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Abstract. We deal with the numerical solution of the nonstationary heat conduction
equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method
is employed for the time discretization and the interior penalty discontinuous Galerkin
method for the space discretization. Assuming shape regularity, local quasi-uniformity,
and transition conditions, we derive both a posteriori upper and lower error bounds. The
analysis is based on the Helmholtz decomposition, the averaging interpolation operator,
and on the use of cut-off functions. Numerical experiments are presented.

Keywords: discontinuous Galerkin method; Helmholtz decomposition; averaging inter-
polation operator; Euler backward scheme; residual-based a posteriori error estimate; local
cut-off function

MSC 2010 : 65M15

1. Introduction

Our aim is to develop a sufficiently accurate and efficient numerical method for

simulations of unsteady flows. A promising technique is a combination of the dis-

continuous Galerkin method (DGM) for the space discretization and the backward

difference formula for the time discretization, see [6]. In order to both apply an

adaptive algorithm and assess the discretization error, a posteriori error estimates

have to be developed.

In this paper, we focus on a simplified model problem, represented by the heat

equation, which is discretized by the high-order DGM and the backward Euler

method. Our aim is to derive a posteriori error estimate of the discretization error.

This work was supported by the grant No. 10209/MFF/B-MAT of the Grant Agency of
the Charles University in Prague.
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This topic was already studied in [16], where conforming space discretization was

considered. In our case, the main difficulty is to overcome the nonconformity of

the space discretization as the approximate solution does not belong to the function

space associated with the problem (2.1). There have been various approaches intro-

duced so far. Functional-type a posteriori error estimates were employed on the heat

equation in [13]. The derivation of functionals giving the upper bound on the error

is based on certain integral equation in terms of deviation from the exact solution.

Finally, minimization techniques are used. A different approach based on the flux

reconstruction from the Raviart-Thomas-Nédélec (RTN) finite element space was

presented in [5]. This technique gives a fully computable upper bound on the error

(that is, containing no undetermined constants) and also provides the efficiency of

error estimators, however, it requires a reconstruction of the flux in the RTN space.

We were inspired by [12], where Crouzeix-Raviart finite element method is em-

ployed for spatial discretization of the heat equation. The derived a posteriori error

estimates are based on the Helmholtz decomposition of the gradient of the error.

In this paper, first, we extend the results from [15] applying the approach from

[12] to the high-order discontinuous Galerkin discretization. Then, we derive a lower

error bound using a technique based on testing with suitable cut-off functions. The

a posteriori error estimates are simply computable but they suffer from a presence

of undetermined constants. The article is concluded with numerical experiments

showing the behavior of derived estimates.

2. Problem definition

Let Ω ⊂ R
d (d = 2 or 3) be a bounded multiply connected polyhedral Lipschitz

domain with boundary ∂Ω = ∂ΩD ∪ ∂ΩN , T > 0, and QT = Ω × (0, T ). Let us

consider the problem:

∂u

∂t
−∆u = f in QT ,(2.1)

u = uD on ∂ΩD × (0, T ),

∇u · n = gN on ∂ΩN × (0, T ),

u(x, 0) = u0(x) in Ω.

We use the standard notation for the Lebesgue, Sobolev, and Bochner spaces (see

[11]). In particular, for a function v in the appropriate space, we will use the following

notation: ‖v‖k,ω = ‖v‖Hk(ω), ‖v‖ω = ‖v‖L2(ω), ‖v‖∂ω = ‖v‖L2(∂ω), ‖v‖1/2,∂ω =
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‖v‖H1/2(∂ω), ‖v‖−1/2,∂ω = ‖v‖H−1/2(∂ω), |v|k,ω = |v|Hk(ω), where ω ⊆ Ω. Recall that

‖v‖H1/2(∂ω) := inf
ϕ∈H1(ω)

ϕ=v on ∂ω

‖ϕ‖1,ω and ‖v‖H−1/2(∂ω) := sup
ϕ∈H1/2(∂ω)

ϕ 6=0

((v, ϕ))

‖ϕ‖1/2,∂ω
,

where ((·, ·)) denotes duality pairing between the spaces H1/2(∂ω) and H−1/2(∂ω).

Moreover, H1
D(Ω) ≡ {v ∈ H1(Ω); v = 0 on ∂ΩD}, H1

z,D(Ω) ≡ {v ∈ H1(Ω); v = z

on ∂ΩD} for a function z : ∂ΩD → R.

3. Discretization

3.1. Time semidiscretization. Let 0 = t0 < t1 < . . . < tN = T be a partition

of the time interval [0, T ] and set τn = tn − tn−1, τ = max{τn ; 1 6 n 6 N}. We
use the backward Euler scheme to get the semi-discrete problem: Find a sequence

{un}16n6N , u
n − u∗(tn) ∈ H1

D(Ω) such that

∫

Ω

un − un−1

τn
v dx+

∫

Ω

∇un · ∇v dx(3.1)

=

∫

Ω

fnv dx+

∫

∂ΩN

gnNv dS ∀v ∈ H1
D(Ω),

where u∗(tn) ∈ H1(Ω) has the trace unD := uD(·, tn) on ∂ΩD, f
n := f(·, tn), and

gnN := gN(·, tn). For simplicity, we assume that the functions unD, fn, and gnN
are piecewise polynomial. Otherwise, we would have oscillation terms of the form

h
−1/2
Γ ‖unD − unD,h‖Γ, hK‖fn − fn

h ‖K , and h
1/2
Γ ‖gnN − gnN,h‖Γ in the error indicator

(5.2). See, e.g., [12] on how to handle the right-hand side oscillation. The solution

of (3.1) is called the semi-discrete solution.

3.2. Space discretization. As we mentioned above, we will carry out the space

discretization with the aid of the high-order DGM. On each time level tn, n =

1, . . . , N , we consider a family {T n
h }h>0 of partitions of the closure of Ω into a

finite number of closed simplices with mutually disjoint interiors, possibly containing

hanging nodes. These partitions are called triangulations hereafter. We assume that

the following conditions are satisfied:

shape regularity: ∃Cs > 0 ∀h > 0 ∀K ∈ T n
h :

hK
̺K

6 Cs,(3.2)

local quasi-uniformity: ∃CH > 0 ∀h > 0 ∀K,K ′ ∈ T n
h(3.3)

sharing a face: hK 6 CHhK′ ,
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where hK = diam(K) for K ∈ T n
h , ̺K denotes the diameter of the largest d-

dimensional ball inscribed into K, and ∂K denotes the boundary of the element K.

Moreover, we assume that there exists a triangulation T̃ n
h satisfying (3.2) and (3.3)

which is a refinement of both T n−1
h and T n

h , 1 6 n 6 N , and such that

∃CHT > 0 ∀h > 0 ∀1 6 n 6 N ∀K ∈ T̃ n
h ∀K ′ ∈ T n

h , K ⊂ K ′ :
hK′

hK
< CHT .

This condition reflects simultaneous presence of finite element functions defined on

different triangulations and restricts the refinement and the coarsening rate.

By F̃n,I
h , F̃

n,D
h , and F̃n,N

h we denote the set of all interior faces, faces on ∂ΩD

and faces on ∂ΩN corresponding to T̃ n
h , respectively (for d = 2 faces are replaced

by edges). For simplicity, we put F̃n,ID
h := F̃n,I

h ∪ F̃n,D
h , F̃n,IN

h := F̃n,I
h ∪ F̃n,N

h ,

F̃n,DN
h := F̃n,D

h ∪ F̃n,N
h , and F̃n

h := F̃n,I
h ∪ F̃n,D

h ∪ F̃n,N
h . For Γ ∈ F̃n,I

h , let K
L
Γ

and KR
Γ denote elements sharing the face Γ. We set hΓ := max{hKL

Γ
, hKR

Γ
}, where

Γ ⊂ KL
Γ ∩KR

Γ . We define the unit normal vector nΓ so that it points out of K
L
Γ . For

Γ ∈ F̃n,DN
h , we assume that nΓ has the same orientation as the outward normal to

∂Ω and we put hΓ := hKL
Γ
, Γ ⊂ ∂KL

Γ .

Over the triangulation T̃ n
h we define the so-called broken Sobolev space

Hs(Ω, T̃ n
h ) = {v ; v|K ∈ Hs(K) ∀K ∈ T̃ n

h }, s > 1,

equipped with the norm ‖v‖2
Hs(Ω,T̃ n

h )
=

∑

K∈T̃ n
h

‖v‖2Hs(K). For v ∈ H1(Ω, T̃ n
h ) we define

the broken gradient ∇hv of v by (∇hv)|K := ∇(v|K) for all K ∈ T̃ n
h . Further, v

L
Γ

stands for the trace of v|KL
Γ
on Γ, vRΓ is the trace of v|KR

Γ
on Γ, 〈v〉Γ := (1/2)(vLΓ+v

R
Γ ),

[v]Γ := vLΓ − vRΓ , Γ ∈ F̃n,I
h . Further, for Γ ∈ F̃n,D

h , we denote by vLΓ the trace of v|KL
Γ

on Γ, and set 〈v〉Γ := [v]Γ := vLΓ . If nΓ, [·]Γ, and 〈·〉Γ appear in an integral of the
form

∫
Γ . . . dS, we will omit the subscript Γ and write, respectively, n, [·], and 〈·〉

instead. Finally, we define the space of discontinuous piecewise polynomial functions

Sn
hp = {v ; v ∈ L2(Ω), v|K ∈ P p(K) ∀K ∈ T̃ n

h },

where P p(K) is the space of all polynomials on K of degree at most p ∈ {0, 1, 2, . . .}.
For unh, v

n
h ∈ H2(Ω, T̃ n

h ), 1 6 n 6 N , we define the forms

anh(u
n
h, v

n
h) :=

∑

K∈T̃ n
h

∫

K

∇unh · ∇vnh dx−
∑

Γ∈F̃n,ID
h

∫

Γ

〈∇unh · n〉[vnh ] dS(3.4)

+ θ
∑

Γ∈F̃n,ID
h

∫

Γ

〈∇vnh · n〉[unh] dS +
∑

Γ∈F̃n,ID
h

∫

Γ

σ[unh][v
n
h ] dS,
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lnh(v
n
h) :=

∫

Ω

fnvnh dx+
∑

Γ∈F̃n,N
h

∫

Γ

gnNv
n
h dS + θ

∑

Γ∈F̃n,D
h

∫

Γ

∇vnh · nunD dS

+
∑

Γ∈F̃n,D
h

∫

Γ

σunDv
n
h dS,

where unD = uD(·, tn), σ is an appropriate penalty parameter, and the parameter θ =
−1, θ = 1, and θ = 0 corresponds to the symmetric, nonsymmetric, and incomplete

variants of the DGM, respectively.

Now, we can formulate the discrete problem: For a given approximation u0h ∈ S0
hp

of an initial condition u0, find a sequence {unh}16n6N , u
n
h ∈ Sn

hp, such that

(3.5)

∫

Ω

unh − un−1
h

τn
vnh dx+ anh(u

n
h, v

n
h ) = lnh(v

n
h ) ∀vnh ∈ Sn

hp.

We call the solution of (3.5) the approximate solution. The reader is referred to

[2] for the derivation of discontinuous Galerkin formulation. Let {un}16n6N be the

semi-discrete solution given by (3.1) and {unh}16n6N be the approximate solution

given by (3.5). We set {en}16n6N = {un − unh}16n6N .

4. Tools for a posteriori error analysis

In this section we state some results of the finite element theory that will be used in

the analysis. Further, we prove some auxiliary assertions extending the results from

[15]. We also introduce Helmholtz decomposition and an appropriate interpolation

operator, as they form the basis of the presented approach. It was developed in [12],

where the heat equation was solved with the aid of the combination of the Crouzeix-

Raviart nonconforming finite elements in space and the backward Euler scheme in

time. However, the idea of using Helmholtz decomposition for splitting the error into

conforming and nonconforming parts goes back to the paper [4].

In the analysis, we will need the following results of the finite element theory:

the multiplicative trace inequality

(4.1) ‖v‖2∂K 6 CM (|v|1,K‖v‖K + h−1
K ‖v‖2K) ∀v ∈ H1(K), K ∈ T̃ n

h ,

the inverse inequality

(4.2) |v|1,K 6 CIh
−1
K ‖v‖K ∀v ∈ P p(K), K ∈ T̃ n

h ,

the trace inequality

(4.3) ‖n · curl v‖−1/2,∂K 6 CT ‖curl v‖K ∀v ∈ (H1(K))k, K ∈ T̃ n
h ,
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and the approximation property of the L2-projection operator Πhp on S
n
hp

(4.4) |v −Πhpv|i,K 6 CAh
1−i
K |v|1,K ∀v ∈ H1(K), K ∈ T̃ n

h , i = 0, 1,

where CM , CI , CT , and CA are constants independent of K, h, and n and k = 1 for

d = 2 and k = 3 for d = 3. Let us recall that the curl operator is defined by

curl v :=
( ∂v

∂x2
,− ∂v

∂x1

)
, v : Ω → R, d = 2,

curl v :=
( ∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)
, v = (v1, v2, v3) : Ω → R

3, d = 3.

We introduce the space H(curl,Ω) := {v ∈ (L2(Ω))k ; curl v ∈ (L2(Ω))d}, where
k = 1 for d = 2 and k = 3 for d = 3. Moreover, div curlχ = 0 for χ ∈ (H1(K))k,

meaning the operator div in the sense of distributions. Finally, curlχ ·n is meant in
the following sense (for the proof see [14], for more complex relations see Section 2.2

and Section 2.3 of Chapter I in [7]):

Lemma 4.1. Let Ω ∈ R
d (d = 2 or 3) be a bounded domain with Lipschitz-

continuous boundary. Then there exists a unique continuous linear operator

(4.5) Tn : H(curl,Ω) → H−1/2(∂Ω),

such that

(4.6) ∀v ∈ (C∞(Ω))k Tnv = n · curl v|∂Ω,

where k = 1 for d = 2 and k = 3 for d = 3.

Now, in order to derive a posteriori error estimates, we introduce the interpolation

operator that maps H1(Ω, T̃ n
h ) into Sn

hp ∩H1
D(Ω) and the Helmholtz decomposition.

4.1. Averaging interpolation operator. Let Nh,n be the set of all Lagrangian

vertices of the elements of T̃ n
h such that functions from Sn

hp ∩ H1
D(Ω) are uniquely

determined by their values at the nodes from Nh,n. It means that all hanging nodes

are excluded from Nh,n. The averaging interpolation operator ID
Av : S

n
hp → Sn

hp ∩
H1

D(Ω) is defined by (see, e.g., [8])

ID
Av(vh)(V ) =






1

card(TV )
∑

K∈TV

vh|K(V ), V ∈ Nh,n \ ND
h,n,

0, V ∈ ND
h,n,
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where TV = {K ∈ T̃ n
h ; V ∈ K}, ND

h,n = {V ∈ Nh,n ; V ∈ ∂ΩD}. Now, we define
the interpolation operator In,Dh : H1(Ω, T̃ n

h ) → Sn
hp ∩H1

D(Ω) by

(4.7) In,Dh (v) = ID
Av(Πhp(v)) ∀v ∈ H1(Ω, T̃ n

h ),

where Πhp denotes the L
2-projection of v on the space Sn

hp. The proof of the following

theorem can be found in [9].

Theorem 4.1. Let T̃ n
h be a triangulation possibly containing hanging nodes that

satisfies (3.2) and (3.3). Then

(4.8)
∑

K∈T̃ n
h

‖vh − ID
Av(vh)‖2i,K 6 C2

O

∑

Γ∈F̃n,ID
h

h1−2i
Γ ‖[vh]‖2Γ, ∀vh ∈ Sn

hp, i = 0, 1,

where the constant CO is independent of h and vh.

R em a r k 4.1. In the case of the averaging operator satisfying nonhomogeneous

Dirichlet boundary condition gD, the estimate (analogous to (4.8)) differs just in the

term on the Dirichlet boundary. It has the form:
∑

Γ∈F̃n,D
h

h1−2i
Γ ‖vh − gD‖2Γ.

4.2. Helmholtz decomposition. Since we are dealing with the nonconforming

method, unh does not belong to H
1(Ω). Therefore, techniques known from a pos-

teriori error analysis for conforming methods cannot be used in a straightforward

manner. There are basically two ways how one can get over this issue. The first and

rather natural possibility is to decompose the error into the conforming part and the

remainder. The second possibility is to decompose the gradient of the error using the

Helmholtz decomposition, as it was done in [4], which we employ in the following:

Theorem 4.2. There exists the decomposition

(4.9) ∇he
n = ∇ϕn + curlχn,

where ϕn ∈ H1
D(Ω) is the solution of the problem

∫

Ω

∇ϕn · ∇v dx =

∫

Ω

∇he
n · ∇v dx ∀v ∈ H1

D(Ω),

and χn ∈ (H1(Ω))k (k = 1 for d = 2 and k = 3 for d = 3) is such that n · curlχn = 0

on ∂ΩN . Moreover, the following holds: ‖∇he
n‖2Ω = ‖∇ϕn‖2Ω + ‖curlχn‖2Ω.

The orthogonality of the splitting is crucial because it suffices to estimate each

part of the error independently. A proof of the above theorem can be found in [4].

Now, we state several relations for the error en. The following lemma can be proved

similarly to Lemma 2 in [15] (see also [14]).
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Lemma 4.2. Let vh ∈ Sn
hp ∩ H1

D(Ω), ϕ ∈ H1
D(Ω), and χ ∈ (H1(Ω))k (k = 1 for

d = 2 and k = 3 for d = 3) such that n · curlχ = 0 on ∂ΩN . Then the error e
n

satisfies

∑

K∈T̃ n
h

∫

K

∇en · ∇vh dx =

∫

Ω

en−1 − en

τn
vh dx+ θ

∑

Γ∈F̃n,I
h

∫

Γ

〈∇vh · n〉[unh] dS,(4.10)

∑

K∈T̃ n
h

∫

K

∇en · ∇ϕdx =

∫

Ω

(
fn − un − un−1

τn

)
ϕdx−

∑

K∈T̃ n
h

∫

∂K

∇unh · nϕdS

+
∑

K∈T̃ n
h

∫

K

∆unhϕdx+

∫

∂ΩN

gnNϕdS,(4.11)

∑

K∈T̃ n
h

∫

K

∇(en − ϕ) · curlχ dx =
∑

K∈T̃ n
h

∫

∂K\∂ΩN

(en − ϕ)curlχ · n dS.(4.12)

4.3. Auxiliary results. In this section we state some auxiliary assertions. Their

versions for p = 1 have been proved in [15]. Let z ∈ Hs(Ω, T̃ n
h ) and g : ∂ΩD → R,

we introduce the following notation:

(4.13)
(
J(z)g

± 1
2 ,F̃

n
h

)2

:=
∑

Γ∈F̃n,I
h

h±1
Γ ‖[z]‖2Γ +

∑

Γ∈F̃n,D
h

h±1
Γ ‖z − g‖2Γ.

The constant c occurring in the estimates hereafter is a generic positive constant

which can differ from formula to formula and is independent of h and τ .

Lemma 4.3. Let w ∈ H1(Ω, T̃ n
h ) and Πhp be given by (4.4), then, for i = 0, 1,

(4.14)
∑

Γ∈F̃n,ID
h

h1−2i
Γ ‖[Πhpw]‖2Γ 6 c

( ∑

K∈T̃ n
h

h−2i+2
K |w|21,K +

(
J(w)01

2−i,F̃n
h

)2
)
.

P r o o f. The following sequence of inequalities holds:

∑

Γ∈F̃n,ID
h

h1−2i
Γ ‖[Πhpw]‖2Γ 6 c

∑

K∈T̃ n
h

h1−2i
K ‖Πhpw − w‖2∂K + c

∑

Γ∈F̃n,ID
h

h1−2i
Γ ‖[w]‖2Γ

6 c
∑

K∈T̃ n
h

h−2i+2
K |w|21,K + c

∑

Γ∈F̃n,I
h

h1−2i
Γ ‖[w]‖2Γ + c

∑

Γ∈F̃n,D
h

h1−2i
Γ ‖w‖2Γ,

where the first inequality follows from the triangle inequality and the local quasi-

uniformity and the second one from (4.1) and (4.4). Hence, due to the definition

(4.13), we have the assertion. �

128



Lemma 4.4. Let w ∈ H1(Ω, T̃ n
h ) and In,Dh be given by (4.7), then

(4.15)
∑

Γ∈F̃n,I
h

hΓ‖〈∇In,Dh (w) · n〉‖2Γ 6 c
(
|w|2

H1(Ω,T̃ n
h )

+
(
J(w)0

− 1
2 ,F̃

n
h

)2)
.

P r o o f. See [15, Lemma 4]. �

Corollary 4.1. Let gD be the restriction of a function from Sn
hp∩H1(Ω) to ∂ΩD.

Further, let v ∈ H1
gD ,D(Ω) and z ∈ Sn

hp be arbitrary. Let e
n and ϕn be from (4.9).

Then

∑

Γ∈F̃n,ID
h

h1−2i
Γ ‖[Πhp(v − z)]‖2Γ 6 c

( ∑

K∈T̃ n
h

h2−2i
K |v − z|21,K +

(
J(z)gD1

2−i,F̃n
h

)2
)
,(4.16)

∑

Γ∈F̃n,I
h

hΓ‖〈∇In,Dh (v − z) · n〉‖2Γ 6 c
(
|v − z|2

H1(Ω,T̃ n
h
)
+
(
J(z)gD

− 1
2 ,F̃

n
h

)2)
,(4.17)

∑

K∈T̃ n
h

‖∇In,Dh (en − ϕn)‖2K 6 c
(
|en − ϕn|2

H1(Ω,T̃ n
h )

+
(
J(unh)

un
D

− 1
2 ,F̃

n
h

)2)
.(4.18)

P r o o f. The estimates (4.16) and (4.17) follow directly from (4.14) and (4.15)

where we put w := v−z and use that fact that J(v−z)0
− 1

2 ,F̃
n
h

= J(z)gD
− 1

2 ,F̃
n
h

since v =

gD on ∂ΩD. The estimate (4.18) follows by adding and subtracting ∇Πhp(e
n − ϕn)

in the norm on the left-hand side of (4.18), applying approximation properties of

the averaging operator ID
Av, and using the fact that J(e

n −ϕn)0
− 1

2 ,F̃
n
h

= J(unh)
un
D

− 1
2 ,F̃

n
h

since en − ϕn = unD − unh on ∂ΩD. �

Lemma 4.5. Let wn ∈ H1(Ω, T̃ n
h ) and ϕ ∈ H1

D(Ω) be arbitrary. Then

∑

K∈T̃ n
h

‖wn − In,Dh (wn)‖2K 6 c

( ∑

K∈T̃ n
h

h2K |wn|21,K +
(
J(wn)01

2 ,F̃
n
h

)2
)
,(4.19)

∑

K∈T̃ n
h

h−2
K ‖ϕ− In,Dh (ϕ)‖2K 6 c|ϕ|21,Ω,(4.20)

∑

Γ∈F̃n,IN
h

h−1
Γ ‖ϕ− In,Dh ϕ‖2Γ 6 c|ϕ|21,Ω.(4.21)
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P r o o f. For the proof of (4.19) and (4.20) see [15, Lemma 5]. Further, we can

write

∑

Γ∈F̃n,IN
h

h−1
Γ ‖ϕ− In,Dh ϕ‖2Γ 6 c

∑

K∈T̃ n
h

h−1
K ‖ϕ− In,Dh ϕ‖2∂K(4.22)

6 c
∑

K∈T̃ n
h

h−1
K (‖ϕ− In,Dh ϕ‖K |ϕ− In,Dh ϕ|1,K + h−1

K ‖ϕ− In,Dh ϕ‖2K)

6 c

( ∑

K∈T̃ n
h

h−2
K ‖ϕ− In,Dh ϕ‖2K

)1/2( ∑

K∈T̃ n
h

|ϕ− In,Dh ϕ|21,K
)1/2

+ c
∑

K∈T̃ n
h

h−2
K ‖ϕ− In,Dh ϕ‖2K ,

where the first inequality follows from the local quasi-uniformity, the second one

from (4.1), and the third one from the Cauchy-Schwarz inequality. The use of the

triangle inequality, (4.4), (4.1) with i := 1, Lemma 4.3 with i := 1, and the fact that

J(ϕ)0
− 1

2 ,F̃
n
h

= 0 yields

∑

K∈T̃ n
h

|ϕ− In,Dh ϕ|21,K 6
∑

K∈T̃ n
h

2|ϕ−Πhp(ϕ)|21,K +
∑

K∈T̃ n
h

2|Πhp(ϕ)− In,Dh ϕ|21,K(4.23)

6 c|ϕ|21,Ω + c
∑

Γ∈F̃n,ID
h

h−1
Γ ‖[Πhp(ϕ)]‖2Γ

6 c|ϕ|21,Ω + c
(
J(ϕ)0

− 1
2 ,F̃

n
h

)2

6 c|ϕ|21,Ω.

Now, the estimate (4.23) together with (4.20) applied in (4.22) gives (4.21). �

Lemma 4.6. Let z ∈ Sn
hp. Then the following holds

inf
v∈H1

un
D

,D
(Ω)

∑

K∈T̃ n
h

‖v − z‖2
1/2,∂K∩F̃n,ID

h

6 c
(
J(z)

un
D

− 1
2 ,F̃

n
h

)2

,(4.24)

inf
v∈H1

un
D

,D
(Ω)

∑

K∈T̃ n
h

h2K‖v − z‖2
1/2,∂K∩F̃n,ID

h

6 c
(
J(z)

un
D

1
2 ,F̃

n
h

)2

,(4.25)

where c is independent of h and H1
un
D ,D(Ω) = {v ∈ H1(Ω); v = unD on ∂ΩD}.

P r o o f. For the proof of (4.24), see [3, Lemma 4]. The inequality (4.25) can be

proved in the same way. �
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Lemma 4.7. Let ϕn and χn be the functions involved in the Helmholtz decom-

position (4.9). Then there exists a constant c > 0 such that

[curlχn · n]Γ = 0 ∀Γ ∈ F̃n,I
h ,(4.26)

∑

K∈T̃ n
h

h2iK |en − ϕn|21,K =
∑

K∈T̃ n
h

h2iK‖curlχn‖2K 6 c
(
J(unh)

un
D

i− 1
2 ,F̃

n
h

)2

, i = 0, 1,(4.27)

where the trace curlχn · n on Γ is meant in the sense of Lemma 4.1.

P r o o f. See [15, Lemma 8] and [15, Lemma 9]. �

Corollary 4.2. The combination of relations (4.19) and (4.27) together with

J(en − ϕn)01
2 ,F̃

n
h

= J(unh)
un
D

1
2 ,F̃

n
h

gives

(4.28)
∑

K∈T̃ n
h

‖(en − ϕn)− In,Dh (en − ϕn)‖2K 6 c
(
J(unh)

un
D

1
2 ,F̃

n
h

)2

.

5. A posteriori error estimates

5.1. Upper error bound. In this section we will state a theorem providing the

upper error bound. The error is measured in the norm combining the L2-norm on

the last time level and H1-seminorm on all time levels (except the initial one). First,

we introduce some additional notation:

Rn
K :=

(
fn +∆unh − unh − un−1

h

τn

)
|K , K ∈ T̃ n

h , (ηnR)
2 :=

∑

K∈T̃ n
h

h2K‖Rn
K‖2K ,(5.1)

(ηnJ )
2 :=

∑

Γ∈F̃n,I
h

h−1
Γ ‖[unh]‖2Γ, (ηnJD)

2 :=
∑

Γ∈F̃n,D
h

h−1
Γ ‖unh − unD‖2Γ,

(ηnJd)
2 :=

∑

Γ∈F̃n,I
h

hΓ‖[n · ∇unh]‖2Γ, (ηnJdN)
2 :=

∑

Γ∈F̃n,N
h

hΓ‖gnN − n · ∇unh‖2Γ.

For time level n > 1 we define the local error indicators

ηnK,1 = hK‖Rn
K‖K +

∑

Γ∈F̃n,N
K

h
1/2
Γ ‖gnN − n · ∇unh‖Γ +

∑

Γ∈F̃n,I
K

h
1/2
Γ ‖[n · ∇unh]‖Γ(5.2)

+
∑

Γ∈F̃n,I
K

h
−1/2
Γ ‖[unh]‖Γ +

∑

Γ∈F̃n,D
K

h
−1/2
Γ ‖unD − unh‖Γ,

ηnK,2 =
∑

Γ∈F̃n,I
K

h
1/2
Γ ‖[unh]‖Γ +

∑

Γ∈F̃n,D
K

h
1/2
Γ ‖unD − unh‖Γ,
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where F̃n,I
K , F̃n,N

K , and F̃n,D
K denote the set of all interior faces of an element K, faces

on ∂ΩN ∩ ∂K, and faces on ∂ΩD ∩ ∂K, respectively (for d = 2 faces are replaced by

edges). The indicators reflect the residual of the equation, the jump in the boundary

conditions, the interelement jumps of the approximate solution and the jump of its

normal component of the gradient.

Now, we state an upper estimate on the error.

Theorem 5.1. Let {un}16n6N and {unh}16n6N be the semi-discrete and approx-

imate solutions given by (3.1) and (3.5), respectively. Let 1 6 N 6 N . Then the

error en satisfies

‖eN‖2Ω +

N∑

n=1

τn
∑

K∈T̃ n
h

‖∇en‖2K 6 ‖e0‖2Ω +

N∑

n=1

C
(
τn

∑

K∈T̃ n
h

(ηnK,1)
2 +

∑

K∈T̃ n
h

(ηnK,2)
2
)
,

where the constant C is independent of the mesh parameter and the time step.

P r o o f. According to (4.9), we can write

(5.3) τn
∑

K∈T̃ n
h

‖∇en‖2K = τn
∑

K∈T̃ n
h

∫

K

∇en · ∇ϕn dx+ τn
∑

K∈T̃ n
h

∫

K

∇encurlχn dx.

We denote ψ1 and ψ2 the two terms on the right-hand side of (5.3). Setting ϕ := ϕn

in (4.11) multiplied by τn and adding a τn-multiple of (4.10) with vh := In,Dh ϕn

yields

ψ1 = τn

∫

Ω

(
fn − un − un−1

τn

)
ϕn dx− τn

∑

K∈T̃ n
h

∫

∂K

∇unh · nϕn dS(5.4)

+ τn
∑

K∈T̃ n
h

∫

K

∆unhϕ
n dx+ τn

∫

∂ΩN

gnNϕ
n dS

− τn
∑

K∈T̃ n
h

∫

K

∇en · ∇In,Dh ϕn dx+ τn

∫

Ω

en−1 − en

τn
In,Dh ϕn dx

+ τnθ
∑

Γ∈F̃n,I
h

∫

Γ

〈∇In,Dh ϕn · n〉[unh] dS.

By expressing the term −τn
∑

K∈T̃ n
h

∫
K ∇en · ∇In,Dh ϕn dx according to the identity

(4.11), adding and subtracting the term τn
∑

K∈T̃ n
h

∫
K(fn − (unh − un−1

h )/τn)ϕ
n dx,
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and reordering the terms we have

ψ1 = τn
∑

K∈T̃ n
h

∫

K

Rn
K(ϕn − In,Dh ϕn) dx−

∑

K∈T̃ n
h

∫

K

(en − en−1)ϕn dx(5.5)

− τn
∑

K∈T̃ n
h

∫

∂K

∇unh · n(ϕn − In,Dh ϕn) dS

+ τn

∫

∂ΩN

gnN(ϕn − In,Dh ϕn) dS

+ τnθ
∑

Γ∈F̃n,I
h

∫

Γ

〈∇In,Dh ϕn · n〉[unh] dS.

Putting (5.5) into (5.3), expressing ψ2 with the aid of (4.12), and adding the terms

± ∑

K∈T̃ n
h

∫
K(en − en−1)(en − In,Dh (en − ϕn)) dx, we obtain

τn
∑

K∈T̃ n
h

‖∇en‖2K(5.6)

=
∑

K∈T̃ n
h

∫

K

(en − en−1)((en − ϕn)− In,Dh (en − ϕn)) dx (=: ξ1)

+
∑

K∈T̃ n
h

∫

K

(en − en−1)In,Dh (en − ϕn) dx (=: ξ2)

+
∑

K∈T̃ n
h

∫

K

enen−1 dx−
∑

K∈T̃ n
h

‖en‖2K dx

+ τn
∑

K∈T̃ n
h

∫

K

Rn
K(ϕn − In,Dh ϕn) dx (=: ξ3)

− τn
∑

Γ∈F̃n,I
h

∫

Γ

[∇unh · n](ϕn − In,Dh ϕn) dS (=: ξ4)

+ τnθ
∑

Γ∈F̃n,I
h

∫

Γ

〈∇In,Dh ϕn · n〉[unh ] dS (=: ξ5)

+ τn
∑

Γ∈F̃n,N
h

∫

Γ

(gnN −∇unh · n)(ϕn − In,Dh ϕn) dS (=: ξ6)

+ τn
∑

K∈T̃ n
h

∫

∂K\∂ΩN

encurlχn · n dS (=: ξ7).
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Now, we have to estimate all the terms in (5.6). The Cauchy-Schwarz inequality and

(4.28) yield

|ξ1|2 6
∑

K∈T̃ n
h

‖en − en−1‖2K
∑

K∈T̃ n
h

‖(en − ϕn)− In,Dh (en − ϕn)‖2K(5.7)

6 c‖en − en−1‖2Ω
(
J(unh)

un
D

1
2 ,F̃

n
h

)2

.

We express ξ2 with the aid of (4.10).

ξ2 = τnθ
∑

Γ∈F̃n,I
h

∫

Γ

〈∇In,Dh (en − ϕn) · n〉[unh] dS (=: ξ2a)

− τn
∑

K∈T̃ n
h

∫

K

∇en∇In,Dh (en − ϕn) dx (=: ξ2b)

An application of the Cauchy-Schwarz inequality, (5.1), and (4.17) with settings

v := un − ϕn, z := unh, gD := unD yield

|ξ2a|2 6 τ2n

( ∑

Γ∈F̃n,I
h

hΓ‖〈∇In,Dh (en − ϕn) · n〉‖2Γ
)( ∑

Γ∈F̃n,I
h

h−1
Γ ‖[unh]‖2Γ

)
(5.8)

6 τ2nη
n
J c

(
|en − ϕn|2

H1(Ω,T̃ n
h )

+
(
J(unh)

un
D

− 1
2 ,F̃

n
h

)2)
.

Furthermore, the Cauchy-Schwarz inequality and (4.18) give

|ξ2b|2 6 τ2n|en|2H1(Ω,T̃ n
h )

∑

K∈T̃ n
h

‖∇In,Dh (en − ϕn)‖2K(5.9)

6 cτ2n|en|2H1(Ω,T̃ n
h )

(
|en − ϕn|2

H1(Ω,T̃ n
h )

+
(
J(unh)

un
D

− 1
2 ,F̃

n
h

)2)
.

Further, the Cauchy-Schwarz inequality and (4.20) give

(5.10) |ξ3|2 6 τ2n(η
n
R)

2
∑

K∈T̃ n
h

h−2
K ‖ϕn − In,Dh ϕn‖2K 6 cτ2n(η

n
R)

2|ϕn|21,Ω.

Furthermore, the Cauchy-Schwarz inequality and (4.21) yield

(5.11) |ξ4|2 6 τ2n(η
n
Jd)

2
∑

F̃n,I
h

h−1
Γ ‖ϕn − In,Dh ϕn‖2Γ 6 cτ2n(η

n
Jd)

2|ϕn|21,Ω.
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Similarly, the Cauchy-Schwarz inequality, the estimate |θ| 6 1, and (4.17) with

settings v := ϕn, z := 0, gD := 0 give

|ξ5|2 6 τ2n

( ∑

Γ∈F̃n,I
h

hΓ‖〈∇In,Dh ϕn · n〉‖2Γ
)( ∑

Γ∈F̃n,I
h

h−1
Γ ‖[unh]‖2Γ

)
(5.12)

6 cτ2n(η
n
J )

2|ϕn|21,Ω.

Again, the Cauchy-Schwarz inequality and (4.21) imply

(5.13) |ξ6|2 6 τ2n(η
n
JdN)

2
∑

F̃n,N
h

h−1
Γ ‖ϕn − In,Dh ϕn‖2Γ 6 cτ2n(η

n
JdN)

2|ϕn|21,Ω.

Due to Lemma 4.7, un can be substituted for any function v ∈ H1
un
D,D(Ω) in ξ7 as

follows:

|ξ7| = τn

∣∣∣∣
∑

K∈T̃ n
h

∫

∂K\∂ΩN

(v − unh)curlχ
n · n dS

∣∣∣∣,

which together with the Cauchy-Schwarz inequality and (4.24) yield

(5.14) |ξ7|2 6 cτ2n

(
J(unh)

un
D

− 1
2 ,F̃

n
h

)2 ∑

K∈T̃ n
h

‖curlχn · n‖2−1/2,∂K\∂ΩN
.

Finally, using the trace inequality (4.3) in (5.14) leads to

(5.15) |ξ7|2 6 cτ2n

(
J(unh)

un
D

− 1
2 ,F̃

n
h

)2

‖curlχn‖2Ω.

Now, the relation (5.6) with the particular estimates of ξl, l = 1, . . . , 7, given in

(5.7)–(5.15) gives

∑

K∈T̃ n
h

‖en‖2K + τn
∑

K∈T̃ n
h

‖∇en‖2K(5.16)

6 cτn|ϕn|1,Ω(ηnR + ηnJdN + ηnJd + ηnJ ) + c‖en − en−1‖ΩJ(unh)
un
D

1
2 ,F̃

n
h

+ c(τn|en|H1(Ω,T̃ n
h ) + ηnJ )

(
J(unh)

un
D

− 1
2 ,F̃

n
h

+ |en − ϕn|H1(Ω,T̃ n
h )

)

+ cτnJ(u
n
h)

un
D

− 1
2 ,F̃

n
h

‖curlχn‖Ω +
∑

K∈T̃ n
h

∫

K

enen−1 dx.

Multiplying (5.16) by 2, an application of Young’s inequality, and the relation

‖en − en−1‖2Ω = ‖en‖2Ω − 2

∫

Ω

enen−1 dx+ ‖en−1‖2Ω,
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give

2
∑

K∈T̃ n
h

‖en‖2K + 2τn
∑

K∈T̃ n
h

‖∇en‖2K(5.17)

6
∑

K∈T̃ n
h

‖en‖2K +
∑

K∈T̃ n
h

‖en−1‖2K

+ cτn

(
(ηnR)

2 + (ηnJdN)
2 + (ηnJd)

2 + (ηnJ )
2 +

(
J(unh)

un
D

− 1
2 ,F̃

n
h

)2)

+
τn
4
|ϕn|21,Ω + c

((
J(unh)

un
D

− 1
2 ,F̃

n
h

)2

+
(
J(unh)

un
D

1
2 ,F̃

n
h

)2

+ (ηnJ )
2
)

+
τn
2
|en|2

H1(Ω,T̃ n
h )

+ cτn(|en − ϕn|2
H1(Ω,T̃ n

h )
+ ‖curlχn‖2Ω).

Moving some terms from the right-hand side of (5.17), using (4.27), and

|ϕn|2
H1(Ω,T̃ n

h )
6 2|ϕn − en|2

H1(Ω,T̃ n
h )

+ 2|en|2
H1(Ω,T̃ n

h )
,

we derive

∑

K∈T̃ n
h

‖en‖2K + τn
∑

K∈T̃ n
h

‖∇en‖2K

6
∑

K∈T̃ n
h

‖en−1‖2K + cτn

(
(ηnR)

2 + (ηnJdN)
2 + (ηnJd)

2 + (ηnJ )
2 +

(
J(unh)

un
D

− 1
2 ,F̃

n
h

)2)

+ c
((
J(unh)

un
D

− 1
2 ,F̃

n
h

)2

+
(
J(unh)

un
D

1
2 ,F̃

n
h

)2

+ (ηnJ )
2
)
,

which together with the definitions (5.2), (4.13), and (5.1) finally yields

‖en‖2Ω + τn
∑

K∈T̃ n
h

‖∇en‖2K 6 ‖en−1‖2Ω + c

(
τn

∑

K∈T̃ n
h

(ηnK,1)
2 +

∑

K∈T̃ n
h

(ηnK,2)
2

)
.

Summing over n = 1, . . . , N , we come to the assertion of the theorem. �

5.2. Lower error bound. What is different in comparison with the conforming

methods are the jump terms appearing in the indicator (5.2). Several techniques

how to deal with this issue have been developed. The article [5] estimates the jump

terms using only the discrete scheme itself. Another way how to do that has been

developed in [1]. There it has been proved that if the penalty parameter is sufficiently

large, the interelement jumps of the approximate solution are subordinated to the

error in the broken H1-seminorm. At last, a completely different approach has been
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carried out in [10], where the continuous Galerkin approximation is compared to the

discontinuous Galerkin approximation to derive an estimate of the jump terms.

The remaining terms in local error indicators (5.2), i.e. the residual and the normal

jumps of the approximate solution, can be estimated in a standard way using suitable

cut-off functions (see, e.g., [8], [12], [17]).

In this section we will derive the lower error bound using techniques as in [5]

and [12]. Recall that f , gN , and uD are assumed to be polynomial functions at each

time step tn.

Theorem 5.2. Let {un}16n6N and {unh}16n6N be the semi-discrete and approx-

imate solutions given by (3.1) and (3.5), respectively. Then

hK‖Rn
K‖K 6 c(hKτ

−1
n ‖en − en−1‖K + |en|1,K), K ∈ T̃ n

h ,

h
1/2
Γ ‖[n · ∇unh]‖Γ 6 c(|en|1,KL

Γ∪KR
Γ
+ hΓτ

−1
n ‖en − en−1‖KL

Γ∪KR
Γ
), Γ ∈ F̃n,I

h ,

h
1/2
Γ ‖gnN −∇unh · n‖Γ 6 c(|en|1,K + hΓτ

−1
n ‖en − en−1‖K), Γ ∈ F̃n,N

h ,

CWJ(unh)
2
− 1

2 ,F̃
n
h

6 c((ηnR)
2 + (ηnJdN)

2 + (ηnJd)
2),

where CW is a sufficiently large constant, specified later, involved in the formula for

the penalty parameter σ, and the constant c is independent of the mesh parameter

and the time step.

P r o o f. First, according to (4.11) and (4.12) we can write

∑

K∈T̃ n
h

∫

K

∇en(∇ϕ+ curlχ) dx+

∫

Ω

en − en−1

τn
ϕdx(5.18)

=
∑

K∈T̃ n
h

∫

K

Rn
Kϕdx−

∑

Γ∈F̃n,I
h

∫

Γ

[∇unh · n]ϕdS

+

∫

∂ΩN

(gnN −∇unh · n)ϕdS +
∑

K∈T̃ n
h

∫

∂K\∂ΩN

encurlχ · n dS

for ϕ ∈ H1
D(Ω) and χ ∈ (H1(Ω))k (k = 1 for d = 2 and k = 3 for d = 3).

Let bK be a standard interior bubble function supported on the element K (see,

e.g., [17]). There exists a constant c > 0 such that the inequality
∫
K(Rn

K)2 dx 6

c
∫
K
Rn

KbKRn
K dx holds, because

( ∫
K
(·)2bK dx

)1/2
is a norm on L2(K) (bK > 0 on

the interior of K), equivalent to the L2 norm on P p(K). Let us fix an arbitrary

K ∈ T̃ n
h . Setting ϕ|K := bKRn

K , ϕ := 0 outside of K, and χ := 0 in (5.18), yields

(5.19)

∫

K

Rn
KbKRn

K dx =

∫

K

en − en−1

τn
bKRn

K dx+

∫

K

∇en · ∇(bKRn
K) dx.
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Now, applying the Cauchy-Schwarz inequality together with the inverse inequality

|bKRn
K |1,K 6 h−1

K ‖Rn
K‖K in (5.19), we obtain

(5.20) ‖Rn
K‖2K 6 c(τ−1

n ‖en − en−1‖K + |en|1,Kh−1
K )‖Rn

K‖K .

Dividing (5.20) by ‖Rn
K‖K and multiplying it by hK finally yields

(5.21) hK‖Rn
K‖K 6 c(hKτ

−1
n ‖en − en−1‖K + |en|1,K).

Let us fix an arbitrary Γ ∈ F̃n,I
h . Let bΓ be a standard edge bubble function

supported on the elements KL
Γ and K

R
Γ (see, e.g., [17]). Let xΓ, V

L
Γ , and V

R
Γ denote

the barycenter of Γ, the vertex of KL
Γ opposite to Γ, and the vertex of K

R
Γ opposite

to Γ, respectively. Then, vnΓ is defined as the extension of [n · ∇unh]|Γ to KL
Γ ∪KR

Γ

such that it is constant along the lines
−−−→
xΓV

L
Γ and

−−−→
xΓV

R
Γ , respectively, see Fig. 1 for

the two-dimensional case. Setting ϕ|KL
Γ∪KR

Γ
:= bΓv

n
Γ , ϕ := 0 outside of KL

Γ ∪ KR
Γ ,

and χ := 0 in (5.18), yields

∫

Γ

[n · ∇unh]bΓ[n · ∇unh] dS(5.22)

=

∫

KL
Γ∪KR

Γ

Rn
KbΓv

n
Γ dx−

∫

KL
Γ∪KR

Γ

∇en · ∇(bΓv
n
Γ) dx

−
∫

KL
Γ∪KR

Γ

en − en−1

τn
bΓv

n
Γ dx.

K
L

Γ K
R

Γ

xΓ

V
R

Γ

V
L

Γ

Figure 1. The extension of [n · ∇unh]|Γ on elements sharing Γ.
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Notice that the use of the inverse inequality and the definition of the extension vnΓ
yield

(5.23)
∑

K∈{KL
Γ ,KR

Γ }

|bΓvnΓ |1,K 6 c,
∑

K∈{KL
Γ ,KR

Γ }

h−1
K ‖bΓvnΓ‖K 6 ch

−1/2
Γ ‖[n · ∇unh]‖Γ.

Now, applying the Cauchy-Schwarz inequality and (5.23) in (5.22) and using similar

arguments as above for the validity of
∫
Γ
[n ·∇unh]2 dS 6 c

∫
Γ
bΓ[n ·∇unh]2 dS leads to

‖[n · ∇unh]‖2Γ 6 c‖[n · ∇unh]‖Γ(‖Rn
K‖KL

Γ∪KR
Γ
h
1/2
Γ(5.24)

+ |en|1,KL
Γ∪KR

Γ
h
−1/2
Γ + τ−1

n ‖en − en−1‖KL
Γ∪KR

Γ
h
1/2
Γ ).

Dividing (5.24) by ‖[n · ∇unh]‖Γ and multiplying it by h
1/2
Γ finally yields

h
1/2
Γ ‖[n · ∇unh]‖Γ 6 c(‖Rn

K‖KL
Γ∪KR

Γ
hΓ + |en|1,KL

Γ∪KR
Γ

(5.25)

+ τ−1
n ‖en − en−1‖KL

Γ∪KR
Γ
hΓ).

Analogously, it can be proved that for an arbitrary Γ ∈ F̃n,N
h

(5.26) h
1/2
Γ ‖gnN −∇unh · n‖Γ 6 c(‖Rn

K‖KhΓ + |en|1,K + τ−1
n ‖en − en−1‖KhΓ).

According to (5.2), it remains to estimate
∑

Γ∈F̃n,I
K

h
−1/2
Γ ‖[unh]‖Γ +

∑

Γ∈F̃n,D
K

h
−1/2
Γ ‖unD −

unh‖Γ. This was done in [5] as follows. Integrating by parts in the first term of anh in
(3.4), we have

(5.27)
∑

K∈T̃ n
h

∫

K

∇unh · ∇vh dx = −
∑

K∈T̃ n
h

∫

K

∆unhvh dx+
∑

K∈T̃ n
h

∫

∂K

∇unh · nvh dS.

We can express the second term on the right-hand side of (5.27) as follows:

∑

K∈T̃ n
h

∫

∂K

∇unh · nvh dS(5.28)

=
∑

Γ∈F̃n,I
h

∫

Γ

(∇unh · n|LΓvh|LΓ −∇unh · n|RΓ vh|RΓ ) dS +
∑

Γ∈F̃n,DN
h

∫

Γ

∇unh · nvh dS

=
∑

Γ∈F̃n,I
h

∫

Γ

([∇unh · n]〈vh〉+ 〈∇unh · n〉[vh]) dS +
∑

Γ∈F̃n,DN
h

∫

Γ

∇unh · nvh dS.
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Keep the terms with jumps of the approximate solution on the left-hand side and

move all the other terms to the right-hand side in (3.5), moreover take into account

(5.27) and (5.28), to obtain

∑

Γ∈F̃n,ID
h

∫

Γ

σ[unh][vh] dS(5.29)

=
∑

K∈T̃ n
h

∫

K

Rn
Kvh dx+

∑

Γ∈F̃n,D
h

∫

Γ

σunDvh dS −
∑

Γ∈F̃n,I
h

∫

Γ

[∇unh · n]〈vh〉dS

+
∑

Γ∈F̃n,N
h

∫

Γ

(gnN −∇unh · n)vh dS − θ
∑

Γ∈F̃n,I
h

∫

Γ

〈∇vh · n〉[unh ] dS

+ θ
∑

Γ∈F̃n,D
h

∫

Γ

∇vh · n(unD − unh) dS.

Setting vh := unh−Iun
D

Av(vh) (I
un
D

Av(vh) is the averaging interpolation operator satisfying

the boundary condition given by unD on ∂ΩD) in (5.29) and applying the Cauchy-

Schwarz inequality yields

∑

Γ∈F̃n,I
h

∫

Γ

σ[unh]
2 dS +

∑

Γ∈F̃n,D
h

∫

Γ

σunh(u
n
h − unD) dS(5.30)

6 ((ηnR)
2 + (ηnJdN)

2 + (ηnJd)
2)1/2

( ∑

K∈T̃ n
h

h−2
K ‖unh − Iun

D

Av(u
n
h)‖2K

+
∑

Γ∈F̃n,N
h

h−1
Γ ‖unh − Iun

D

Av(u
n
h)‖2Γ +

∑

Γ∈F̃n,I
h

h−1
Γ ‖〈unh − Iun

D

Av(u
n
h)〉‖2Γ

)1/2

+

( ∑

Γ∈F̃n,I
h

hΓ‖〈n · ∇(unh − Iun
D

Av(u
n
h))〉‖2Γ

)1/2

((ηnJ )
2)1/2

+

( ∑

Γ∈F̃n,D
h

hΓ‖n · ∇(unh − Iun
D

Av(u
n
h))‖2Γ

)1/2

((ηnJD)
2)1/2

+
∑

Γ∈F̃n,D
h

∫

Γ

σunD(unh − Iun
D

Av(u
n
h)) dS.

Let us estimate the terms containing the averaging operator. First, analogously to

the estimates for ξ4 and ξ6 in (5.11) and (5.13), respectively, we obtain

(5.31)
∑

Γ∈F̃n,IN
h

h−1
Γ ‖〈unh − Iun

D

Av(u
n
h)〉‖2Γ 6 c

∑

K∈T̃ n
h

h−2
K ‖unh − Iun

D

Av(u
n
h)‖2K .
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Further, analogously to the estimate for ξ5 in (5.12), we get

(5.32)
∑

Γ∈F̃n,I
h

hΓ‖〈n · ∇(unh − Iun
D

Av(u
n
h))〉‖2Γ 6 c

∑

K∈T̃ n
h

‖∇(unh − Iun
D

Av(u
n
h))‖2K .

By putting the last term of the right-hand side of (5.30) on the left-hand side, and

using (5.31) and (5.32) together with (4.4), we obtain

∑

Γ∈F̃n,I
h

∫

Γ

σ[unh]
2 dS +

∑

Γ∈F̃n,D
h

∫

Γ

σ(unh − unD)2 dS(5.33)

6 ((ηnR)
2 + (ηnJdN)

2 + (ηnJd)
2)1/2CO((η

n
J )

2 + (ηnJD)
2)1/2

+ CO((η
n
J )

2 + (ηnJD)
2)1/2((ηnJ )

2)1/2 + CO((η
n
J )

2 + (ηnJD)
2)1/2((ηnJD)

2)1/2.

Now, the use of Young’s inequality, the notation (5.1), and provided that the penalty

parameter is sufficiently large to be able to subtract all the terms on the right-hand

side except for those contained in (5.1) from the left-hand side in (5.33), we finally

obtain the desired estimate

(5.34)
∑

Γ∈F̃n,I
h

∫

Γ

σ[unh]
2 dS+

∑

Γ∈F̃n,D
h

∫

Γ

σ(unh−unD)2 dS 6 c((ηnR)
2+(ηnJdN)

2+(ηnJd)
2).

�

6. Numerical example

In this section, we present numerical experiments illustrating the a posteriori error

estimates of this paper. We consider the problem (2.1) where T = 1, Ω = (0, 1) ×
(0, 1), ∂ΩN = ∅, and the initial and boundary conditions are chosen in such a way
that the exact solution is

(6.1) u(x1, x2, t) = exp[x1 + x2 + 2t].

We simply observe that the right-hand side f of (2.1) vanishes. We performed a set

of numerical experiments with the aid of the DGM (3.5) for p = 1, 2, 3 polynomial

approximations.

We consider a uniform space-time discretizations characterized by the space and

time steps hm and τm, m = 1, . . . , 4, respectively. We choose {h1, τ1} = (1/8, 1/100)

and then set hm+1 = hm/2, τm+1 = τm/2
p for m = 1, 2, 3. The space grids are
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triangulations of right triangles resulting from diagonal cuttings of squares with

edges of length hl = hK/
√
2. We evaluate the experimental order of convergence

EOC :=
log(Em/Em−1)

log(hm/hm−1)
, m = 2, 3, 4,

where Em is either the error, or the error estimator on the space-time discretization

{hm, τm}. Table 1 shows the values from (5.3), namely

‖eh‖Y :=‖eN‖2Ω +

N∑

n=1

τn
∑

K∈T̃ n
h

‖∇en‖2K , η1 :=

N∑

n=1

τn
∑

K∈T̃ n
h

(ηnK,1)
2,

η2 :=
N∑

n=1

∑

K∈T̃ n
h

(ηnK,2)
2, ηIC := ‖e0‖2Ω,

ηtot :=η1 + η2 + ηIC, ieff := ηtot/‖eh‖Y .

The value ieff corresponds to the effectivity index. However, since our estimate

(5.3) contains an undetermined constant C, this value may be lower than one. Our

aim is to show that the presented a posteriori error estimate is independent of the

discretization parameters h and τ . Table 1 shows that this is really the case but

a posteriori error estimate depends on the degree of polynomial approximation p.

This is caused by the fact that we have not considered the dependence of generic

constants on p in our analysis.

7. Conclusion

We extended the results from [15] for the upper bound as the high-order DGM

is used. Further, we derived the lower bound. The heat conduction equation was

discretized by the high-order DGM in space and the backward Euler scheme in time.

Analogously to [12], the Helmholtz decomposition was used to overcome difficulties

arising due to the nonconformity of the DGM. Finally, notice that the presented

estimators estimate the discretization error only, i.e., we assume that the linear

system resulting from discretization is solved exactly.
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Pk hm τm ‖eh‖Y η1 η2 ηIC ηtot ieff

1 1.25E-01 1.00E-02 1.22E+00 1.43E+01 3.01E-01 4.31E-03 1.43E+01 11.7360

1 6.25E-02 5.00E-03 6.10E-01 7.39E+00 1.00E-01 1.08E-03 7.39E+00 12.1190

(EOC) (1.00) (0.95) (1.59) (2.00) (0.95)

1 3.12E-02 2.50E-03 3.05E-01 3.76E+00 3.40E-02 2.70E-04 3.76E+00 12.3178

(EOC) (1.00) (0.97) (1.56) (2.00) (0.97)

1 1.56E-02 1.25E-03 1.53E-01 1.90E+00 1.18E-02 6.75E-05 1.90E+00 12.4193

(EOC) (1.00) (0.99) (1.53) (2.00) (0.99)

2 1.25E-01 1.00E-02 2.02E-01 4.53E-01 9.96E-03 7.89E-05 4.53E-01 2.2479

2 6.25E-02 2.50E-03 5.04E-02 1.15E-01 2.46E-03 9.88E-06 1.15E-01 2.2898

(EOC) (2.00) (1.97) (2.02) (3.00) (1.97)

2 3.12E-02 6.25E-04 1.26E-02 2.92E-02 6.10E-04 1.24E-06 2.92E-02 2.3152

(EOC) (2.00) (1.98) (2.01) (3.00) (1.98)

2 1.56E-02 1.56E-04 3.15E-03 7.34E-03 1.52E-04 1.54E-07 7.35E-03 2.3338

(EOC) (2.00) (1.99) (2.00) (3.00) (1.99)

3 1.25E-01 1.00E-02 1.99E-01 1.21E-02 1.66E-04 1.11E-06 1.21E-02 0.0609

3 6.25E-02 1.25E-03 2.49E-02 1.46E-03 2.43E-05 6.95E-08 1.49E-03 0.0598

(EOC) (3.00) (3.04) (2.77) (4.00) (3.03)

3 3.12E-02 1.56E-04 3.11E-03 1.84E-04 4.08E-06 4.34E-09 1.96E-04 0.0630

(EOC) (3.00) (2.99) (2.58) (4.00) (2.93)

Table 1. The computed errors, error estimators, and effectivity indices
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