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STABILITY FOR A DIFFUSIVE DELAYED PREDATOR-PREY

MODEL WITH MODIFIED LESLIE-GOWER AND

HOLLING-TYPE II SCHEMES

Yanling Tian, Guangzhou

Abstract. A diffusive delayed predator-prey model with modified Leslie-Gower and
Holling-type II schemes is considered. Local stability for each constant steady state is
studied by analyzing the eigenvalues. Some simple and easily verifiable sufficient conditions
for global stability are obtained by virtue of the stability of the related FDE and some
monotonous iterative sequences. Numerical simulations and reasonable biological explana-
tions are carried out to illustrate the main results and the justification of the model.
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1. Introduction

In recent years considerable attention has been paid to the dynamic relationship

between predators and their prey due to its universal existence and importance in

population dynamics. The investigations on predator-prey models have been devel-

oped during these thirty years, and more realistic models have been derived in due

to laboratory experiments and observations. In these models, more factors such as

age-structure, seasonal effects, radio dependence, etc. have been taken into consid-

eration (see [1], [3], [4], [5], [6], [7], [11] and the references therein). An important

factor is the time delay (see [8], [13], [12], [1], [7] and the references therein). In [1],

[7], Nindjin et al. considered a predator-prey model incorporating a modified ver-

sion of the Leslie-Gower functional response as well as the Holling-type II functional

Research is supported by the Natural Science Foundation of China (11171120), the Doc-
toral Program of Higher Education of China (20094407110001) and Natural Science Foun-
dation of Guangdong Province (10151063101000003).
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response with delay:

ẋ = x
(
a1 − bx−

c1y

x+ k1

)
,(1.1)

ẏ = y
(
a2 −

c2y(t− τ)

x(t− τ) + k2

)
,

where (1.1) is considered associated with the initial conditions x(s) > 0, y(s) > 0,

s ∈ [−τ, 0]. Here, a single discrete delay τ > 0 is introduced as a negative feedback

in the predator’s density.

Note that the species always diffuse to areas of smaller population concentra-

tion in order to look for more food, so more and more mathematicians focus their

attention on diffusive predator-prey systems. Let U = U(t, x), W = W (t, x),

x = (x1, x2, . . . , xn) ∈ R
n represent the density of the preys and the predators

at time t and location x respectively, let D1 and D2 be the diffusion coefficients at

x of the preys and the predators respectively. We plan to derive a reaction diffusion

equation by Fick’s Law. The Law says the predators always move from areas where

population density is high to areas where it is lower, and it can be represented as

J(t, x) = −D2∇xW (t, x), where J is the flux of the predatorsW (t, x), and ∇x is the

gradient operator ∇x = (∂W/∂x1, ∂W/∂x1, ∂W/∂x2, . . . , ∂W/∂xn). On the other

hand, the reaction rate is c2W (t− τ)/U(t− τ) + k2. Choose an arbitrary region O,

the total population of the predators in O is
∫
O W (t, x) dx and the rate of changes of

the population W is ( d/ dt)
∫
O
W (t, x) dx. The net growth of the population inside

the region O is
∫
O
W (a2 − c2W (t− τ)/(U(t− τ) + k2)) dx and the total out flux is

(1.2)

∫

∂O

J(t, x) · n(x) dS,

where ∂O is the boundary of O and n(x) is the outer normal direction at x. Then

the balance law implies

(1.3)
d

dt

∫

O

W (t, x) dx = −

∫

∂O

J(t, x) · n(x) dS +

∫

O

W
(
a2 −

c2W (t− τ)

U(t− τ) + k2

)
dx.

From the Divergence Theorem in multi-variable calculus, we have

(1.4)

∫

∂O

J(t, x) · n(x) dS =

∫

O

div(J(t, x)) dx.

Combining (1.2), (1.3) and (1.4), and interchanging the order of differentiation and

integration, we obtain

∫

O

∂W (t, x)

∂t
dx =

∫

O

[
div(D2∇xW (t, x))+W

(
a2−c2W (t− τ)/U(t− τ) + k2

)]
dx.
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Since the choice of the region O is arbitrary, the differential equation

∂W (t, x)

∂t
= D2∆W +W

(
a2 −

c2W (t− τ)

U(t− τ) + k2

)

holds for any (t, x), where ∆ is the Laplacian operator. Together with the similar

arguments on the preys U(t, x), it leads to the consideration of the reaction-diffusion

model

∂U

∂t
= D1∆U + U

(
a1 − bU −

c1W

U + k1

)
,(1.5)

∂W

∂t
= D2∆W +W

(
a2 −

c2W (t− τ)

U(t− τ) + k2

)
,

which expresses the interaction of spatially distributed populations of predator W

and prey U . If the predator and prey are confined to a fixed bounded domain Ω in

R
n with smooth and impermeable boundary, that means the model is self-contained

and has no population flux across the boundary ∂Ω, then the homogeneous Neumann

boundary condition is admissible. Doing the same variable changes as in [10], (1.5)

becomes

∂u

∂t
= D∆u+ u

(
1− u−

β1w

u+ k1

)
, t > 0, x ∈ Ω,(1.6)

∂w

∂t
= ∆w + αw

(
1−

β2w(t− τ)

u(t− τ) + k2

)
, t > 0, x ∈ Ω,

∂u

∂n
=

∂w

∂n
= 0, t > 0, x ∈ ∂Ω,

u(s, x) = u0(s, x) > 0, (s, x) ∈ [−τ, 0]× Ω,

w(s, x) = w0(s, x) > 0, (s, x) ∈ [−τ, 0]× Ω,

where D, α, β1, β2, k1, k2 are positive constants. The initial data u0, w0 are con-

tinuous functions of s and x. By the method of upper and lower solutions we note

from [8, Theorem 2.1] that (1.6) has a unique nonnegative global solution (u,w). In

addition, if u0 6≡ 0, w0 6≡ 0, then the solution is positive, i.e., u(t, x) > 0, w(t, x) > 0

on Ω for all t > 0, by the maximum principle.

In view of the fact that the non-existence of the non-constant steady states can

occur under some conditions (refer to [2, Theorem 3.1]), so the purpose of our work

is to investigate the stability of the constant steady states. Our paper is organized as

follows. In Section 2, we discuss the stability of the related FDE. The boundedness

and persistence of (1.6) are considered in Section 3. The local stability and the global

219



stability for the constant steady states are considered in Section 4. Numerical sim-

ulations are presented in Section 5 to illustrate some main results. Some conclusion

and discussion are given in Section 5. The conclusion tells us the theorems in our

paper agree with the natural rules of ecology.

2. Preliminary: stability for an FDE

In this section we give some stability results on an FDE in the form

dz

dt
= αz

(
1−

1

d
z(t− τ)

)
, t > 0,(2.1)

z(s) > 0, s ∈ [−τ, 0), z(0) > 0,

in order to study the global stabilities of the constant steady states in Section 4.

Lemma 2.1. For the equation (2.1), the following statements are valid:

(i) z(t) > 0 for all t > 0.

(ii) lim sup
t→+∞

z(t) 6 deατ , lim inf
t→+∞

z(t) > deAατ , A = 1− eατ .

P r o o f. Suppose that there is T > 0 such that z(T ) = 0. Then there is

L > 0 such that max
t∈[0,T ]

z(t) 6 L and dz/ dt > αz(1 − (1/d)L), which leads to

z(t) > z(0)eα(1−(1/d)L)t for 0 < t < T . It is a contradiction with z(T ) = 0. Thus (i)

is valid.

Integrating (2.1) over [0, τ ], we obtain

ln z(t)− ln z(t− τ) =

∫ τ

0

α
(
1−

1

d
z(t− τ − s)

)
ds 6 ατ, t > τ,

hence there is z(t) 6 z(t − τ)eατ , i.e. z(t − τ) > z(t)e−ατ . Substituting from (2.1),

we obtain
dz

dt
6 αz

(
1−

1

d
ze−ατ

)
, t > τ,

which leads to lim sup
t→+∞

z(t) 6 deατ .

Consequently, we have T1 > τ such that z(t − τ) 6 d(eατ + ε) for t > T1, then

1− (1/d)z(t− τ) > 1− (eατ + ε). Substituting from (2.1), we also obtain

dz

dt
> αz(1− eατ − ε) = (A− ε)αz, t > T1,
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hence ln z(t) − ln z(t − τ) > (A − ε)ατ for t > T1, then z(t − τ) 6 z(t)e−(A−ε)ατ

follows. Substituting from (2.1) again, we have

dz

dt
> αz

(
1−

1

d
ze−(A−ε)ατ

)
, t > T1,

which yields lim inf
t→+∞

z(t) > de(A−ε)ατ . Let ε → 0, then lim inf
t→+∞

z(t) > deAατ . �

It is readily seen that (2.1) has two steady states z = 0 and z = d. Obviously,

z = 0 is unstable, hence we discuss the global stability of z = d by means of the V

function.

Lemma 2.2. If 1− 3
2ατe

ατ > 0, then the solution of (2.1) satisfies lim
t→+∞

z(t) = d.

P r o o f. Let z(t) be a solution of (2.1). Since z(t) > 0 for t > 0, we define

W (t) = ln(z(t)/d) for t > τ . Thus (2.1) can be written as

(2.2) Ẇ (t) = α(1 − eW (t−τ)), t > τ.

Define V1(t) =
∫W (t)

0 (eu − 1) du, then the derivative of V1 along the solution of (2.2)

is

(2.3) V̇1(t)|(2.2) = (eW (t) − 1)Ẇ (t) = α(eW (t) − 1)(1− eW (t−τ)).

Note that

eW (t) − eW (t−τ) =

∫ t

t−τ

αeW (s)(1− eW (s−τ)) ds,

substitute from (2.3), then

V̇1(t) = α(eW (t) − 1)(1− eW (t) + eW (t) − eW (t−τ))(2.4)

= − α(eW (t) − 1)2 + α(eW (t) − 1)

∫ t

t−τ

αeW (s)(1− eW (s−τ)) ds

6 − α(eW (t) − 1)2 +
α2

2

∫ t

t−τ

eW (s) ds(eW (t) − 1)2

+
α2

2

∫ t

t−τ

eW (s)(eW (s−τ) − 1)2 ds.

Define

V2(t) = α2

∫ t

t−τ

[ ∫ t

ν

eW (s)(1− eW (s−r))2 ds

]
dν,

221



then the derivative of V2 along the solution of (2.2) is

(2.5) V̇2(t)|(2.2) = α2τeW (t)(1− eW (t−τ))2 − α2

∫ t

t−τ

eW (s)(1− eW (s−τ))2 ds.

Choose ε so that 1 − 3
2ατ (e

ατ + ε) > 0, define V3(t) = α2τL
∫ t

t−τ (e
W (s) − 1)2 ds,

where L = eατ + ε. Then

(2.6) V̇3(t)|(2.2) = α2τL(eW (t) − 1)2 − α2τL(eW (t−τ) − 1)2.

Let V (t) = V1(t) + V2(t) + V3(t). It is easy to see that V (t) is bounded below and

the derivative of V along the solution of (2.2) is

V̇ (t)|(2.2) = − α(eW (t) − 1)2 +
α2

2

∫ t

t−τ

eW (s) ds (eW (t) − 1)2

+
α2

2

∫ t

t−τ

eW (s)(eW (s−τ) − 1)2 ds+ α2τeW (t)(1− eW (t−τ))2

− α2

∫ t

t−τ

eW (s)(1− eW (s−τ))2 ds+ α2τL(eW (t) − 1)2

− α2τL(eW (t−τ) − 1)2.

Since lim sup
t→+∞

W (t) 6 ατ , we have eW (t) 6 L for t sufficiently large. We have from

the assumption that

V̇ (t)|(2.2) 6 −α
(
1−

3ατ

2
L
)
(eW (t) − 1)2 6 0.

It is easy to see that V̇ = 0 if and only if W = 0, i.e. z = d, hence the Invariant

Principle implies z(t) → d as t → +∞. The proof is complete. �

3. Boundedness and persistence

In this section, we discuss the boundedness of the solutions and the persistence of

the system (1.6). A lemma will be given for convenience.
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Lemma 3.1. Consider the equation

∂v

∂t
= D∆v + vg(v(t− τ, x)), t > 0, x ∈ Ω,(3.1)

∂v

∂n
= 0, t > 0, x ∈ ∂Ω,

v(s, x) > 0, s ∈ [−τ, 0], x ∈ Ω.

If v(0, x) 6≡ 0, the following statements are valid.

(i) If the function g satisfies g(v) 6 α(1−(1/d)v), then the solution of the equation

(3.1) has the property

(3.2) lim sup
t→+∞

max
Ω

v(t, ·) 6 deατ .

(ii) If the function g satisfies g(v) > α(1−(1/d)v), then the solution of the equation

(3.1) has the property

(3.3) lim inf
t→+∞

min
Ω

v(t, ·) > deAατ , where A = 1− eατ < 0.

P r o o f. Since g(v) 6 α(1 − v/d), we are led to consider the FDE in the form

dz

dt
= zα

(
1−

1

d
z(t− τ)

)
, t > 0,

z(s) = max
Ω

v(s, ·) > 0, s ∈ [−τ, 0].

Then Lemma 2.1 and the assumption v(0, x) 6≡ 0 imply (3.2) by the comparison

method. Inequality (3.3) is true by similar arguments. �

The above lemma leads to

Theorem 3.1. Suppose that (u,w) is a solution of (1.6). The following statements

are valid:

lim sup
t→+∞

max
Ω

u(t, ·) 6 1;(3.4)

lim sup
t→+∞

max
Ω

w(t, ·) 6
1 + k2
β2

eατ ;(3.5)

lim inf
t→+∞

min
Ω

w(t, ·) >
k2
β2

eAατ , A = 1− eατ < 0,(3.6)

provided w0(s, x) is nonnegative with w0(s, x) 6≡ 0.
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P r o o f. In view of 1− u− β1w/(u + k1) 6 1− u, the first inequality is true and

there is T1 > 0 such that u(t, x) 6 1 + ε for t > T1, x ∈ Ω. It follows that

1−
β2w(t− τ, x)

k2
6 1−

β2w(t− τ)

u(t− τ) + k2
6 1−

β2w(t− τ)

1 + ε+ k2

for t > T1 + τ , x ∈ Ω. Using Lemma 3.1 again, we have inequality (3.6) and

lim sup
t→∞

max
Ω

w(t, ·) 6
1 + ε+ k2

β2
eατ .

Let ε → 0, then (3.5) is valid, too. All the inequalities are valid and the theorem is

proved. �

Definition 3.1. The problem (1.6) is said to have the persistence property if

for any nonnegative initial data (u0, w0) with u0(s, x) 6≡ 0, w0(s, x) 6≡ 0 for (s, x) ∈

[−τ, 0]×Ω there exists a positive constant η = η(u0, w0) such that the corresponding

solution (u,w) of (1.6) satisfies

lim inf
t→∞

min
Ω

u(t, ·) > η, lim inf
t→∞

min
Ω

w(t, ·) > η.

Theorem 3.2. Suppose that k1 > β1(k2/β2)e
ατ , let K = ((k1/β1)e

−ατ −

k2/β2)β2. If β1(k2/β2)e
Aατ > (1−K)(K + k1), then (1.6) is persistent.

P r o o f. Suppose (u,w) is a solution of (1.6) with u0(x) > 0, w0(x) > 0 and

u0(x) 6≡ 0, w0(x) 6≡ 0. By the assumption, we can choose ε1 > 0 small enough so

that

(3.7) β1

(k2
β2

eAατ − ε1

)
> (1−K)(K + k1).

Then we know from (3.6) that there is T2 > 0 such that w(t, ·) > (k2/β2)e
Aατ − ε1

for all t > T2. It follows that

1− u−
β1w

u+ k1
6

(1 − u)(u+ k1)− β1

(
(k2/β2)e

Aατ − ε1
)

u+ k1
for t > T2, x ∈ Ω.

In view of k1 > β1(k2/β2)e
ατ , there is η1 > 0 with (1−η1)(η1+k1)−β1((k2/β2)e

Aατ−

ε1) = 0 such that lim sup
t→+∞

max
Ω

u(t, ·) 6 η1. Since (3.7) yields η1 < K, we can choose

ε2 such that K − η1 > ε2 > 0 and T3 > T2 such that u(t, ·) 6 η1 + ε2 for all t > T3.

It follows that

1−
β2w(t− τ)

(u + k2)
6 1−

β2w(t − τ)

(η1 + ε2 + k2)
for all t > T3, x ∈ Ω.
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From Lemma 3.1 we have

lim sup
t→+∞

max
Ω

w(t, ·) 6 η2 =
η1 + ε2 + k2

β2
eατ .

In view of η2 < ((K + k2)/β2)e
ατ = k1/β1, we can choose ε3 > 0 with η2 + ε3 <

k1/β1 and T4 > 0 such that w(t, ·) 6 η2 + ε3 < k1/β1 for all t > T4. It follows that

1− u−
β1w

(u+ k1)
>

(1 − u)(u+ k1)− β1(η2 + ε3)

u+ k1
, t > T4, x ∈ Ω.

Thus there is η3 > 0 with (1− η3)(η3 + k1)− β1(η2 + ε3) = 0 such that

(3.8) lim inf
t→+∞

min
Ω

u(t, ·) > η3.

Inequality (3.6) together with (3.8) yields the conclusion of this theorem. �

4. Stability of constant steady states

We discuss the stability of the constant steady states in this section.

4.1. Constant steady states. Obviously, (0, 0), (1, 0), (0, k2/β2) are the three

pairs of boundary constant steady states of (1.6). A proposition from [7] is to guar-

antee existence and uniqueness of a positive constant steady state.

Proposition 4.1. System (1.6) has a unique interior equilibrium E1 = (u∗, w∗)

(i.e., u∗ > 0, w∗ > 0) if the following condition holds:

(4.1)
k2
β2

<
k1
β1

.

Moreover, we have another proposition to guarantee existence of two positive

constant steady states from the graphs of functions f1(x) = (1 − x)(x + k1)/β1,

f2(x) = (x+ k2)/β2.
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Proposition 4.2. System (1.6) has two interior equilibria E2 = (u∗

1, w
∗

1) and

E3 = (u∗

2, w
∗

2) (i.e., u
∗

i > 0, w∗

i > 0) if the following condition holds:

(4.2)
k2
β2

>
k1
β1

, 0 < k1 < 1, ∆ = (β1 − β2 + β2k1)
2 − 4β2(β1k2 − β2k1) > 0.

If u∗

1 > u∗

2, then u∗

1 > (1− k1)/2 > u∗

2 and w∗

1 > w∗

2 . So E2 = (u∗

1, w
∗

1) is the

larger interior equilibrium and E3 = (u∗

2, w
∗

2) is the smaller interior equilibrium.

4.2. Local stability. Motivated by [9], we plan to discuss the local stability of

the constant steady states by analyzing the eigenvalues. So first we give two lemmas

which are helpful in judging the signs of the real parts of the eigenvalues. Lemma 4.1

is from [14].

Lemma 4.1. All roots of the equation (z + a)ez + b = 0, where a and b are real

numbers, have negative real parts if and only if

a > −1, a+ b > 0, b < ̺ sin ̺− a cos ̺,

where ̺ = π/2 if a = 0, or ̺ is the root of ̺ = −a tan ̺ in (0, π) if a 6= 0.

Lemma 4.2 is a consequence of Lemma 4.1.

Lemma 4.2. Supposing µ > 0, τ > 0, all the roots of the equation

(4.3) µ+ αeλτ = λ

have positive real parts if ατ < π/2.

P r o o f. Suppose z = −λτ , then the equation (4.3) becomes

(4.4) (z + µτ)ez + ατ = 0.

We note that if all roots of (4.4) have negative real parts, then all roots of (4.3) have

positive real parts. Obviously, µτ > −1 and µτ + ατ > 0, hence we only need to

prove the third condition of Lemma 4.1.

If µ = 0, then ατ < π/2 implies the third condition of Lemma 4.1 is valid.

If µ > 0, then ατ < ̺ sin ̺ − µτ cos ̺ implies the third condition of Lemma 4.1

is valid, where ̺ is the root of ̺ = −µτ tan ̺ in (0, π) from Lemma 4.1. From the

graph of ̺ = −µτ tan ̺ in (0, π) we know that π/2 < ̺ < π. And calculation yields

̺ sin ̺− µτ cos ̺ = ̺ sin ̺+
̺

tan ̺
cos ̺ = ̺ sin ̺+

̺ cos2 ̺

sin ̺
=

̺

sin ̺
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and ( ̺

sin ̺

)′
=

1 + µτ

sin3 ̺
> 0.

Thus it follows that ̺ sin ̺ − µτ cos ̺ > lim
̺→π/2

̺/ sin ̺ = π/2. Hence, ατ < π/2

implies ατ < ̺ sin ̺ − µτ cos ̺, so the third condition of Lemma 4.1 is valid, too.

Thus all roots of (4.4) have negative real parts. That means that all roots of (4.3)

have positive real parts. The proof is complete. �

The linearized system of (1.6) is

∂u

∂t
= D∆u+ θ1u+ θ2w,(4.5)

∂w

∂t
= ∆w + θ3w + θ4w(t− τ) + θ5w(t− τ).

The corresponding linearized eigenvalue problem is

−D∆ξ − θ1ξ − θ2η = λξ in Ω,(4.6)

−∆η − θ3η − θ4e
λτη − θ5e

λτ ξ = λη in Ω,

∂ξ

∂n
=

∂η

∂n
= 0 on ∂Ω.

Of course θi (i = 1, 2, 3, 4) take different values for each constant steady state. We

list them below.

For (0, k2/β2), θi (i = 1, 2, 3, 4) are taken as

(4.7) θ1 = 1−
β1k2
β2k1

, θ2 = 0, θ3 = 0, θ4 = −α, θ5 =
α

β2

for (u∗, w∗),

(4.8) θ1 = 1− 2u∗ −
β1k1w

∗

(u∗ + k1)2
, θ2 = −

β1u
∗

u∗ + k1
, θ3 = 0, θ4 = −α, θ5 =

α

β2

for (u∗

1, w
∗

1),

θ1 = 1− 2u∗

1 −
β1k1w

∗

1

(u∗

1 + k1)2
=

u∗

1

u∗

1 + k1
(1− 2u∗

1 − k1) < 0,(4.9)

θ2 = −
β1u

∗

1

u∗

1 + k1
, θ3 = 0, θ4 = −α, θ5 =

α

β2

for (u∗

2, w
∗

2),

θ1 = 1− 2u∗

2 −
β1k1w

∗

2

(u∗

2 + k1)2
=

u∗

2

u∗

2 + k1
(1− 2u∗

2 − k1) > 0,(4.10)

θ2 = −
β1u

∗

2

u∗

2 + k1
, θ3 = 0, θ4 = −α, θ5 =

α

β2
.
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As is well known, the constant steady states are linearly stable if (4.6) has no

eigenvalue λ with Reλ 6 0. Therefore, we will discuss the linear stability for each

constant steady state by analyzing the linearized eigenvalue problem. It is of interest

to note that the linear stabilities depend on the parameters.

Theorem 4.1. The positive constant steady state (u∗, w∗) is linearly stable if β1

is sufficiently small and ατ < π/2.

P r o o f. A contradiction argument will be used by assuming that (1.6) has a

positive constant steady state (u∗

(i), w
∗

(i)) which is linearly unstable for a sequence

{β
(i)
1 } with β

(i)
1 → 0, where i > 1. Thus there exists λi with Re (λi) 6 0 and

(ξi, ηi) 6= (0, 0) such that

−D∆ξi − θ
(i)
1 ξi − θ

(i)
2 ηi = λiξi in Ω,(4.11)

−∆ηi − θ4e
λiτηi − θ5e

λiτξi = λiηi in Ω,

∂ξi
∂n

=
∂ηi
∂n

= 0 on ∂Ω,

where θ
(i)
1 = 1− 2u∗

(i) − β
(i)
1 k1w

∗

(i)/(u
∗

(i) + k1)
2, θ

(i)
2 = −(β

(i)
1 u∗

(i))/(u
∗

(i) + k1).

Assuming that ‖ξi‖
2
L2 + ‖ηi‖

2
L2 = 1, from (4.11) we have

λi =

∫

Ω

|∇ξi|
2 −

∫

Ω

θ
(i)
1 |ξi|

2 −

∫

Ω

θ
(i)
2 ηiξ̄i +

∫

Ω

|∇ηi|
2 −

∫

Ω

θ4e
λiτ |ηi|

2 −

∫

Ω

θ5e
λiτξiηi.

Note that θ
(i)
1 → −1, θ

(i)
2 → 0, u∗

(i) → 1, w∗

(i) → (1 + k2)/β2 as i → ∞, β
(i)
1 → 0,

hence {Imλi} and {Re (λi)} are bounded and so {λi} is bounded. Without loss of

generality, assume λi → λ, then Reλ 6 0. We can also assume that ξi → ξ and

ηi → η since {ξi} and {ηi} are bounded. Taking the limit in (4.11), we have

−D∆ξ + ξ = λξ in Ω,(4.12)

−∆η − θ4e
λτη − θ5e

λτξ = λη in Ω,

∂ξ

∂n
=

∂η

∂n
= 0 on ∂Ω.

If ξ 6= 0, then λ is an eigenvalue of the problem

−D∆ϕ+ ϕ = λϕ in Ω,

∂ϕ

∂n
= 0 on ∂Ω.

It is clear that λ > 1, which is impossible. Hence, ξ = 0 and thus η 6= 0. Substituting

ξ = 0 into the second equation of (4.12), we have

(4.13) −∆η + αeλτη = λη in Ω.

228



Since η 6= 0, so λ is an eigenvalue of the problem

−∆ϕ+ αeλτϕ = λϕ in Ω,(4.14)

∂ϕ

∂n
= 0 on ∂Ω.

Let 0 = µ0 < µ1 < µ2 < . . . < . . . denote the eigenvalues of the operator −∆ on X

with the homogeneous Neumann boundary condition, then there is µi such that the

eigenvalue λ satisfies

µi + αeλτ = λ.

It follows from Lemma 4.2 that Reλ > 0, which is also a contradiction. Hence the

theorem is valid. �

Theorem 4.2. The boundary constant steady state (0, k2/β2) is linearly stable

if k1/β1 < k2/β2.

P r o o f. Note that due to (4.6) and (4.7) it is sufficient to prove that all eigen-

values of the linearized eigenvalue problem

−D∆ξ −
(
1−

β1k2
β2k1

)
ξ = λξ in Ω,(4.15)

−∆η + αeλτη −
α

β2
eλτ ξ = λη in Ω,

∂ϕ

∂n
= 0 on ∂Ω,

have positive real parts, i.e., Reλ > 0. This is valid because the eigenvalues satisfy

λ > β1k2/β2k1 − 1 > 0 by virtue of the first equation of (4.15). Hence, the theorem

is proved. �

Theorem 4.1 is the result for system (1.6) that has a unique interior equilibrium.

But how about that system (1.6) if it has two interior equilibria? The following two

theorems answer the question.

Theorem 4.3. Suppose that ατ < π/2, then the positive constant steady state

(u∗

1, w
∗

1) is linearly stable if β2 → ∞.

P r o o f. If the conclusion is not true, we assume that (1.6) has a positive steady

state (u∗

1i, w
∗

1i) which is linearly unstable for a sequence {β
(i)
2 } with β

(i)
2 → ∞, where

i > 1. Thus there exists λi with Re (λi) 6 0 and (ξi, ηi) 6= (0, 0) such that

−D∆ξi − θ1ξi − θ2ηi = λiξi in Ω,(4.16)

−∆ηi − θ4e
λiτηi − θ

(i)
5 eλiτ ξi = λiηi in Ω,

∂ξi
∂n

=
∂ηi
∂n

= 0 on ∂Ω,
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where θ
(i)
5 = α/β

(i)
2 . Similarly to the proof of Theorem 4.1, we can assume λi → λ,

then Re (λ) 6 0. Taking the limit in (4.16), we have

−D∆ξ − θ1ξ − θ2η = λξ in Ω,(4.17)

−∆η − θ4e
λτη = λη in Ω,

∂ξ

∂n
=

∂η

∂n
= 0 on ∂Ω.

From the second equation of (4.17), we obtain Reλ > 0 if η 6= 0 from Lemma 4.2,

which is a contradiction. Then η = 0. Substituting it into the first equation of (4.17),

we get

−D∆ξ −
(
1− 2u∗

1 −
β1k1w

∗

1

u∗

1 + k1

)
ξ = λξ.

Then λ > 0 if ξ 6= 0, because 1 − 2u∗

1 − β1k1w
∗

1/(u
∗

1 + k1) < 0, which is also a

contradiction. So, (u∗

1, w
∗

1) is linearly stable if β2 is sufficiently large. �

Theorem 4.4. The positive constant steady state (u∗

2, w
∗

2) is linearly unstable if

β2 → ∞.

P r o o f. For this constant steady state, θ1 > 0, β2 → ∞ implies that θ1θ4 <

θ2θ5 < 0. If we can find that (4.6) has at least one eigenvalue whose real part

Re (λ) < 0, the conclusion will be true. In view of the fact that the operator −∆

subject to the homogeneous Neumann boundary condition has many eigenvalues

0 = µ0 < µ1 < . . . < µn < . . ., if λ is the eigenvalue of (4.6) corresponding to µ = 0,

then ∣∣∣∣
−λ− θ1 −θ2
−θ5e

λτ −λ− θ4e
λτ

∣∣∣∣ = 0,

hence

(λ+ θ1)(λ+ θ4e
λτ ) = θ2θ5e

λτ .

Define f1(λ) = (λ+ θ1)(λ + θ4e
λτ ), then f1(0) = θ1θ4, f1(−θ1) = 0. Define f2(λ) =

θ2θ5e
λτ , then f2(0) = θ2θ5, f2(−θ1) = θ2θ5e

−θ1τ < 0. Thus θ1θ4 < θ2θ5 and the

intermediate value theorem implies that there exists a λ between −θ1 and 0 being

the eigenvalue of (4.6), thus (u∗

2, w
∗

2) is linearly unstable. �

4.3. Global stability. As is well known, the results in [8] have been applied in

studying the global stability for the delayed diffusive systems (see [12]). But they

cannot be applied to study (1.6) because it is impossible to find a pair of suitable

upper-lower solutions. Thus we plan to investigate (1.6) by virtue of the stability for

the FDE (2.1) as well as some monotonous iterative sequences.
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Theorem 4.5. Suppose that one of the following conditions is satisfied:

(1) k1 > 1 and k1/β1 < (k2/β2)e
Aατ ;

(2) k1 < 1 and ((1 + k1)/2)
2 < β1(k2/β2)e

Aατ .

Let 1− 3
2ατe

ατ > 0. Then

lim
t→∞

(u(t, ·), w(t, ·)) = (0, k2/β2) uniformly on Ω

provided w0(s, x) 6≡ 0, s ∈ [−τ, 0], x ∈ Ω.

P r o o f. Choose ε small enough to have k1/β1 < (k2/β2)e
Aατ − ε and

((1 + k1)/2)
2 < β1((k2/β2)e

Aατ − ε). From (3.6) we have T1 such that w(t, x) >

(k2/β2)e
Aατ − ε for t > T1 and x ∈ Ω, hence both (1) and (2) guarantee

(1 − u)(u + k1) < β1w for t > T1, x ∈ Ω. It follows from the first equation of

(1.6) that

(4.18) lim
t→+∞

u(t, ·) = 0 uniformly on Ω.

Together with the condition w0(s, x) 6≡ 0, s ∈ [−τ, 0], x ∈ Ω, we have T2 > T1 such

that 0 < u(t, x) < ε for t > T2, x ∈ Ω and 0 < w(t, x) for t > T2, x ∈ Ω. It leads to

1−
β2w(t − τ)

k2
< 1−

β2w(t − τ)

u(t− τ) + k2
< 1−

β2w(t − τ)

ε+ k2
, t > T2 + τ, x ∈ Ω.

Consider the following two FDE, one being

ẇ1(t) = αw1

(
1−

β2w1(t− τ)

k2

)
, t > T2 + τ,(4.19)

w1(s) = min
Ω

w(s, x) > 0, s ∈ [T2, T2 + τ ],

the other

ẇ2(t) = αw2

(
1−

β2w2(t− τ)

ε+ k2

)
, t > T2 + τ,(4.20)

w2(s) = max
Ω

w(s, x) > 0, s ∈ [T2, T2 + τ ].

By virtue of Lemma 2.2, w1(t) and w2(t) possess the property that

(4.21) lim
t→+∞

w1(t) =
k2
β2

, lim
t→+∞

w2(t) =
ε+ k2
β2

.

By using the comparison results, (4.21) implies

k2
β2

6 lim inf
t→∞

min
x∈Ω

w(t, ·) 6 lim sup
t→∞

max
x∈Ω

w(t, ·) 6
ε+ k2
β2

.
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Letting ε → 0, we have

(4.22) lim
t→+∞

w(t, ·) =
k2
β2

uniformly on Ω.

From (4.18) and (4.22), we conclude that the theorem is valid. �

The global stability of (0, k2/β2) is obtained by virtue of the stability of (2.1).

Next, we discuss the stability of the state (u∗, w∗) by using the stability of (2.1) as

well as some monotonous iterative sequences.

Theorem 4.6. Suppose that k1/β1 > (1 + k2)/β2 and 1 − 3
2ατe

ατ > 0. If

β1 − β2k1 6 0, then (u∗, w∗) is globally stable provided w0(s, x) 6≡ 0, s ∈ [−τ, 0],

x ∈ Ω.

P r o o f. Choose ε1 > 0 with (1 + k2)/β2 + ε1 < k1/β1. Define P1 = k2/β2, then

we can choose 0 < M1 < 1 and ε1 > 0 such that

(4.23) (1 − (M1 − ε1))((M1 − ε1) + k1)− β1(P1 − ε1) = 0.

Define Q1 = (M1 + k2)/β2. Since Q1 > P1, there is N1 with 0 < N1 6 M1 < 1 such

that

(4.24) (1− (N1 + ε1))((N1 + ε1) + k1)− β1(Q1 + ε1) = 0.

Since u > 0 and w0(s, x) 6≡ 0, s ∈ [−τ, 0], x ∈ Ω, there is T0 > 0 such that for t > T0,

we have 1− β2w/(u+ k2) > 1 − β2w/k2 and 0 < w(t, x), x ∈ Ω. Hence we consider

the FDE in the form

ẇ3(t) = αw3

(
1−

β2w3(t− τ)

k2

)
, t > T0 + τ,

w3(s) = min
Ω

w(s, ·) > 0, s ∈ [T0, T0 + τ ].

The assumption 1 − 3
2ατe

ατ > 0 implies lim
t→+∞

w3(t) = P1 by Lemma 2.2, which

yields

(4.25) lim inf
t→+∞

min
Ω

w(t, ·) > P1,

by comparison results. Then there is T1 > 0 such that w(t, x) > P1 − ε1 for t > T1,

x ∈ Ω. It follows that

1− u−
β1w

u+ k1
6

(1− u)(u+ k1)− β1(P1 − ε1)

u+ k1
,
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and we obtain

(4.26) lim sup
t→+∞

max
Ω

u(t, ·) 6 M1 − ε1.

Hence, there is T2 > T1 such that u(t− τ, ·) 6 M1 for t > T2 + τ , and thus

1−
β2w(t− τ)

u(t− τ) + k2
6 1−

β2w(t− τ)

M1 + k2
for t > T2 + τ, x ∈ Ω.

Consider the FDE in the form

ẇ4(t) = αw4

(
1−

β2w4(t− τ)

M1 + k2

)
, t > T2 + τ,(4.27)

w4(s) = max
Ω

w(s, ·), s ∈ [T2, T2 + τ ].

It is easy to see from Lemma 2.2 that lim
t→+∞

w4(t) = (M1 + k2)/β2 = Q1, and so

(4.28) lim sup
t→+∞

max
Ω

w(t, ·) 6 Q1.

It follows that there is T3 > T2 such that

1− u−
β1w

u+ k1
>

(1− u)(u+ k1)− β1(Q1 + ε1)

u+ k1
for t > T3, x ∈ Ω.

Consequently, we have from (4.24) that

(4.29) lim inf
t→+∞

min
Ω

u(t, ·) > N1 + ε1.

Summarize the above discussion, we have from (4.25), (4.26), (4.28), (4.29) that

P1 6 lim inf
t→+∞

min
Ω

w(t, ·) 6 lim sup
t→+∞

max
Ω

w(t, ·) 6 Q1,

N1 + ε1 6 lim inf
t→+∞

min
Ω

u(t, ·) 6 lim sup
t→+∞

max
Ω

u(t, ·) 6 M1 − ε1.

Similarly we can claim for n > 2 that

Pn 6 lim inf
t→+∞

min
Ω

w(t, ·) 6 lim sup
t→+∞

max
Ω

w(t, ·) 6 Qn,(4.30)

Nn +
ε1
n

6 lim inf
t→+∞

min
Ω

u(t, ·) 6 lim sup
t→+∞

max
Ω

u(t, ·) 6 Mn −
ε1
n
.

233



The sequences are defined as

Pn =
Nn−1 + k2

β2
, Qn =

Mn + k2
β2

,

(
1−

(
Mn −

ε1
n

))((
Mn −

ε1
n

)
+ k1

)
− β1

(
Pn −

ε1
n

)
= 0,

(
1−

(
Nn +

ε1
n

))((
Nn +

ε1
n

)
+ k1

)
− β1

(
Qn +

ε1
n

)
= 0.

They satisfy

0 < N1 6 N2 6 . . . 6 Nn 6 Mn 6 Mn−1 6 . . . 6 M2 6 M1 < 1,(4.31)

k2
β2

= P1 6 P2 6 . . . 6 Pn 6 Qn 6 Qn−1 6 . . . 6 Q2 6 Q1 =
M1 + k2

β2
.

Since all the sequences are monotonous and bounded, there are M , N , P , Q being

the limits of the sequences, respectively. They satisfy

P =
N + k2

β2
, Q =

M + k2
β2

.

(1−M)(M + k1) = β1P , (1−N)(N + k1) = β1Q.

Then we have

β2(1−M)(M + k1)− β1(N + k2) = 0,(4.32)

β2(1−N)(N + k1)− β1(M + k2) = 0.

Thus

(β2 + β1 − β2k1)(M −N)− β2(M
2
−N

2
) = 0.

If M > N , we have

M +N = 1 +
β1

β2
− k1, i.e., N = 1 +

β1

β2
− k1 −M.

Substituting it into (4.32), we have

β2

β1
(1 −M)(M + k1)−

(
1 +

β1

β2
− k1 −M

)
= 0.

We have M > 1 or M < 0 from the assumption β1 − β2k1 6 0 and the graphs

of functions f(x) = (β2/β1)(1 − x)(x + k1) and g(x) = 1 + β1/β2 − k1 − x, which

contradicts (4.31). Thus M = N . Together with the facts that 0 < M = N < 1,

0 < P = Q, we have M = N = u∗, P = Q = w∗ because (u∗, w∗) is the unique

positive steady state of the equation (1.6). Thus (4.30) implies

lim
t→+∞

(u(t, ·), w(t, ·)) = (u∗, w∗) uniformly on Ω,

which means (u∗, w∗) is globally stable. �
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As far as we know, there are few papers considering the case that two equilibria

exist, but it is interesting to consider which equilibrium will attract the solution.

We believe the smaller equilibrium is unstable due to Theorem 4.4 and the larger

equilibrium will not be globally stable. So we find an attractive area for the larger

equilibrium in the following theorem.

Theorem 4.7. Suppose that the equation (1−x)(x+k1)−(β1(1 + k2)/β2)e
ατ = 0

has two roots. Denote the larger root by R. Suppose that k2/β2 > k1/β1 and

1 − 3
2ατe

ατ > 0. If β1 − β2k1 6 0, then (u∗

1, w
∗

1) is stable provided 0 6 w0(s, x) 6

((1 + k2)/β2)e
ατ , R 6 u0(s, x) 6 1, s ∈ [−τ, 0], x ∈ Ω.

P r o o f. We claim that the subset [R, 1]× [0, ((1 + k2)/β2)e
ατ ] is invariant. We

only need to prove that w(t, x) 6 ((1 + k2)/β2)e
ατ and u(t, x) > R for t > 0, x ∈ Ω.

Consider the equation

ż1 = αz1

(
1−

β2z1(t− τ)

1 + k2

)
6 αz1

(
1−

β2z1(t)

1 + k2
e−ατ

)
;

it follows that w(t, x) 6 ((1 + k2)/β2)e
ατ for t > 0, x ∈ Ω. Then u(t, x) > R for

t > 0, x ∈ Ω, because

1− u−
β1w

u+ k1
> 1− u−

β1(1 + k2)

(u+ k1)β2
eατ .

Next, like in the proof of Theorem 4.6, we define some monotonous sequences

{P̂n}, {Q̂n}, {M̂n}, {N̂n} to press the solution from both sides and guarantee that

the solution converges to (u∗

1, w
∗

1). The initial terms of the sequences are defined

as P̂1 = (R + k2)/β2, M̂1 − ε1 is the larger root of the equation (1 − u)(u + k1) −

β1(P̂1 − ε1) = 0, Q̂1 = (M̂1 + k2)/β2, N̂1 − ε1 is the larger root of the equation

(1 − u)(u + k1) − β1(Q̂1 + ε1) = 0, ε1 has the same meaning as in the proof of

Theorem 4.6. The sequences are defined as

P̂n =
N̂n−1 + k2

β2
,

M̂n −
ε1
n
is the larger root of the equation (1− u)(u+ k1)− β1

(
P̂n −

ε1
n

)
= 0,

Q̂n =
M̂n + k2

β2
,

N̂n −
ε1
n
is the larger root of the equation (1− u)(u+ k1)− β1

(
Q̂n +

ε1
n

)
= 0.
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As in the proof of Theorem 4.6, we also can prove that

P̂n 6 lim inf
t→+∞

min
Ω̂

w(t, ·) 6 lim sup
t→+∞

max
Ω

w(t, ·) 6 Q̂n,

N̂n +
ε1
n

6 lim inf
t→+∞

min
Ω

u(t, ·) 6 lim sup
t→+∞

max
Ω

u(t, ·) 6 M̂n −
ε1
n
,

and lim
n→+∞

M̂n = lim
n→+∞

N̂n = u∗

1, lim
n→+∞

P̂n = lim
n→+∞

Q̂n = w∗

1 because (u∗

1, w
∗

1)

is the unique positive steady state of the equation (1.6) in the invariant subset

[R, 1]× [0, ((1 + k2)/β2)e
ατ ]. Thus the theorem is proved. �

5. Numerical simulation

In this section we give some examples to illustrate our main results on the conver-

gence of problem (1.6).

E x am p l e 5.1. In system (1.6), let α = 1, τ = 0.1, β1 = 1, β2 = 0.5, k1 = 2,

k2 = 2.

u

t x

0

0 0
12 2

34

0.2

0.4

0.6

t x

w

0

0 0

1

1

2

2 2

3

3

4

4

Figure 5.1

In this example, we can verify that the conditions in Theorem 4.5 are valid by

simple calculation, hence the solutions converge to (0, k2/β2) = (0, 4).

E x am p l e 5.2. In system (1.6), let α = 1, τ = 0.1, β1 = 0.1, β2 = 0.5, k1 = 1,

k2 = 1.

In this example, we can verify that the conditions in Theorem 4.6 are valid by

simple calculation, hence the solutions converge to (u∗, w∗) = (0.8, 3.6).
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u

t x

0

0 0
12 2

34

0.2

0.4

0.6

0.8

t x

w

0

0 0

1

1

2

2 2

3

34

Figure 5.2

u

t x
0 0

12 2
34

0.5

0.494

0.496

0.498

t x

w

0 0
12 2

34
0.5

0.502

0.504

0.506

0.508

Figure 5.3

E x am p l e 5.3. In system (1.6), let α = 0.1, τ = 0.1, β1 = 1, β2 = 64, k1 = 1/2,

k2 = 33.

In this example, we can verify that the conditions in Theorem 4.7 are valid by

simple calculation, hence the solutions converge to (u∗

1, w
∗

1) = (0.449264, 0.522650).

6. Conclusion and discussion

First we state the biological meaning of the parameters of the model (1.6). Our

model (1.6) is derived from the model (1.1), which is discussed by Nindjin in [7].

Model (1.1) describes a prey population x which serves as food for a predator with

population y. The parameters a1, a2, b, c1, c2, k1, k2 are assumed to be only of

positive values: a1 and a2 are the growth rates of prey x and predator y, respectively,

b measures the strength of competition among individuals of species x, c1 is the

maximum value of the per capita reduction rate of x due to y, k1 and k2 measure
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the extent to which environment provides protection to prey x and to predator y

respectively, and c2 has a similar meaning as c1. So the parameters of model (1.6)

have similar biological meaning. β1 describes the predators capability of capturing

food, while k1 indicates the preys reaction to the predator. When β1 decreases and

k1 increases, i.e., k1/β1 is increasing, the speed of the preys growth will increase, thus

its survival ability. On the other hand, 1/β2 can be used to describe the transition

from prey to predator after the prey is captured by the predator; 1/k2 indicates

the reliability of the predator to the prey; k2 = 0 means the predator is completely

dependent on the prey. The larger k2, the lower reliability the predator has to the

prey, thus a better survival rate in an environment where the prey is scarce. Due to

the above reasons, we can use k1/β1 and k2/β2 to describe the survivability of the

prey u and the predator w respectively.

Next we express the biological meaning of the equilibria of the system (1.6). The

interior equilibria imply co-existence of the prey and the predator. The boundary

equilibrium (0, k2/β2) implies there is only predator left in the environment, and

the prey is eliminated. Although there exists no prey in this case, due to the food

diversity of the predator, it can still survive, with its number limited. Note that

the un-stabilities of (1, 0) and (0, 0) imply that an invasion of a minor quantity of

predator or an invasion of a minor quantity of prey will cause a change of the long

time behavior of the system moving to either (0, k2/β2) or the interior equilibria.

Now we try to give biological explanation of several different cases according to

our previous theorems.

(1) When k1/β1 is small and k2/β2 is large, the prey has weaker survivability.

The system shifts towards equilibrium (0, k2/β2), thus the prey in the environment

becomes extinct (refer to Theorems 4.2 and Theorem 4.5).

(2) k1/β1 < k2/β2, but k2/β2 − k1/β1 is small. That means there is a little

difference between the survivability of the prey and the survivability of the predator.

So there are two interior equilibria and the smaller equilibrium (u∗

2, w
∗

2) is unstable

(refer to Theorem 4.4). And it is reasonable to suppose that either a rather small

transition from prey to predator or a rather large initial density of the prey can result

in the stability of the larger interior equilibrium (u∗

1, w
∗

1) (refer to Theorem 4.3 and

Theorem 4.7).

(3) When k1/β1 is large and k2/β2 is small, the prey has stronger survivability.

There exists a positive equilibrium in this case (see Proposition 4.1). Furthermore, if

β1/β2 becomes small, i.e., we have lower foraging ability of the predator or lower tran-

sition rate from prey to predator, the prey has relatively stronger survivability, and

it will not be extinct. Thus the system is persistent (see Theorem 3.2). In addition,

when the foraging ability of the predator which is denoted by β1 is small enough,
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(u∗, w∗) is locally stable (refer to Theorem 4.1) and when k1/β1 > (1 + k2)/β2,

(u∗, w∗) is globally stable (see Theorem 4.6).

As in [7], our results also reveal the fact that the delay τ plays an important role

in the dynamic system (1.6). The local and global stability of the equilibria involve

restrictions on the length of time delay. These restrictions are due to the assumption

ατ < π/2 in Theorem 4.1 and Theorem 4.3 and the assumption 1 − 3
2ατe

ατ > 0 in

Theorem 4.5, Theorem 4.6 and Theorem 4.7. Therefore, it is obvious that the delay

has a destabilized effect on the equilibria (0, k2/β2), (u
∗, w∗) and (u∗

1, w
∗

1).

To conclude, our system model exhibits specific biological significance, and the

theorems provided in this paper agree with the natural rules of ecology. In addition,

the effect of the delay is indicated in our paper.
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