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STABILITY FOR A DIFFUSIVE DELAYED PREDATOR-PREY
MODEL WITH MODIFIED LESLIE-GOWER AND
HOLLING-TYPE II SCHEMES

YANLING TIAN, Guangzhou

Abstract. A diffusive delayed predator-prey model with modified Leslie-Gower and
Holling-type II schemes is considered. Local stability for each constant steady state is
studied by analyzing the eigenvalues. Some simple and easily verifiable sufficient conditions
for global stability are obtained by virtue of the stability of the related FDE and some
monotonous iterative sequences. Numerical simulations and reasonable biological explana-
tions are carried out to illustrate the main results and the justification of the model.

Keywords: delayed diffusive predator-prey model; modified Leslie-Gower scheme;
Holling-type II scheme; persistence; stability; eigenvalue; monotonous iterative sequence
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1. INTRODUCTION

In recent years considerable attention has been paid to the dynamic relationship
between predators and their prey due to its universal existence and importance in
population dynamics. The investigations on predator-prey models have been devel-
oped during these thirty years, and more realistic models have been derived in due
to laboratory experiments and observations. In these models, more factors such as
age-structure, seasonal effects, radio dependence, etc. have been taken into consid-
eration (see [1], [3], [4], [5], [6], [7], [11] and the references therein). An important
factor is the time delay (see [8], [13], [12], [1], [7] and the references therein). In [1],
[7], Nindjin et al. considered a predator-prey model incorporating a modified ver-
sion of the Leslie-Gower functional response as well as the Holling-type II functional
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response with delay:

. Gy

(1.1) xfx(al bx a:—l—kl)’
(g C2YE—T)
y_y(“2 x(t—T)—i—kQ)’

where (1.1) is considered associated with the initial conditions z(s) > 0,y(s) > 0,
s € [—1,0]. Here, a single discrete delay 7 > 0 is introduced as a negative feedback
in the predator’s density.

Note that the species always diffuse to areas of smaller population concentra-
tion in order to look for more food, so more and more mathematicians focus their
attention on diffusive predator-prey systems. Let U = U(t,z), W = W(t, x),
x = (x1,%2,...,2,) € R™ represent the density of the preys and the predators
at time ¢ and location x respectively, let D1 and Dy be the diffusion coefficients at
x of the preys and the predators respectively. We plan to derive a reaction diffusion
equation by Fick’s Law. The Law says the predators always move from areas where
population density is high to areas where it is lower, and it can be represented as
J(t,x) = =DV, W (t, ), where J is the flux of the predators W (t, z), and V, is the
gradient operator V, = (0W/0x1,0W/0x1,0W/0xs,...,0W/Jx,). On the other
hand, the reaction rate is coW (t — 7)/U(t — 7) + k2. Choose an arbitrary region O,
the total population of the predators in O is fo W (t,x) dz and the rate of changes of
the population W is (d/ d¢) fo W (t,z)dx. The net growth of the population inside
the region O is [, W (az — coW(t —7)/(U(t — 7) + k2)) dz and the total out flux is

(1.2) /8 J(ta) - n(a) dS.

where 90 is the boundary of O and n(z) is the outer normal direction at 2. Then
the balance law implies

(1.3) %/Ow(t’x)dx__/aoJ(t’x).n(x)dS—’—/OW(m_%) dz.

From the Divergence Theorem in multi-variable calculus, we have

(1.4) J(t,x) -n(x)dS = / div(J(t, x)) dz.
80 o

Combining (1.2), (1.3) and (1.4), and interchanging the order of differentiation and
integration, we obtain

/O % dz = /O (At (Do VW () + W (a3 = exW (¢ = )/U (¢~ 7) + k2 |
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Since the choice of the region O is arbitrary, the differential equation

OW (t,x)

Co —7)
o )

= Do AW + W(GQ — m

holds for any (¢, ), where A is the Laplacian operator. Together with the similar
arguments on the preys U(t, x), it leads to the consideration of the reaction-diffusion

model
oUu 61W

1. — = DA — —

(1.5) =D U+U(a1 U U+k1),
ow esW(t —7)
ot *DQAWJFW(GQ U(t—r)+k2)’

which expresses the interaction of spatially distributed populations of predator W
and prey U. If the predator and prey are confined to a fixed bounded domain 2 in
R™ with smooth and impermeable boundary, that means the model is self-contained
and has no population flux across the boundary 90, then the homogeneous Neumann
boundary condition is admissible. Doing the same variable changes as in [10], (1.5)

becomes
ou Brw

(1.6) E_DAu—l—u(l—u—u_'_kl), t>0, e,
ow Baw(t — T)
— =A 1- - t Q
T w+aw( u(t—r)—l—kg)’ >0, x €,
ou Ow
8_1178_11707 t>0,x€5‘Q,

0, (s,z) € [-7,0] x Q,
0, (s,z) € [-7,0] x Q,

u(s, ) = uo(s, x)

\AR%

w(s, x) = wo(s,x)

where D, «, 81, (2, ki1, ko are positive constants. The initial data ug,wy are con-
tinuous functions of s and x. By the method of upper and lower solutions we note
from [8, Theorem 2.1] that (1.6) has a unique nonnegative global solution (u,w). In
addition, if ug # 0, wp # 0, then the solution is positive, i.e., u(t,z) > 0, w(t,z) > 0
on Q for all t > 0, by the maximum principle.

In view of the fact that the non-existence of the non-constant steady states can
occur under some conditions (refer to [2, Theorem 3.1]), so the purpose of our work
is to investigate the stability of the constant steady states. Our paper is organized as
follows. In Section 2, we discuss the stability of the related FDE. The boundedness
and persistence of (1.6) are considered in Section 3. The local stability and the global
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stability for the constant steady states are considered in Section 4. Numerical sim-
ulations are presented in Section 5 to illustrate some main results. Some conclusion
and discussion are given in Section 5. The conclusion tells us the theorems in our
paper agree with the natural rules of ecology.

2. PRELIMINARY: STABILITY FOR AN FDE

In this section we give some stability results on an FDE in the form

z2(s) 20, se€[-1,0), 2(0) >0,

(2.1)

in order to study the global stabilities of the constant steady states in Section 4.

Lemma 2.1. For the equation (2.1), the following statements are valid:

(i) 2(t) >0 for all t > 0.
(i) limsup z(t) < de®”, liminf z(t) > de!®™, A =1 —e°7.
t—+oo t—r+o0

Proof. Suppose that there is T > 0 such that 2(T) = 0. Then there is
L > 0 such that nfg)%]z(t) < L and dz/dt > az(l — (1/d)L), which leads to
telo,

2(t) = 2(0)e*(=(/DL) for 0 < t < T. Tt is a contradiction with z(7") = 0. Thus (i)
is valid.

Integrating (2.1) over [0, 7], we obtain
T 1
Inz(t) —Inz(t—71)= / a(l ——z(t—T7— s)) ds<ar, t>r,
O d

hence there is z(t) < z(t — 7)e®™, i.e. z(t — 7) = z(t)e”*". Substituting from (2.1),
we obtain

d 1
é < az(l — Eze‘“), t>T,
which leads to limsup z(t) < de®”.

t——+oo

Consequently, we have Ty > 7 such that z(t — 7) < d(e®” +¢) for t > T3, then
1-(1/d)z(t —7) 21— (e®” 4 ¢). Substituting from (2.1), we also obtain

d
ﬁ >az(l—e*" —¢)=(A—¢e)az, t>1T,
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hence In z(t) —Inz(t — 7) > (A — €)ar for t > T, then z(t — 7) < z(t)e~(A=2)eT
follows. Substituting from (2.1) again, we have

d 1
i > az(l — Eze_(A_E)M), t > T1,

which yields lim inf z(t) > de(A==)°7. Let ¢ — 0, then liminf z(¢) > de4*". O

t—+oo t—+o0

It is readily seen that (2.1) has two steady states z = 0 and z = d. Obviously,
z = 0 is unstable, hence we discuss the global stability of z = d by means of the V'
function.

Lemma 2.2. If1—2a7e®™ > 0, then the solution of (2.1) satisfies , lim z(¢) =d.

—+o0

Proof. Let z(¢) be a solution of (2.1). Since z(t) > 0 for ¢ > 0, we define
W (t) =In(z(t)/d) for t > 7. Thus (2.1) can be written as

(2.2) W) =a(l -Vt >

Define Vi(t) = fOW(t) (e* —1) du, then the derivative of V; along the solution of (2.2)
is

(2.3) Vi ()] (2.2) = VO D)W () = aeV® —1)(1 — V),

Note that
t
W) _ W(t=1) _ / aeW ) (1 = W61 g,

t—1

substitute from (2.3), then

24)  Vi(t) = a(eV® 1)1 — VO 4 WO _ Wit

t
— (e 1) 4 a(eW O 1)/ eV (1 — W) ds

t—T1
O[2 t
< - Oé(eW(t) — 1)2 T 7 /ti‘r eW(s) ds(eW(t) o 1)2
a2 t
+ 7/ eW(S) (eW(S*T) _ 1)2 ds.
t—T1

Define . .
Va(t) = a2/ [/ V(1 — W) 2 ds| d,
t—1 v
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then the derivative of V4 along the solution of (2.2) is

t
(2.5) Va(t)](2.2) = onTeW(t)(l — eW(t_T))2 — a2/ eW(S)(l — eW(S_T))2 ds.

t—1

Choose ¢ so that 1 — 3ar(e®” +¢) > 0, define V3(t) = o?7L f:_T(eW(s) —1)%ds,
where L = e®” + ¢. Then

(2.6) Va(t)|(2.2) = &*7L("V® —1)2 — @27 L(e" 77 — 1)%

Let V() = Vi(t) + Va(t) + Va(t). It is easy to see that V (¢) is bounded below and
the derivative of V' along the solution of (2.2) is

/ 2 t
VDles = — o™ —1)+ %/ W) ds (WO —1)2
t—1
Oé2 t
+ 9 /t,_r W (s) (eW(sf'r) _ 1)2 ds + azTeW(t)(l _ eW(tf‘r))Q
t
o / V(1 — "2 ds + a7 L) — 1)?

—a?rL(e"W T _1)2,

Since limsup W (t) < ar, we have eV () < L for ¢ sufficiently large. We have from
t——+o00
the assumption that

' 3ar
V(t)l(2.2) < —a(l — TL) (eW(t) —1)2<0.

It is easy to see that V = 0 if and only if W = 0, i.e. z = d, hence the Invariant
Principle implies z(t) — d as t — +o00. The proof is complete. O

3. BOUNDEDNESS AND PERSISTENCE

In this section, we discuss the boundedness of the solutions and the persistence of
the system (1.6). A lemma will be given for convenience.

222



Lemma 3.1. Consider the equation

(3.1) % = DAv +vg(v(t —71,13)), t>0, x€Q,
@:0, t>0, ze€ o,
on

v(s,x) 20, se€[-7,0], z€Q.

If v(0,2) # 0, the following statements are valid.

(i) If the function g satisfies g(v) < a(1—(1/d)v), then the solution of the equation
(3.1) has the property

(3.2) lim sup max v(t,-) < de®”.
t—+oo Q

(ii) If the function g satisfies g(v) > a(1—(1/d)v), then the solution of the equation
(3.1) has the property

(3.3) lim inf minv(t,-) > de®™, where A =1 — e < 0.

t——+oo Q

Proof. Since g(v) < a(1 —v/d), we are led to consider the FDE in the form

z(s) = maxw(s,-) 20, s¢€[-7,0].
Q

Then Lemma 2.1 and the assumption v(0,z) # 0 imply (3.2) by the comparison
method. Inequality (3.3) is true by similar arguments. O

The above lemma, leads to

Theorem 3.1. Suppose that (u, w) is a solution of (1.6). The following statements

are valid:
(3.4) lim sup max u(t, ) < 1;
t—+oo Q
1+k
(3.5) lim sup max w(t, -) < i 260
totoo  Q B2
k
(3.6) lim inf min w(¢, -) > —QeA(’T, A=1-¢e"" <0,
t—+oo Q B

provided wy(s, x) is nonnegative with wo(s, z) # 0.
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Proof. Inviewof 1 —u— fiw/(u+ k1) < 1 — u, the first inequality is true and
there is 71 > 0 such that u(¢,z) < 1+4¢ for t > Ty, z € Q. It follows that

_ Pawlt =1 7) _ Prw(t —7) _ . Prwl—7)

1 < <
ko u(t—T)—f—kQ 14+e+ ko

for t > Ty + 7, x € Q. Using Lemma 3.1 again, we have inequality (3.6) and

1 k
lim sup max w(t, -) < ﬂem.
t—o0 Q /82
Let € — 0, then (3.5) is valid, too. All the inequalities are valid and the theorem is

proved. Il

Definition 3.1. The problem (1.6) is said to have the persistence property if
for any nonnegative initial data (ug,wo) with ug(s,z) # 0,wo(s,x) # 0 for (s,z) €
[—7, 0] x  there exists a positive constant = n(ug, wp) such that the corresponding
solution (u,w) of (1.6) satisfies

liminf minu(¢, ) =7, lminfminw(t,-) > 7.
t—o0 t—oo

Theorem 3.2. Suppose that ki > [1(k2/f2)e*", let K = ((k1/P1)e " —
ko/B2)Ba. If Bi(ka/B2)e ™™ > (1 — K)(K + k1), then (1.6) is persistent.

Proof. Suppose (u,w) is a solution of (1.6) with ug(x) > 0, wo(z) > 0 and
uo(x) # 0, wo(x) # 0. By the assumption, we can choose £; > 0 small enough so
that

(3.7) 51(%&“ —51) > (1 - K)(K + k).

Then we know from (3.6) that there is 75 > 0 such that w(t,-) > (ka/B2)e ™ — &
for all t > T5. It follows that

Prw (A —uw)(ut ki)~ B1((k2/B2)e T —e1)
u+ k1 = u+ ki

1—u-— fort > Ty, x € Q.
In view of k1 > 1 (ka/B2)e®", there is iy > 0 with (1—ny)(n1+k1)—B1((k2/B2)e o™ —

€1) = 0 such that limsup maxu(t,-) < n;. Since (3.7) yields 71 < K, we can choose
t—+oco

g9 such that K — 7 > ey > 0 and T3 > T5 such that u(t,-) < n1 + &2 for all ¢ > Ts.
It follows that

Baw(t —7) Baw(t — )
1-=—2<1-————2 forallt>T3, z€Q.
(u + k2) (1 + 2 + k2) 3
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From Lemma 3.1 we have

. +e2+k
lim sup max w(t, ) < 72 = MTE2TE ar
t—+oo Q 62

In view of o < (K + k2)/B2)e*™ = k1/51, we can choose €3 > 0 with 7y + &3 <
k1/P1 and Ty > 0 such that w(t, ) < n2 +e3 < k1 /p1 for all t > T. It follows that

Srw (L= w)(ut k) = Biln +e3)
(u+k1) ~ u+ ky

1—u-— , t>=Ty, x €l

Thus there is 73 > 0 with (1 —n3)(ns + k1) — f1(n2 + £3) = 0 such that

o : NS
(3.8) Elrﬁnﬁgj m_én u(t, ) = ns.
Inequality (3.6) together with (3.8) yields the conclusion of this theorem. O

4. STABILITY OF CONSTANT STEADY STATES

We discuss the stability of the constant steady states in this section.

4.1. Constant steady states. Obviously, (0,0), (1,0), (0,k2/B2) are the three
pairs of boundary constant steady states of (1.6). A proposition from [7] is to guar-
antee existence and uniqueness of a positive constant steady state.

Proposition 4.1. System (1.6) has a unique interior equilibrium Ey = (u*,w*)
(i.e., u* > 0,w* > 0) if the following condition holds:

ky ki
(4.1) A < B

Moreover, we have another proposition to guarantee existence of two positive
constant steady states from the graphs of functions fi(z) = (1 —x)(z + k1)/fu,

f2(2) = (x + k2)/Bo.
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Proposition 4.2. System (1.6) has two interior equilibria E; = (uf,w}) and
Es = (u3,w3) (i.e., uf >0, w; > 0) if the following condition holds:
ka k1

(4.2) E > E, O<hki<l, A=(p1—pP2+ 52k1)2 — 4f32(B1ka — PB2k1) > 0.

If uy > w3, then uf > (1 —k1)/2 > u} and wi > wh. So Ey = (u},w]) is the
larger interior equilibrium and E5 = (u}, w3) is the smaller interior equilibrium.

4.2. Local stability. Motivated by [9], we plan to discuss the local stability of
the constant steady states by analyzing the eigenvalues. So first we give two lemmas
which are helpful in judging the signs of the real parts of the eigenvalues. Lemma 4.1
is from [14].

Lemma 4.1. All roots of the equation (z + a)e* + b = 0, where a and b are real
numbers, have negative real parts if and only if

a>—-1, a+b>0, b<psing—acosp,

where p = /2 if a = 0, or g is the root of p = —atanp in (0, ) if a # 0.

Lemma 4.2 is a consequence of Lemma 4.1.
Lemma 4.2. Supposing > 0, 7 > 0, all the roots of the equation
(4.3) w4 e = A\

have positive real parts if aT < n/2.

Proof. Suppose z = —A7, then the equation (4.3) becomes
(4.4) (z+pr)e* +ar = 0.

We note that if all roots of (4.4) have negative real parts, then all roots of (4.3) have
positive real parts. Obviously, ur > —1 and u7 + a7 > 0, hence we only need to
prove the third condition of Lemma 4.1.

If 4 =0, then ar < n/2 implies the third condition of Lemma 4.1 is valid.

If p > 0, then ar < gsin o — u7 cos g implies the third condition of Lemma 4.1
is valid, where ¢ is the root of ¢ = —p7tang in (0, x) from Lemma 4.1. From the
graph of o = —p7tan g in (0, ) we know that /2 < ¢ < n. And calculation yields

. ocos? o 0
COSQ = 9SIn g + —; ==
tan o sin o sin @

0Sin g — uTcosp = psinp +
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and

I 14 pr
(L) = — 3'U > 0.
s 0 sm- o
Thus it follows that psing — urcoso > lirr>2 o/sinp = n/2. Hence, ar < /2
0—T
implies aT < gsin g — u7cos g, so the third condition of Lemma 4.1 is valid, too.
Thus all roots of (4.4) have negative real parts. That means that all roots of (4.3)

have positive real parts. The proof is complete. O

The linearized system of (1.6) is

(4.5) % = DAu + 01u + brw,
ow
i Aw + Osw + Ogw(t — 7) + Osw(t — 7).

The corresponding linearized eigenvalue problem is

(46) —DA§ - 915 - 9277 = )\§ in Q,
—An —03n — 0,2 —05eXE = A in Q,
9§ _ on _
a—n = a—n =0 on 89

Of course 0; (i = 1,2,3,4) take different values for each constant steady state. We
list them below.
For (0,k2/fB2), 0; (i =1,2,3,4) are taken as

Bika a

4.7 0 =1-— 0 =0, 03=0, 04=— 05 = —
for (u*,w*),
Brkiw* Bru* a
48) 01 =1—2u" — 2170 g, = — L 05=0, Oi=-a, 05=—
( ) ! v (u*+/<:1)2 2 u*+k1 3 4 @ 5 ﬂg
for (uf, wy),
61k1w{ ’U,y{
4.9 01 =1—2uj — = 1—2uj —k 0
( ) 1 Uy (u>1k +k1)2 uik +I€1( Uy 1) <V,
Biui «
0, = — L 05=0, Oi=—a, 0=
T T T BT
for (u3,ws3),
61k1w§ ’LL;
4.10 0, =1—2us— = 1—2uy—ky) >0,
( ) 1 2 (US =+ k1)2 ’LL; =+ kl( 2 1)
Brus e
0y = — 03=0, 0i=-a, 05=—.
2 U§+k1’ 3 ) 4 a, 5 52
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As is well known, the constant steady states are linearly stable if (4.6) has no
eigenvalue A with Re A < 0. Therefore, we will discuss the linear stability for each
constant steady state by analyzing the linearized eigenvalue problem. It is of interest
to note that the linear stabilities depend on the parameters.

Theorem 4.1. The positive constant steady state (u*, w*) is linearly stable if $;
is sufficiently small and at < /2.

Proof. A contradiction argument will be used by assuming that (1.6) has a
positive constant steady state (u’(*i), w(*i)) which is linearly unstable for a sequence
{,Bgi)} with 69 — 0, where ¢ > 1. Thus there exists A; with Re();) < 0 and
(&, m:) # (0,0) such that

(411) —DA@L' - § 92 i = )\igi in Q,
—An; — 946)\”—771' —05eM7¢ = Nim; in Q,
o6  Oni
- I 0 on 99,
where 01 =1 — 2u7,) — B\ kywy, [(uf, + k)2, 057 = —(B1u7,)) / (uf,) + k).

Assuming that H@HL2 +|Imil|22. = 1, from (4. 11) we have

N = / Ve - / 60|, 2 — / 6 mi, + / Vsl — / 04 a2 — / b5 17,
Q Q Q Q Q Q

Note that 9?) — -1, HS) =0, ug;y — 1, wy = (14 ko)/B2 as i — oo, ,BY) — 0,
hence {Im \;} and {Re ()\;)} are bounded and so {)\;} is bounded. Without loss of
generality, assume A; — A, then ReA < 0. We can also assume that & — ¢ and

n; — n since {&;} and {7;} are bounded. Taking the limit in (4.11), we have

(4.12) —DAE+E =X in Q,
—An— 04N —05eME =Ny in Q,

o6 On
I Im =0 on 99.

If € # 0, then A is an eigenvalue of the problem

—DAp+ ¢ =Ap in Q,
9
I 0 on 09.

It is clear that A > 1, which is impossible. Hence, £ = 0 and thus 1 # 0. Substituting
& = 0 into the second equation of (4.12), we have

(4.13) —An+ e’y =y in Q.
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Since n # 0, so A is an eigenvalue of the problem

(4.14) —Ap+ae*p=Ap inQ,
Iy
I 0 on 09.

Let 0 = pug < 1 < p2 < ... < ... denote the eigenvalues of the operator —A on X
with the homogeneous Neumann boundary condition, then there is p; such that the
eigenvalue \ satisfies

i + e’ =\
It follows from Lemma 4.2 that Re A > 0, which is also a contradiction. Hence the

theorem is valid. O

Theorem 4.2. The boundary constant steady state (0, ka/B2) is linearly stable
lfk‘l/ﬂl < k2/62.

Proof. Note that due to (4.6) and (4.7) it is sufficient to prove that all eigen-
values of the linearized eigenvalue problem

Bikay, :
(4.15) _ DAt — (1 -~ M)g =X inQ
—An+ ae’y — ge”{ =An in Q,
B2
dp
% =0 on 89,

have positive real parts, i.e., Re A > 0. This is valid because the eigenvalues satisfy
A > Brka/P2k1 — 1 > 0 by virtue of the first equation of (4.15). Hence, the theorem
is proved. ([

Theorem 4.1 is the result for system (1.6) that has a unique interior equilibrium.
But how about that system (1.6) if it has two interior equilibria? The following two
theorems answer the question.

Theorem 4.3. Suppose that ar < /2, then the positive constant steady state
(uf,wy) is linearly stable if S — 0.

Proof. If the conclusion is not true, we assume that (1.6) has a positive steady
state (uf;,w;;) which is linearly unstable for a sequence { 65)} with Bél) — 00, where
i > 1. Thus there exists \; with Re (A;) < 0 and (&, ;) # (0,0) such that

(4.16) —DA& — 01§ — b2mi = Ni&  in Q,
—An; — 946/\”—771‘ - Héi)e’\”@ =N\ in Q,

o6 O
- on 0 on 09,
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where 9?) = a/ﬂéi). Similarly to the proof of Theorem 4.1, we can assume \; — A,
then Re (A) < 0. Taking the limit in (4.16), we have

(4.17) —DAE — 01§ — O = A in Q,
—An— 604 n=Xp inQ,
9 _ on _
% = % =0 on 89

From the second equation of (4.17), we obtain Re A > 0 if  # 0 from Lemma 4.2,
which is a contradiction. Then n = 0. Substituting it into the first equation of (4.17),

we get
B1kiwi
~DAg— (1-2uf - Je=xe.
; - Je=e
Then A > 0 if & # 0, because 1 — 2u} — frkyw}/(ui + k1) < 0, which is also a
contradiction. So, (u],w7y) is linearly stable if 82 is sufficiently large. O

Theorem 4.4. The positive constant steady state (u},w3) is linearly unstable if
ﬂg — OQ.

Proof. For this constant steady state, ;1 > 0, B3 — oo implies that 6;0, <
0205 < 0. If we can find that (4.6) has at least one eigenvalue whose real part
Re (\) < 0, the conclusion will be true. In view of the fact that the operator —A
subject to the homogeneous Neumann boundary condition has many eigenvalues
0=p0 < p1 <...<fpiy<...if Xis the eigenvalue of (4.6) corresponding to pu = 0,

then
-\ =0 )

=0
—05er =\ — e ’
hence
(A4 601) (N + 04e*7) = 02057

Define f1(A\) = (A + 601)(\ + 04e*7), then f1(0) = 6104, f1(—61) = 0. Define fo(\) =
92956)‘7—, then fQ(O) = 0505, fg(—@l) = 929567917 < 0. Thus 0,04 < 6205 and the
intermediate value theorem implies that there exists a A between —6; and 0 being
the eigenvalue of (4.6), thus (uj,ws3) is linearly unstable. O

4.3. Global stability. As is well known, the results in [8] have been applied in
studying the global stability for the delayed diffusive systems (see [12]). But they
cannot be applied to study (1.6) because it is impossible to find a pair of suitable
upper-lower solutions. Thus we plan to investigate (1.6) by virtue of the stability for
the FDE (2.1) as well as some monotonous iterative sequences.
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Theorem 4.5. Suppose that one of the following conditions is satisfied:
(1) k1 > 1 and kl/ﬁl < (kg/ﬁg)eAaT,‘
(2) k1 <1 and ((1+ky)/2)? < Bi(ka/B2)eoT.
Let 1 — aTeM > 0. Then
lim (u(t,-), w(t,-)) = (0,k2/B2) uniformly on Q

t—o0
provided wo(s,z) #0, s € [-7,0], x € Q.

Proof. Choose ¢ small enough to have ki/B1 < (ka/B2)e®™ — & and
(14 k1)/2)? < Bi((k2/B2)e*™ — ). From (3.6) we have T such that w(t,z) >
ko/B2)ed®™ — ¢ for t > T and = € Q, hence both (1) and (2) guarantee
1 —u)(u+ ki) < Brw for t > Ty, z € Q. It follows from the first equation of

6) that

(
(
(
(1.

(4.18) t£+moo u(t,-) =0 uniformly on .
Together with the condition wg(s,z) # 0, s € [—7,0], z € £, we have T» > T} such
that 0 < u(t,x) < e fort > Ty, € Qand 0 < w(t,z) for t > Ty, z € Q. Tt leads to

ﬂgw(t—T) <1_ ng(t—T) <1_62w(t—7')

1_
ko ’U,(t—T)—l-kQ e+ ko ’

t>To+71, © €

Consider the following two FDE, one being

t_
(4.19) wn (t) = aw (1 — W) t>Ty+,
2
wi(s) = minw(s,z) >0, s€ [Tz, Ta+ 7],
Q
the other
t_
(4.20) wa(t) = aws (1 - %) t>Ty+7,
wa(s) = maxw(s,z) >0, s€[Te,Ta+7]
Q

By virtue of Lemma 2.2, wq(t) and ws(t) possess the property that

. €+ k?2
(4.21) tl}&noo w(t) = By’ tl}&noo weo(t) = %
By using the comparison results, (4.21) implies
k k
22 Lliminf min w(t, -) < limsup maxw(t, -) < SRy
2 1200 4eQ t—oo xE€EQ B2
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Letting € — 0, we have

ko
4.22 li — iforml Q.
(4.22) dm w(t,) = 3 uniformly on
From (4.18) and (4.22), we conclude that the theorem is valid. O

The global stability of (0, ks2/fB2) is obtained by virtue of the stability of (2.1).
Next, we discuss the stability of the state (u*,w*) by using the stability of (2.1) as

well as some monotonous iterative sequences.

Theorem 4.6. Suppose that ki/B1 > (1+ks)/B2 and 1 — 3are®™ > 0. If

B1 — P2k1 < 0, then (u*,w*) is globally stable provided wq(s,z) # 0, s € [—7,0],
x € Q.

Proof. Choose ey > 0 with (1 + k2)/B2+ €1 < k1/P1. Define Py = ky/f32, then
we can choose 0 < M7 < 1 and ¢7 > 0 such that

(4.23) (1— (M —e))(My —e1)+ k1) — Bi(Pr —e1) =0.

Define Q1 = (M7 + k2)/B2. Since Q1 > Py, there is N1 with 0 < N7 < M; < 1 such
that

(4.24) (1= (Ni+e1)) (N1 +e1)+ k1) = Bi(Qr+¢e1) =0.

Since u > 0 and wo(s,z) £ 0, s € [—7,0], x € Q, there is Ty > 0 such that for ¢ > T,
we have 1 — Sow/(u+kg) > 1 — ng/kg and 0 < w(t,z), € Q. Hence we consider
the FDE in the form

—aw( 52w3 )), t>1Ty+ T,

ws(s) = minw(s, )>0 s € [To, To + 7].
Q

oT

The assumption 1 — %ozre > 0 implies . 1i£rn ws(t) = P; by Lemma 2.2, which
— 400

yields

(4.25) lim inf minw(t,-) > P,

t—+oco

by comparison results. Then there is 77 > 0 such that w(t,z) > P; — & for t > Ty,
x € Q. It follows that

Srw (- w)(utk) = Bi(P —e1)
u+ ki = u+ kK

1—u— ,
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and we obtain

(4.26) lim sup max u(t, ) < My — e7.
t—+oo Q

Hence, there is Ty > T such that u(t — 7,-) < M for t > T + 7, and thus

Bow(t — 7) Bow(t — )
1 - 22T 2T T et s Ty, e Q.
u(t—T)—l—kg M+ ort>1s+T, x €

Consider the FDE in the form
,6211)4 (t — T)

My + ko
wy(s) = maxw(s,-), sé€ [Ty, To+ 7]
Q

(4.27) wa(t) = aw4(1 _ ) t>Ty+7,

It is easy to see from Lemma 2.2 that , ligl wy(t) = (My + ka2)/P2 = @1, and so
—+00

(4.28) lim sup max w(t, ) < Q1.
t—+o0 Q

It follows that there is T3 > T5 such that

frw (A -w)(utk) =@ +er)

1—u—
v u+k = u+ kq

fort > T3, x € Q.

Consequently, we have from (4.24) that

(4.29) lim inf minu(t,-) > Ny + ;1.
t—+o0

Summarize the above discussion, we have from (4.25), (4.26), (4.28), (4.29) that

P, < liminf minw(¢, ) < limsup maxw(t, ) < Q1,

t=too 0 t—+oo  Q
Ny + e <liminfminu(t, ) < limsupmaxu(t, ) < My —

t—=+oco t—+oo Q

Similarly we can claim for n > 2 that

(4.30) P, < liminf minw(¢, ) < limsupmaxw(t, ) < Qn,
t=+oo t—+oo Q
Np +— 2 < liminf minu(t, ) < limsup maxu(t, ) < M, — o
n t=+too o t—too 0O n
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The sequences are defined as

T B

They satisfy

(431) 0<Ny <Ny <...<Ny<My<Mpy<...<My<M <1,
My + ko
B2

Since all the sequences are monotonous and bounded, there are M, N, P, ) being

_:P1<P2<gpné@nan71<<Q2<Q1:

the limits of the sequences, respectively. They satisfy

— N+Hky — M+k
P= , Q=—7—2.
B2 @ B2

(1=M)(M+k) =P, (1-N)N+k)=7p5Q.

Then we have

(4.32) Ba(1 = M)(M + k1) — B1(N + k2) = 0,
= 0.

Bo(1 = N)(N + k) — Bu(3T + ko)
Thus
(B + By — Bok1) (BT — N) — Bo(M° — N°) = 0.
If M > N, we have

H+N:1+%—k1, e, N1+ k71
2

Substituting it into (4.32), we have
B2, =7 el —\ _
5 =T + ) - (1+ Gk - M) =o.

We have M > 1 or M < 0 from the assumption 1 — Boki < 0 and the graphs
of functions f(z) = (B2/B81)(1 — x)(x + k1) and g(z) = 1 + B1/B2 — k1 — x, which
contradicts (4.31). Thus M = N. Together with the facts that 0 < M = N < 1,
0<P=Q, wehave M = N = u*, P = Q = w* because (u*,w") is the unique
positive steady state of the equation (1.6). Thus (4.30) implies

tileroo(u(t, 9, w(t,-)) = (u*,w") uniformly on Q,

which means (u*, w*) is globally stable. O
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As far as we know, there are few papers considering the case that two equilibria
exist, but it is interesting to consider which equilibrium will attract the solution.
We believe the smaller equilibrium is unstable due to Theorem 4.4 and the larger
equilibrium will not be globally stable. So we find an attractive area for the larger
equilibrium in the following theorem.

Theorem 4.7. Suppose that the equation (1—x)(z+k1)—(51(1 + k2)/B2)e*™ =0
has two roots. Denote the larger root by R. Suppose that ko/B2 > ki1/f1 and
1—3are®™ > 0. If B — Boky < 0, then (uj,w?) is_stable provided 0 < wy(s,x) <
(14 k2)/B2)e*", R < up(s,z) <1, s € [-7,0], x € .

Proof. We claim that the subset [R,1] x [0, ((1 + k2)/B2)e*"] is invariant. We
only need to prove that w(t,z) < ((1+ k2)/B2)e*” and u(t,x) > R for t > 0, x € €.
Consider the equation

. Baz1(t — T) B2z1(t) _

= [ R——— < _ aT ).,
Z1 az1(1 T+ 7 >\a21(1 1_'_16263 ),
it follows that w(t,z) < ((1 4+ k2)/B2)e® for t > 0, z € Q. Then u(t,z) > R for
t >0, xz € €, because

Brw 51y B61(1 +k2)e‘”.

]-_ - =
Y u+ ky (u+ k1)f2

Next, like in the proof of Theorem 4.6, we define some monotonous sequences
{ﬁn}, {Q.}, {Mn}, {N,} to press the solution from both sides and guarantee that
the solution converges to (u},wj). The initial terms of the sequences are defined
as 131 = (R + k2)/ B2, M\l — 1 is the larger root of the equation (1 — u)(u + k1) —
,81(131 —e1) = 0, @1 = (]/\4\1 + k2)/Ba, Nl — g1 is the larger root of the equation

(I —uw)(u+ k1) — f1(Q1 + 1) = 0, 1 has the same meaning as in the proof of
Theorem 4.6. The sequences are defined as

~

~ Ny
p, = N1 + kz,
B2
M, — L s the larger root of the equation (1 —u)(u + k1) — f1 (13" - ﬂ) =0,
n n
5, — Maths
B2

N, — 2—1 is the larger root of the equation (1 — u)(u + k1) — 51 (@n + E—nl) =0.
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As in the proof of Theorem 4.6, we also can prove that

~

P, < liminf min w(t, ) < limsup maxw(t, ) < Qn,

t=too t—+oo  Q
5 €1 .. . . T €1
N, + — < liminf minu(t, ) < limsup maxu(t, ) < M, — —,
n t=+o0 t—+oo Q n
and lim M, = lim N, =}, lim P, = lim @, = w; because (u},w?)
n—-+oo n—-+oo

n—-+oo n—-+oo
is the unique positive steady state of the equation (1.6) in the invariant subset

[R,1] x [0, ((1 + k2)/B2)e*"]. Thus the theorem is proved. O

5. NUMERICAL SIMULATION

In this section we give some examples to illustrate our main results on the conver-
gence of problem (1.6).

Example 5.1. In system (1.6), let a =1, 7 = 0.1, 81 = 1, B2 = 0.5, k; = 2,
ko = 2.

==
SRS
SNSR
“‘\\\

=
T
.oz$‘::“:‘\“‘
: P =St
RS
77 NSNS e e
S
7 D

0.6,

S

0.4

0.2

Figure 5.1

In this example, we can verify that the conditions in Theorem 4.5 are valid by
simple calculation, hence the solutions converge to (0, k2/B2) = (0,4).

Example 5.2. In system (1.6), let « = 1, 7 = 0.1, 1 = 0.1, B2 = 0.5, k1 = 1,
ko = 1.

In this example, we can verify that the conditions in Theorem 4.6 are valid by

simple calculation, hence the solutions converge to (u*,w*) = (0.8, 3.6).
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Figure 5.3

Example 5.3. In system (1.6), let « = 0.1, 7 =0.1, f1 =1, B2 = 64, k1 = 1/2,
ko = 33.

In this example, we can verify that the conditions in Theorem 4.7 are valid by
simple calculation, hence the solutions converge to (u},w;) = (0.449264,0.522650).

6. CONCLUSION AND DISCUSSION

First we state the biological meaning of the parameters of the model (1.6). Our
model (1.6) is derived from the model (1.1), which is discussed by Nindjin in [7].
Model (1.1) describes a prey population z which serves as food for a predator with
population y. The parameters aq, as, b, ¢1, c2, k1, ko are assumed to be only of
positive values: a; and ao are the growth rates of prey x and predator y, respectively,
b measures the strength of competition among individuals of species x, ¢y is the
maximum value of the per capita reduction rate of x due to y, k1 and ks measure
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the extent to which environment provides protection to prey x and to predator y
respectively, and c¢o has a similar meaning as ¢;. So the parameters of model (1.6)
have similar biological meaning. (; describes the predators capability of capturing
food, while k; indicates the preys reaction to the predator. When [3; decreases and
k1 increases, i.e., k1 /1 is increasing, the speed of the preys growth will increase, thus
its survival ability. On the other hand, 1/82 can be used to describe the transition
from prey to predator after the prey is captured by the predator; 1/ks indicates
the reliability of the predator to the prey; ko = 0 means the predator is completely
dependent on the prey. The larger ks, the lower reliability the predator has to the
prey, thus a better survival rate in an environment where the prey is scarce. Due to
the above reasons, we can use ki/5 and ka/B2 to describe the survivability of the
prey u and the predator w respectively.

Next we express the biological meaning of the equilibria of the system (1.6). The
interior equilibria imply co-existence of the prey and the predator. The boundary
equilibrium (0, k2/f2) implies there is only predator left in the environment, and
the prey is eliminated. Although there exists no prey in this case, due to the food
diversity of the predator, it can still survive, with its number limited. Note that
the un-stabilities of (1,0) and (0,0) imply that an invasion of a minor quantity of
predator or an invasion of a minor quantity of prey will cause a change of the long
time behavior of the system moving to either (0, k2/82) or the interior equilibria.

Now we try to give biological explanation of several different cases according to
our previous theorems.

(1) When k1/3; is small and ko/f2 is large, the prey has weaker survivability.
The system shifts towards equilibrium (0, k2/82), thus the prey in the environment
becomes extinct (refer to Theorems 4.2 and Theorem 4.5).

(2) k1/61 < ko/Pa2, but kof/Bs — k1/B1 is small. That means there is a little
difference between the survivability of the prey and the survivability of the predator.
So there are two interior equilibria and the smaller equilibrium (uj, w3) is unstable
(refer to Theorem 4.4). And it is reasonable to suppose that either a rather small
transition from prey to predator or a rather large initial density of the prey can result

in the stability of the larger interior equilibrium (uj,w7y) (refer to Theorem 4.3 and
Theorem 4.7).

(3) When &1/, is large and ka/fB2 is small, the prey has stronger survivability.
There exists a positive equilibrium in this case (see Proposition 4.1). Furthermore, if
B1/ B2 becomes small, i.e., we have lower foraging ability of the predator or lower tran-
sition rate from prey to predator, the prey has relatively stronger survivability, and
it will not be extinct. Thus the system is persistent (see Theorem 3.2). In addition,
when the foraging ability of the predator which is denoted by (i is small enough,

238



(u*,w*) is locally stable (refer to Theorem 4.1) and when ki/81 > (1 + k2)/0e,
(u*,w*) is globally stable (see Theorem 4.6).

As in [7], our results also reveal the fact that the delay 7 plays an important role
in the dynamic system (1.6). The local and global stability of the equilibria involve
restrictions on the length of time delay. These restrictions are due to the assumption
ar < 1/2 in Theorem 4.1 and Theorem 4.3 and the assumption 1 — %om—e‘” >0 in
Theorem 4.5, Theorem 4.6 and Theorem 4.7. Therefore, it is obvious that the delay
has a destabilized effect on the equilibria (0, k2/f2), (v*, w*) and (uf, wy).

To conclude, our system model exhibits specific biological significance, and the
theorems provided in this paper agree with the natural rules of ecology. In addition,
the effect of the delay is indicated in our paper.
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