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Abstract. In this paper we consider the boundary value problem of some nonlinear
Kirchhoff-type equation with dissipation. We also estimate the total energy of the system
over any time interval [0, T ] with a tolerance level γ. The amplitude of such vibrations is
bounded subject to some restrictions on the uncertain disturbing force f . After constructing
suitable Lyapunov functional, uniform decay of solutions is established by means of an
exponential energy decay estimate when the uncertain disturbances are insignificant.
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1. Introduction and mathematical formulation

Research in the area of vibration stabilization of flexible structures like strings,

beams, and plates has been gaining importance since early seventies in studies aimed

at achieving energy decay rate of the system. Understanding the linear and nonlinear

vibrations is becoming increasingly important in a wide range of engineering appli-

cations. This is particularly true in the design of flexible structures such as aircraft,

satellites, bridges etc. There is an increasing trend towards lighter structures with

increased slenderness often made of new composite materials and requiring some

form of active vibration control. There are also applications in the areas of robotics,

micro electrical mechanical systems, non-destructive testing and related disciplines

such as structural health monitoring.

Stability of vibrations of nonlinear equations of motion is of great importance to

researchers in the field of dynamical systems. There are wide discussions on the
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stabilization of nonlinear vibrations of strings in the literature [7], [8], [10], [16], [21].

Here we have considered the initial boundary value problem of the Kirchhoff-type

equations with dissipation. Many authors have studied the existence and uniqueness

of solutions of this type of problems by using various methods [14], [18], [1]. K.Ono

and K.Nishihara [20] have proved the global existence and decay structure of solu-

tions of this type of problem using Galerkin method. Global existence for different

Kirchhoff-type equations on different conditions have been proved by a number of

authors [8], [19], [6], [24]. Recently, Nandi et al. [13] have established uniform ex-

ponential stabilization for flexural vibrations of a solar panel. Intensive study over

nonlinear hyperbolic vibrating equations have been made by a number of authors

[11], [17], [15]. Asymptotic stability for different Kirchhoff systems can be found in

the literature [2], [3], [4], [5].

The mathematical formulation involved here is mainly the integro-differential

equation

(1) ̺h
∂2y

∂t2
+ δ

∂y

∂t
=

(

p0 +
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

)

∂2y

∂x2
+ f, 0 < x < L, t > 0,

where the coefficient ̺ is the mass density, h is the cross-section area, L is the length,

p0 is the initial axial tension, δ is the resistance modulus, E is the Young modulus

and f is the external force.

The boundary conditions are

(2) y(0, t) = y(L, t) = 0, t > 0,

and the initial values are

(3) y(x, 0) = y0(x) and
∂y

∂t
(x, 0) = y1(x), 0 6 x 6 L.

The aim of this work is to study the stabilization of solutions of the system (1)–(3).

We adopt here a direct method to achieve the results by constructing a suitable

Lyapunov functional associated with the energy functional of the system.

2. Energy of the system

The total energy E(t) of the system (1)–(3) at time t > 0 is defined by

(4) E(t) =
1

2

∫ L

0

[

̺h
(∂y

∂t

)2

+ p0

(∂y

∂x

)2]

dx+
Eh

8L

(
∫ L

0

(∂y

∂x

)2

dx

)2

.

206



Differentiating (4) with respect to t and using (1), we obtain

(5)

dE

dt
=

∫ L

0

[

̺h
∂y

∂t

∂2y

∂t2
+ p0

∂y

∂x

∂2y

∂x∂t

]

dx+
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

∫ L

0

∂y

∂x

∂2y

∂x∂t
dx

=

∫ L

0

[

∂y

∂t

{

− δ
∂y

∂t
+

(

p0 +
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

)

∂2y

∂x2
+ f

}

+ p0
∂y

∂x

∂2y

∂x∂t

]

dx

+
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

∫ L

0

∂y

∂x

∂2y

∂x∂t
dx

= p0

∫ L

0

[∂y

∂t

∂2y

∂x2
+

∂y

∂x

∂2y

∂x∂t

]

dx− δ

∫ L

0

(∂y

∂t

)2

dx+

∫ L

0

f
(∂y

∂t

)

dx

= p0

∫ L

0

∂

∂x

(∂y

∂x

∂y

∂t

)

dx− δ

∫ L

0

(∂y

∂t

)2

dx+

∫ L

0

f
(∂y

∂t

)

dx

=

∫ L

0

f
(∂y

∂t

)

dx− δ

∫ L

0

(∂y

∂t

)2

dx 6 0 for t > 0,

where the integration is performed by parts and the boundary conditions (2) are

used. As the input disturbance f is present in (5), the energy of the system will be

neither dissipating nor conserving. Integrating (5) over [0,t], we get

(6) E(t) = E(0)−2

∫ t

0

∫ L

0

δ
(∂y

∂t

)2

dxdt+

∫ t

0

∫ L

0

f
(∂y

∂t

)

dxdt for t > 0,

where

(7) E(0) =
1

2

∫ L

0

[

̺hy21(x) + p0

(∂y0
∂x

)2]

dx+
Eh

8L

(
∫ L

0

(∂y0
∂x

)2

dx

)2

.

We see from (6) that when the input disturbance f ≡ 0, the energy of the system is

dissipating with time, satisfying E(t) 6 E(0) for every t > 0. Now the estimate (7)

implies that if y0 ∈ H1
0 [0, L] and y1 ∈ L2[0, L], where

(8) H1
0 [0, L] := {F ; F ∈ H1[0, L] and F (0) = F (L) = 0}

is the subspace of the classical Sobolev space

(9) H1[0, L] = {F ; F ∈ L2[0, L], F ′ ∈ L2[0, L]}

of real valued functions of order one, then E(t) 6 E(0) < +∞ for every t > 0.

Yamazaki [23] considers the initial-boundary value problem for the Kirchhoff equa-

tions in exterior domains of dimension three, showing that these problems admit
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time-global solutions. Yamazaki [22] also proves the unique global solvability of

initial-boundary value problem for the Kirchhoff equations in exterior domains or

in the whole Euclidean space for dimension larger than three, showing time decay

estimate of the linear wave equation.

3. Stability results

The main result of this paper can be stated in the following two theorems.

Theorem 1. Let y(x, t) be a solution of the system (1)–(3) with the initial values

(y0, y1) ∈ H1
0 [0, L]× L2[0, L]. Then for every T > 0,

(10)

∫ T

0

E(t) dt 6 ME(0) + γ

∫ T

0

‖f‖2L2(0,L) dt,

where M and γ are defined later in (37).

Theorem 2. Let y(x, t) be a solution of the system (1)–(3) with the initial values

(y0, y1) ∈ H1
0 [0, L]× L2[0, L]. Then the total energy of the system decays uniformly

exponentially with time, that means, the energy E(t) satisfies the relation

(11) E(t) 6 Me−µtE(0) ∀t > 0

for some finite reals M > 1 and µ > 0, both being independent of time t.

In the sequel, we need the following two inequalities.

For any real number α > 0, we have a trivial inequality

(12) |u · v| 6
1

2α
(|u|2 + α2|v|2).

By Poincaré-type Scheeffer’s inequality [12], we can write

(13)

∫ L

0

y2 dx 6
L2

π
2

∫ L

0

(∂y

∂x

)2

dx.

for every y(x, t) satisfying boundary conditions (2).

Next we consider the following lemmas:
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Lemma 1. For every solution y(x, t) of the system (1)–(3), the time derivative

of the functional G (cf. G.C.Gorain [7], V. Komornik and E. Zuazua [9]) defined by

(14) G(t) =

∫ L

0

̺hy
∂y

∂t
dx+

1

2

∫ L

0

δy2 dx for t > 0

satisfies

(15)
dG

dt
=

∫ L

0

̺h
(∂y

∂t

)2

dx−

∫ L

0

(

p0+
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

)

(∂y

∂x

)2

dx+

∫ L

0

yf dx.

P r o o f. Differentiating (14) with respect to t and using the equation (1), we

obtain

dG

dt
=

∫ L

0

̺h
(∂y

∂t

)2

dx+

∫ L

0

̺hy
∂2y

∂t2
dx+

∫ L

0

δy
∂y

∂t
dx(16)

=

∫ L

0

̺h
(∂y

∂t

)2

dx

+

∫ L

0

y

{

− δ
∂y

∂t
+

(

p0 +
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

)

∂2y

∂x2
+ f

}

dx

+

∫ L

0

δy
∂y

∂t
dx.

Integrating by parts and using the boundary conditions (2) and the energy iden-

tity (4), we get

dG

dt
=

∫ L

0

̺h
(∂y

∂t

)2

dx+

[

y

(

p0 +
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

)

∂y

∂x

]L

0

(17)

−

∫ L

0

(

p0 +
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

)

(∂y

∂x

)2

dx+

∫ L

0

yf dx

=

∫ L

0

̺h
(∂y

∂t

)2

dx−

∫ L

0

(

p0 +
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

)

(∂y

∂x

)2

dx

+

∫ L

0

yf dx.

Hence, the lemma is proved. �
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Lemma 2. For every solution y(x, t) of the system (1)–(3), an estimate of the

functional G is given by

(18) −λ0E(t) 6 G(t) 6 λ1E(t) for t > 0,

where

(19) λ0 =
L

π

√

̺h

p0
, λ1 =

δ

p0

L2

π
2
.

P r o o f. We can estimate the first term of (14) as

∣

∣

∣

∣

∫ L

0

̺hy
∂y

∂t
dx

∣

∣

∣

∣

=

∫ L

0

∣

∣

∣

√

̺h
∂y

∂t

∣

∣

∣

∣

∣

√

̺hy
∣

∣dx(20)

6
1

2α

∫ L

0

[

̺h
(∂y

∂t

)2

+ α2̺hy2
]

dx, using (12)

6
1

2α

∫ L

0

[

̺h
(∂y

∂t

)2

+ α2̺h
L2

π
2

(∂y

∂x

)2]

dx, using (13)

=
1

2

L

π

√

̺h

p0

∫ L

0

[

̺h
(∂y

∂t

)2

+ p0

(∂y

∂x

)2]

dx = λ0E(t),

by choosing

(21) α =
π

L

√

p0
̺h

=
1

λ0
.

Again, we can estimate the second term of (14) as

0 6
1

2

∫ L

0

δy2 dx 6
1

2
δ

∫ L

0

y2 dx,(22)

6
1

2
δ
L2

π
2

∫ L

0

(∂y

∂x

)2

dx, using (13)

6
1

2

δ

p0

L2

π
2

∫ L

0

p0

(∂y

∂x

)2

dx,

6
δ

p0

L2

π
2
E(t), using (4).

In view of (20) and (22), the lemma follows immediately. �
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P r o o f of Theorem 1. Proceeding as in G.C.Gorain [8] and V.Komornik and

E.Zuazua [9], we define energy like a Lyapunov functional V by

(23) V (t) = E(t) + εG(t) for t > 0,

where ε > 0 is a small constant.

In view of Lemma 2, the functional V defined by (23) can be estimated as

(24) (1− ελ0)E(t) 6 V (t) 6 (1 + ε(λ0 + λ1))E(t).

Since ε > 0, we may assume that

(25) 0 < ε <
1

λ0

so that V (t) > 0, for every t > 0.

Differentiating (23) with respect to t, and using (5) and (15), we obtain

dV

dt
= − (δ − ε̺h)

∫ L

0

(∂y

∂t

)2

dx+

∫ L

0

f
(∂y

∂t

)

dx(26)

− ε

∫ L

0

(

p0 +
Eh

2L

∫ L

0

(∂y

∂x

)2

dx

)

(∂y

∂x

)2

dx+ ε

∫ L

0

yf dx.

By the inequality (12) we can estimate

∫ L

0

f
(∂y

∂t

)

dx 6
1

2

∫ L

0

[̺hε

2

(∂y

∂t

)2

+
2f2

̺hε

]

dx,(27)

∫ L

0

yf dx 6
1

2

∫ L

0

[ f2

p0k0
+ p0

(∂y

∂x

)2]

dx,(28)

choosing k0 = π
2/L2, so that the differential relation (26) reduces to

dV

dt
6 − (δ − ε̺h)

∫ L

0

(∂y

∂t

)2

dx− ε

∫ L

0

(

p0 +
Eh

2L

∫ L

0

(∂y

∂x

)2

ds

)

(∂y

∂x

)2

dx(29)

+
1

2

∫ L

0

[̺hε

2

(∂y

∂t

)2

+
2f2

̺hε

]

dx+
1

2

∫ L

0

[ εf2

p0k0
+ p0ε

(∂y

∂x

)2]

dx,

=
(

− δ +
5

4
ε̺h

)

∫ L

0

(∂y

∂t

)2

dx−
1

2

∫ L

0

p0ε
(∂y

∂x

)2

dx

−
εEh

2L

[
∫ L

0

(∂y

∂x

)2

dx

]2

+
[ 1

ε̺h
+

ε

2p0k0

]

∫ L

0

f2 dx

=
(

− δ +
7

4
ε̺h

)

∫ L

0

(∂y

∂t

)2

dx− ε

[

1

2

∫ L

0

[

̺h
(∂y

∂t

)2

+ p0

(∂y

∂x

)2]

dx

+
Eh

8L

(
∫ L

0

(∂y

∂x

)2

dx

)2]

+
[ 1

ε̺h
+

ε

2p0k0

]

∫ L

0

f2 dx.
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Choosing

(30) ε <
4δ

7̺h
,

the relation (29) reduces to

(31)
dV

dt
+ εE(t) 6 C‖f‖2L2(0,L),

where

(32) C =
1

ε̺h
+

ε

2p0k0
.

In view of (24), the relation (31) reduces to

(33)
dV

dt
+ µV (t) 6 C‖f‖2L2(0,L),

where

(34) µ =
ε

1 + ε(λ0 + λ1)
.

Multiplying (33) by eµt and integrating from 0 to t, we obtain

(35) V (t) 6 e−µt

[

V (0) + C

∫ t

0

‖f‖2L2(0,L)e
µτ dτ

]

for t > 0.

In view of (24), the relation (35) reduces to

(36) E(t) 6 e−µt

[

ME(0) + µγ

∫ t

0

‖f‖2L2(0,L)e
µτ dτ

]

, ∀t > 0,

where

(37) M =
1 + ε(λ0 + λ1)

1− ελ0
and γ = Cµ(1− ελ0).

Integrating the above relation over [0, T ], we get

(38)

∫ T

0

E(t) dt 6 ME(0)

∫ T

0

e−µt dt+ µγ

∫ T

0

e−µtF (t) dt for t > 0,

where

(39) F (t) =

∫ t

0

‖f‖2L2(0,L)e
µτ dτ.
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Integrating by parts, we get

∫ T

0

E(t) dt = M(1− eµT )E(0) + γ

[

F (0)− e−µTF (T ) +

∫ T

0

e−µtF ′(t)

]

(40)

6 ME(0) + γ

∫ T

0

‖f‖2L2(0,L) dt,

since

(41) F (0) = 0 and F ′(t) = ‖f‖2L2(0,L)e
µt dt.

Hence the theorem. �

R em a r k 1. If f is bounded in the sense sup
t>0

[ ∫ t

0 ‖f‖
2
L2(0,L) dτ

]

< +∞ and for

every (y0, y1) ∈ H1
0 [0, L] × L2[0, L], then it follows from (36) that sup

t>0
E(t) < +∞.

Thus the energy of the system is uniformly bounded over time and the solution of

the system (1)–(3) is bounded also for the boundedness of the input disturbances f

in the sense above. This signifies that the system is bounded-input bounded-output

stable.

R em a r k 2. The result of Theorem 1 is an estimate of the total energy E(t) as

the system evolves over a time interval [0, T ], for T > 0, due to work done by the

disturbing force f and dissipation. The term γ appearing in (40) may be seen as the

tolerance factor of the disturbing force f on the total energy over any time interval

[0, T ].

P r o o f of Theorem 2. We shall prove Theorem 2 with the help of Theorem 1.

In the case when f ≡ 0, it follows from (36) that

(42) E(t) 6 Me−µtE(0) for t > 0.

Hence the theorem. �

R em a r k 3. The result (42) shows an uniform exponential stability of the system

(1)–(3) due to dissipation in an ideal case where there is no input disturbance in the

system. It is obvious that the exponential decay estimate will be maximum for the

largest admissible value ε satisfying (30).
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4. Conclusions

This study deals with the mathematical stability results of the boundary value

problem of some nonlinear Kirchhoff-type equation with dissipation. The total en-

ergy of the system is calculated over any time interval [0, T ] with a tolerance level

γ of the input disturbances. It also covers that the amplitude of such vibrations is

bounded subject to a bounded disturbing force f . Finally, uniform decay of solutions

by means of an exponential energy decay estimate is achieved when the uncertain

disturbances are not important enough to merit attention of the system.

A c k n ow l e d g em e n t. The authors wish to thank the reviewers for their valu-

able comments and suggestions in revising the paper.
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