7], Granville [17] and Sun [35]. However, our proof of Theorem 1.2 is el-

ementary and is based on certain combinatorial identities and related congruences.

In this proof we additionally use certain congruences by H.Pan (Lemma 2.4) which

953



have been derived in [26] via combinatorial methods. We also use some congru-

ences (Lemma 2.5) which were proved by Z.H. Sun in [34] via a standard technique

expressing sum of powers in terms of Bernoulli numbers.

We also point out that in a recent paper of the author [24, Theorem 2] the con-

gruence (i) of Theorem 1.1 is proved in an elementary way and extended in terms of

the harmonic sum.

The following result may be considered in some sense the “reversal congruence”

of (1.7).

Corollary 1.2. Let p > 3 be a prime. Then

(1.9) qp(2) ≡

p−1
∑

k=1

1

k · 2k
−

p

2

p−1
∑

k=1

2k

k2
+

35p2

48
Bp−3 (mod p3).

In particular,

(1.10) qp(2) ≡

p−1
∑

k=1

1

k · 2k
−

p

2

p−1
∑

k=1

2k

k2
(mod p2).

The following consequence is an improvement of Sun’s congruence (iv) in Theo-

rem 1.1.

Corollary 1.3. Let p > 3 be a prime. Then

(1.11)

p−1
∑

k=1

1

k2 · 2k
≡ −

1

2
qp(2)2 +

p

2
qp(2)3 +

7p

24
Bp−3 (mod p2).

Proofs of Theorem 1.2 and its corollaries are given in Section 3 and are based on

several combinatorial identities and congruences for some alternating harmonic sums

presented in Section 2, and on some congruences due to H.Pan [26] and Z.H. Sun

[34].

Remark 1.2. Note that the congruences (1.1)–(1.11) determine all the expres-

sions for the sums
p−1
∑

k=1

1/(kr · 2k) (mod pe) and
p−1
∑

k=1

2k/kr (mod pe) in terms of the

Fermat quotient and the Bernoulli number Bp−3, where r and e are arbitrary pos-

itive integers such that r + e 6 4. Thus a natural question arises: Is it possible to

deduce analogous expressions for some values r and e such that r + e > 5? A re-

cent result of Agoh and Skula ([3, Theorem 3.3]) concerning an explicit formula for
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qp(2) (mod p4) in terms of Mirimanoff polynomial values at 2, suggests that “the

anti-derivative method” used in [3], [7], [17] and [35] cannot be applied to the case

when r + e > 5. However, we believe that the method exposed in this paper can be

applied for some pairs (r, e) with r + e > 5.

More recently, given a prime p and a positive integer r < p − 1, R. Tauraso [42,

Theorem 2.3] established the congruence
p−1
∑

k=1

2k/kr (mod p) in terms of an alternating

r-tuple harmonic sum. For example, combining this result when r = 2 with the

congruence (1.2) [42, Corollary 2.4], it follows that

∑

16i<j6p−1

(−1)j

ij
≡ qp(2)2 ≡ −

p−1
∑

k=1

2k

k2
(mod p).

Remark 1.3. Many curious congruences for the sums of the form
(p−1)/2

∑

k=1

ak/k and
(p−1)/2

∑

k=1

1/(k · ak) modulo odd prime with a ∈ {2, 3, 5} were established by Z.W. Sun

in [38, Theorem], [40, Theorem 3 (1.13)] and by Z.H. Sun in [37, Theorem 2.6], [36,

congruences (1.1)–(1.5)].

2. Preliminary results

For a nonnegative integer n let

Hn := 1 +
1

2
+ . . . +

1

n

be the nth harmonic number (we assume that H0 = 0). The following identity is

established in [33] by using finite differences.

Lemma 2.1 ([33, Identity 14, p. 3135]). For a positive integer n we have

(2.1)

n
∑

k=1

(

n

k

)

Hk = 2nHn − 2n
n

∑

k=1

1

k · 2k
.

We give here a simple induction proof of (2.1) which is based on the following

identity.
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Lemma 2.2 ([33, Identity 13, p. 3135]). For a positive integer n we have

(2.2)

n
∑

k=0

1

k + 1

(

n

k

)

=
2n+1 − 1

n + 1
.

P r o o f. Using the binomial formula and the identity (n+1)−1
(

n+1
k

)

= k−1
(

n
k−1

)

with 1 6 k 6 n + 1, we find that

2n+1 − 1

n + 1
=

1

n + 1

n+1
∑

k=1

(

n + 1

k

)

=

n+1
∑

k=1

1

k

(

n

k − 1

)

=

n
∑

k=0

1

k + 1

(

n

k

)

,

as desired. �

P r o o f of Lemma 2.1. We proceed by induction on n > 1. As (2.1) holds

trivially for n = 1, we suppose that this is also true for some n > 1. Then using the

induction hypothesis, the identities
(

n+1
k

)

=
(

n
k−1

)

+
(

n
k

)

and Hk = Hk−1 + 1/k with

1 6 k 6 n + 1, we get

n+1
∑

k=1

(

n + 1

k

)

Hk =

n+1
∑

k=1

((

n

k − 1

)

+

(

n

k

))

Hk

=

n+1
∑

k=1

(

n

k − 1

)

(

Hk−1 +
1

k

)

+

n+1
∑

k=1

(

n

k

)

Hk

=
n+1
∑

k=1

(

n

k − 1

)

Hk−1 +
n+1
∑

k=1

1

k

(

n

k − 1

)

+
n

∑

k=1

(

n

k

)

Hk

=
n

∑

k=1

(

n

k

)

Hk +
n

∑

k=1

(

n

k

)

Hk +
n+1
∑

k=1

1

k

(

n

k − 1

)

= 2

n
∑

k=1

(

n

k

)

Hk +

n+1
∑

k=1

1

k

(

n

k − 1

)

= 2n+1Hn − 2n+1
n

∑

k=1

1

k · 2k
+

n
∑

k=0

1

k + 1

(

n

k

)

.

Hence, the induction proof will be completed if we prove that

2n+1Hn − 2n+1
n

∑

k=1

1

k · 2k
+

n
∑

k=0

1

k + 1

(

n

k

)

= 2n+1Hn+1 − 2n+1
n+1
∑

k=1

1

k · 2k
.

Substituting Hn+1 = Hn + 1/(n+ 1) into the above equality, it immediately reduces

to
n

∑

k=0

1

k + 1

(

n

k

)

= 2n+1
( 1

n + 1
−

1

(n + 1)2n+1

)

=
2n+1 − 1

n + 1
.
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Since the above equality is in fact the identity (2.2) of Lemma 2.2, the induction

proof is completed. �

Given positive integers n andm, the harmonic numbers of order m are the rational

numbers Hn,m defined as

Hn,m =

n
∑

k=1

1

km
.

Lemma 2.3. Let n be an arbitrary positive integer. Then

2n
∑

k=1

(−1)kHk =
1

2
Hn,(2.3)

2n
∑

k=1

(−1)kH2
k =

1

4
Hn,2 + 2

∑

16i<j62n
2|j

1

ij
,(2.4)

2n
∑

k=1

(−1)kHk · Hk,2 =
1

8
Hn,3 +

∑

16i<j62n
2|j

1

i2j
+

∑

16i<j62n
2|j

1

ij2
.(2.5)

P r o o f. The identity (2.3) easily follows by induction on n, and hence its proof

may be omitted.

We will prove the identity (2.4) also by induction on n > 1. For n = 1 both sides

of (2.4) are equal to 5/4. If we suppose that (2.4) holds for some n > 1, then

2n+2
∑

k=1

(−1)kH2
k =

2n
∑

k=1

(−1)kH2
k + (H2

2n+2 − H2
2n+1)

=
1

4
Hn,2 + 2

∑

16i<j62n
2|j

1

ij
+

(

H2n+1 +
1

2n + 2

)2

− H2
2n+1

=
1

4
Hn,2 + 2

∑

16i<j62n
2|j

1

ij
+

2

2n + 2
· H2n+1 +

1

(2n + 2)2

=
1

4

(

Hn,2 +
1

(n + 1)2

)

+ 2

(

∑

16i<j62n
2|j

1

ij
+

1

2n + 2

2n+1
∑

l=1

1

l

)

=
1

4
Hn+1,2 + 2

∑

16i<j62n+2
2|j

1

ij
.

This completes the induction proof of (2.4).
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Similarly, we prove (2.5) by induction on n as

2n+2
∑

k=1

(−1)kHk · Hk,2 =
2n
∑

k=1

(−1)kHk · Hk,2 − H2n+1 · H2n+1,2 + H2n+2 · H2n+2,2

=
1

8
Hn,3 +

∑

16i<j62n
2|j

1

i2j
+

∑

16i<j62n
2|j

1

ij2

−H2n+1 · H2n+1,2 +
(

H2n+1 +
1

2n + 2

)(

H2n+1,2 +
1

(2n + 2)2

)

=
1

8

(

Hn,3 +
1

(n + 1)3

)

+
∑

16i<j62n
2|j

1

i2j
+

1

2n + 2
· H2n+1,2

+
∑

16i<j62n
2|j

1

ij2
+

1

(2n + 2)2
· H2n+1

=
1

8
Hn+1,3 +

∑

16i<j62n+2
2|j

1

i2j
+

∑

16i<j62n+2
2|j

1

ij2
.

This concludes the induction proof. �

Lemma 2.4. Let p > 3 be a prime. Then

∑

16i<j6p−1
2|j

1

ij
≡

1

2
q2(p)2 −

p

2
q2(p)3 −

7p

16
Bp−3 (mod p2),(2.6)

∑

16i<j<k6p−1
2|k

1

ijk
≡ −

1

6
q2(p)3 −

7

48
Bp−3 (mod p),(2.7)

∑

16i<j6p−1
2|j

1

ij2
≡

5

8
Bp−3 (mod p),(2.8)

and

(2.9)
∑

16i<j6p−1
2|j

1

i2j
≡ −

3

8
Bp−3 (mod p).

P r o o f. The congruences (2.6) and (2.7) are in fact the congruences (2.9) and

(2.10) in [26, Proof of Theorem 1.1], respectively. The congruences (2.8) and (2.9)

are just the congruences (2.4) and (2.5) in [26, Lemma 2.2], respectively. �
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Lemma 2.5. If p > 3 is a prime, then

(p−1)/2
∑

k=1

1

k
≡ −2q2(p) + pq2(p)2 −

2p2

3
q2(p)3 −

7p2

12
Bp−3 (mod p3),(2.10)

(p−1)/2
∑

k=1

1

k2
≡

7p

3
Bp−3 (mod p2),(2.11)

and

(2.12)

(p−1)/2
∑

k=1

1

k3
≡ −2Bp−3 (mod p).

P r o o f. The congruence (2.10) is in fact the congruence (c) in [34, Theorem 5.2].

Further, the congruences (2.11) and (2.12) are the congruences (a) with k = 2 and

(b) with k = 3 in [34, Corollary 5.2], respectively. �

Lemma 2.6. Let p > 3 be any prime. Then

Hp−1 ≡ −
p2

3
Bp−3 (mod p3),(2.13)

p−1
∑

k=1

(−1)kHk ≡ −q2(p) +
p

2
q2(p)2 −

p2

3
q2(p)3 −

7p2

24
Bp−3 (mod p3),(2.14)

p−1
∑

k=1

(−1)kH2
k ≡ q2(p)2 − pq2(p)3 −

7p

24
Bp−3 (mod p2),(2.15)

p−1
∑

k=1

(−1)kH3
k ≡ − q2(p)3 −

3

8
Bp−3 (mod p)(2.16)

and

(2.17)

p−1
∑

k=1

(−1)kHk · Hk,2 ≡ 0 (mod p).

P r o o f. The congruence (2.13) is a classical result of Glaisher [13, p. 331]; see

also [34, Theorem 5.1(a)]. The identity (2.3) in Lemma 2.3 with n = (p − 1)/2 and

the congruence (2.10) of Lemma 2.5 immediately yield (2.14). Similarly, the identity

(2.4) in Lemma 2.3 with n = (p − 1)/2, the congruences (2.11) of Lemma 2.5 and

(2.6) of Lemma 2.4 immediately yield (2.15). Inserting the congruences (2.12), (2.8)

and (2.9) into equality (2.5) of Lemma 2.3 with n = (p − 1)/2, we obtain (2.17).
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In order to prove (2.16), we will expand by the multinomial formula each term

H3
k = (1 + 1/2 + . . . + 1/k)3 of the alternating sum S :=

p−1
∑

k=1

(−1)kH3
k . Accordingly,

we will separately determine sums of all terms in S of the following forms: ±1/i3

with 1 6 i 6 p − 1, denoted by S1, ±3/(i2j) with 1 6 i, j 6 p − 1 and i 6= j,

denoted by S2, and ±6/(ijk) with 1 6 i < j < k 6 p − 1, denoted by S3. Since

p − 1 is even, for such an i the sum of all terms in S of the form ±1/(2i − 1)3 with

1 6 i 6 (p − 1)/2 is equal to 0. Similarly, the sum of all terms in S of the form

±1/(2i)3 with 1 6 i 6 (p − 1)/2 is equal to 1/(2i)3. Therefore, applying (2.12) of

Lemma 2.5, we have

(2.18) S1 =
1

8

(p−1)/2
∑

i=1

1

i3
≡ −

1

4
Bp−3 (mod p).

Further, it is easy to see that the sum of all terms in S of the form ±3/(i2 · (2j − 1))

with 1 6 i < 2j − 1 6 p− 1 is equal to 0. Similarly, the sum of all terms in S of the

form ±3/(i2 · 2j) with 1 6 i < 2j 6 p − 1 is equal to 3/(i2 · 2j). Hence, for a fixed

2i with 1 6 i 6 (p − 1)/2, the subsum of the sum S2 containing all the terms of the

form ±3/((2i)2 · j) with j > 2i is

(2.19) S1,2i =
∑

2i<2j6p−1

3

(2i)2 · 2j
=

3

4i2

(p−1)/2
∑

j=i+1

1

2j
.

In the same way, for a fixed 2i− 1 with 1 6 i 6 (p− 1)/2, the subsum of the sum S2

containing all the terms of the form ±3/((2i − 1)2 · j) with j > 2i − 1 is

(2.20) S1,2i−1 =
∑

2i−1<2j6p−1

3

(2i − 1)2 · 2j
=

3

(2i − 1)2

(p−1)/2
∑

j=i

1

2j
.

Similarly, for a fixed 2i with 1 6 i 6 (p− 1)/2, the subsum of the sum S2 containing

all the terms of the form ±3/((2i)2 · j) with j < 2i is

(2.21) S′
1,2i =

2i−1
∑

j=1

3

(2i)2 · j
=

3

4i2

2i−1
∑

j=1

1

j
.

Further, for a fixed 2i−1 with 1 6 i 6 (p−1)/2, the subsum of the sum S2 containing

all the terms of the form ±3/((2i − 1)2 · j) with j < 2i − 1 is

(2.22) S′
1,2i−1 = 0.
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From equalities (2.19) and (2.21) we see that for any fixed 2i with 1 6 i 6 (p− 1)/2,

the subsum of the sum S2 containing all the terms of the form ±3/((2i)2 · k) such

that 1 6 k 6 p − 1 and k 6= 2i is

(2.23) S2i = S1,2i + S′
1,2i =

3

4i2

(p−1)/2
∑

j=i+1

1

2j
+

3

4i2

2i−1
∑

j=1

1

j
.

Next, from equalities (2.20) and (2.22) we see that for any fixed 2i − 1 with 1 6

i 6 (p − 1)/2, the subsum of the sum S2 containing all the terms of the form

±3/((2i − 1)2 · k) such that 1 6 k 6 p − 1 and k 6= 2i − 1 is

(2.24) S2i−1 = S1,2i−1 + S′
1,2i−1 =

3

(2i − 1)2

(p−1)/2
∑

j=i

1

2j
.

Note that (2.23) may be written as

(2.25) S2i =
3

4i2

(( 1

2i + 2
+

1

2i + 4
+ . . . +

1

p − 1

)

+
(

1 +
1

2
+ . . . +

1

2i − 1

))

=
3

4i2

(

Hp−1 −
1

2i
−

( 1

2i + 1
+

1

2i + 3
+ . . . +

1

p − 2

))

.

By Wolstenholme’s theorem (see, e.g., [44] or [15]; for its generalizations see [32,

Theorems 1 and 2]), if p is a prime greater than 3, then the numerator of the fraction

Hp−1 = 1+1/2+1/3+ . . .+1/(p− 1) is divisible by p2. Substituting this into (2.25),

we obtain

(2.26) S2i ≡ −
3

8i3
−

3

4i2

( 1

2i + 1
+

1

2i + 3
+ . . . +

1

p − 2

)

(mod p2).

Now (2.26) and (2.24) with p − 2i instead of 2i − 1, for each 1 6 i 6 (p − 1)/2 give

(2.27)

S2i + Sp−2i ≡ −
3

8i3
−

3

4i2

( 1

2i + 1
+

1

2i + 3
+ . . . +

1

p − 2

)

+
3

(p − 2i)2

( 1

p − 2i + 1
+

1

p − 2i + 3
+ . . . +

1

p − 1

)

≡ −
3

8i3
−

3

4i2

( 1

2i + 1
+

1

2i + 3
+ . . . +

1

p − 2

)

−
3

(2i)2

( 1

2i − 1
+

1

2i − 3
+ . . . +

1

3
+ 1

)

(mod p)

= −
3

8i3
−

3

4i2

(

1 +
1

3
+ . . . +

1

2i − 1
+

1

2i + 1
+

1

2i + 3
+ . . . +

1

p − 2

)

= −
3

8i3
−

3

4i2

(

Hp−1 −
1

2
−

1

4
− . . . −

1

p − 1

)

(mod p).
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As Hp−1 ≡ 0 (mod p), (2.27) yields

(2.28) S2i + Sp−2i ≡ −
3

8i3
+

3

8i2

(p−1)/2
∑

k=1

1

k
(mod p).

From (2.28) we have

(2.29)

S2 =

(p−1)/2
∑

i=1

(S2i + Sp−2i) ≡ −
3

8

(p−1)/2
∑

i=1

1

i3
+

3

8

( (p−1)/2
∑

k=1

1

k

)( (p−1)/2
∑

i=1

1

i2

)

(mod p),

whence, by (2.11) and (2.12) of Lemma 2.5, we get

(2.30) S2 ≡
3

4
Bp−3 (mod p).

It remains to determine the subsum S3 modulo p. It is easy to see that the sum

of all terms in S of the form ±6/(ijk) such that 1 6 i < j < k 6 p − 1 and k is

odd, is equal to 0. Similarly, the sum of all terms in S of the form ±6/(ijk) with

1 6 i < j < k 6 p − 1 and 2 | k is equal to 6/(ijk). Consequently,

(2.31) S3 = 6
∑

16i<j<k6p−1
2|k

1

ijk
,

whence, by (2.7) of Lemma 2.4, we obtain

(2.32) S3 ≡ −q2(p)3 −
7

8
Bp−3 (mod p).

Finally, the congruences (2.18), (2.30) and (2.32) immediately yield

p−1
∑

k=1

(−1)kH3
k = S = S1 + S2 + S3 ≡ −q2(p)3 −

3

8
Bp−3 (mod p).

This proves (2.16), and we are done. �

Lemma 2.7. If p > 3 is a prime, then

(2.33)

(

p − 1

k

)

≡ (−1)k − (−1)kpHk + (−1)k p2

2
(H2

k − Hk,2) (mod p3)

for each k = 1, 2, . . . , p − 1.
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P r o o f. For a fixed 1 6 k 6 p − 1 we have

(−1)k

(

p − 1

k

)

=
k

∏

i=1

(

1 −
p

i

)

≡ 1 −
k

∑

i=1

p

i
+

k
∑

16i<j6k

p2

ij
(mod p3)

= 1 − pHk +
p2

2

(( k
∑

i=1

1

i

)2

−

k
∑

i=1

1

i2

)

= 1 − pHk +
p2

2
(H2

k − Hk,2) (mod p3),

whence we obtain (2.33). �

3. Proof of Theorem 1.2 and corollaries

P r o o f of Theorem 1.2. By Lemma 2.1, for n = p − 1 we have

(3.1)

p−1
∑

k=1

(

p − 1

k

)

Hk = 2p−1Hp−1 − 2p−1

p−1
∑

k=1

1

k · 2k
.

In particular, the identity (3.1) yields

(3.2)

p−1
∑

k=1

(

p − 1

k

)

Hk ≡ 2p−1Hp−1 − 2p−1

p−1
∑

k=1

1

k · 2k
(mod p3).

On the other hand, multiplying (2.33) of Lemma 2.7 by Hk, after summation over k

we find

(3.3)

p−1
∑

k=1

(

p − 1

k

)

Hk ≡

p−1
∑

k=1

(−1)kHk − p

p−1
∑

k=1

(−1)kH2
k +

p2

2

p−1
∑

k=1

(−1)kH3
k

−
p2

2

p−1
∑

k=1

(−1)kHkHk,2 (mod p3).

Substituting the congruences (2.13)–(2.17) of Lemma 2.6 into (3.3), we immediately

obtain

(3.4)

p−1
∑

k=1

(

p − 1

k

)

Hk ≡ −q2(p) −
p

2
q2(p)2 +

p2

6
q2(p)3 −

3p2

16
Bp−3 (mod p3).

Comparing (3.4) and (3.2), and using the fact that by (2.13) and the Fermat Little

Theorem, 2p−1Hp−1 ≡ −(p2/3)Bp−3 (mod p3) holds, we obtain

(3.5) 2p−1

p−1
∑

k=1

1

k · 2k
≡ qp(2) +

p

2
qp(2)2 −

p2

6
qp(2)3 −

7p2

48
Bp−3 (mod p3).
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Substituting the identity 2p−1 = pqp(2) + 1 into (3.5) and reducing the modulus, we

get

(3.6)

p−1
∑

k=1

1

k · 2k
≡ −pqp(2)

p−1
∑

k=1

1

k · 2k
+ qp(2) +

p

2
qp(2)2 (mod p2).

Inserting the form (1.4) of Glaisher’s congruence into (3.6), we obtain

(3.7)

p−1
∑

k=1

1

k · 2k
≡ qp(2) −

p

2
qp(2)2 (mod p2).

Again substituting 2p−1 = pqp(2) + 1 in (3.5), and inserting (3.7) into the result, we

find that

p−1
∑

k=1

1

k · 2k
≡ −pqp(2)

p−1
∑

k=1

1

k · 2k
+ qp(2) +

p

2
qp(2)2 −

p2

6
qp(2)3 −

7p2

48
Bp−3

≡ −pqp(2)
(

qp(2) −
p

2
qp(2)2

)

+ qp(2) +
p

2
qp(2)2 −

p2

6
qp(2)3 −

7p2

48
Bp−3

= qp(2) −
p

2
qp(2)2 +

p2

3
qp(2)3 −

7p2

48
Bp−3 (mod p3).

This is actually the congruence (1.7), and the proof is completed. �

P r o o f of Corollary 1.1. Since 1/(p−k) ≡ −(p2 +pk+k2)/k3 (mod p3) for each

1 6 k 6 p − 1, we have

(3.8) −2p

p−1
∑

k=1

1

k · 2k
= −2p

p−1
∑

k=1

1

(p − k) · 2p−k
= −

p−1
∑

k=1

2k

p − k

≡

p−1
∑

k=1

(p2 + pk + k2)2k

k3
(mod p3)

= p2

p−1
∑

k=1

2k

k3
+ p

p−1
∑

k=1

2k

k2
+

p−1
∑

k=1

2k

k
(mod p3),

whence we have

(3.9) p2

p−1
∑

k=1

2k

k3
≡ −2p

p−1
∑

k=1

1

k · 2k
− p

p−1
∑

k=1

2k

k2
−

p−1
∑

k=1

2k

k
(mod p3).
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Multiplying by 2p the congruence (1.7) of Theorem 1.2 and using 2p ≡ 2 (mod p)

and the identity 2p = 2(pqp(2) + 1), we get

(3.10)

−2p

p−1
∑

k=1

1

k · 2k
≡ −2(pqp(2) + 1)

(

qp(2) −
p

2
qp(2)2

)

− 2pp2
(1

3
qp(2)3 −

7

48
Bp−3

)

≡ −2pqp(2)2 + p2qp(2)3 − 2qp(2) + pqp(2)2 −
2p2

3
qp(2)3 +

7p2

24
Bp−3

= −pqp(2)2 − 2qp(2) +
p2

3
qp(2)3 +

7p2

24
Bp−3 (mod p3).

Note that Sun’s congruences (i) and (ii) in Theorem 1.1 give, respectively,

−

p−1
∑

k=1

2k

k
≡ 2qp(2) +

7p2

12
Bp−3 (mod p3),(3.11)

−p

p−1
∑

k=1

2k

k2
≡ pqp(2)2 −

2p2

3
qp(2)3 −

7p2

6
Bp−3 (mod p3).(3.12)

Finally, inserting (3.10), (3.11) and (3.12) into (3.9), it simplifies to

p2

p−1
∑

k=1

2k

k3
≡ −

p2

3
qp(2)3 −

7p2

24
Bp−3 (mod p3),

which divided by −p2/3 gives

(3.13) qp(2)3 ≡ −3

p−1
∑

k=1

2k

k3
−

7

8
Bp−3 (mod p),

as desired. Finally, observe that the first congruence in (1.8) is immediate from

(3.13) and the congruence (2.12) of Lemma 2.5. �

P r o o f of Corollary 1.2. Multiplying by p/2 Sun’s congruence (ii) in Theo-

rem 1.1, we immediately obtain

(3.14) −
p

2
qp(2)2 ≡

p

2

p−1
∑

k=1

2k

k2
−

p2

3
qp(2)3 −

7p2

12
Bp−3 (mod p3).

Replacing the term −(p/2)qp(2)2 on the right hand side of (1.7) from Theorem 1.2

by the right hand side of (3.14), it becomes

qp(2) ≡

p−1
∑

k=1

1

k · 2k
−

p

2

p−1
∑

k=1

2k

k2
+

35p2

48
Bp−3 (mod p3),

which is just the congruence (1.9). �
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P r o o f of Corollary 1.3. We proceed in a way similar to that in the proof of

Corollary 1.1. Since 1/(p − k)2 ≡ (p + k)2/k4 (mod p2) for each 1 6 k 6 p − 1, we

have

(3.15) 2p

p−1
∑

k=1

1

k2 · 2k
=

p−1
∑

k=1

2p−k

k2
=

p−1
∑

k=1

2k

(p − k)2

≡

p−1
∑

k=1

(p + k)2 · 2k

k4
≡

p−1
∑

k=1

(2pk + k2) · 2k

k4
(mod p2)

= 2p

p−1
∑

k=1

2k

k3
+

p−1
∑

k=1

2k

k2
(mod p2).

Taking 2p−1 = pqp(2) + 1 into (3.15), we obtain

(3.16)

p−1
∑

k=1

1

k2 · 2k
≡ −pqp(2)

p−1
∑

k=1

1

k2 · 2k
+ p

p−1
∑

k=1

2k

k3
+

1

2

p−1
∑

k=1

2k

k2
(mod p2).

By (1.8) of Corollary 1.1, we have

(3.17)

p−1
∑

k=1

2k

k3
≡ −

1

3
qp(2)3 −

7

24
Bp−3 (mod p).

Finally, substituting the congruences (3.17), (ii) and (iv) of Theorem 1.1 into (3.16),

we immediately obtain

p−1
∑

k=1

1

k2 · 2k
≡ −

1

2
qp(2)2 +

p

2
qp(2)3 +

7p

24
Bp−3 (mod p2),

as asserted. �
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