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A map f ∈ C 2(Rn) is considered. Diffusions given by an n-dimensional stochastic differ-
ential equations dXt = b(Xt)dt + σ(Xt)dBt are constructed to stay in region K = [ f ≤ c]
forever in a way that the boundary S = [ f = c] = ∂K is either absorbing or reflecting.
The purpose of the paper is to provide easy to apply conditions on the coefficients b(x) and
σ(x) with the aim to exhibit simulations of the diffusions with above properties.

1. I n t r o d u c t i o n

Having a function f ∈ C 2(Rn) and a constant c ∈ R we denote

K := {x : f (x) ≤ c}, Ke = {x : f (x) ≥ c}

and
S := ∂K = ∂Ke = {x : f (x) = c},

calling the S a boundary.
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Further consider a stochastic differential equation (SDE)

dXt = b(Xt)dt + σ(Xt)dBt, (1)

where Bt = (B1
t , ..., B

n
t ) is an n-dimensional Brownian motion,

b(x) = (b1(x), ..., bn(x))T and σ(x) = (σi j(x)1≤i, j≤n) are Borel functions. Recall that a
continuous n-dimensional Ft-adapted process X = (X1, X2, ..., Xn) solves (1) if

Xt = X0 +

∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBs holds almost surely for all t ≥ 0,

where Ft is the augmented canonical filtration of the Brownian motion Bt. Since the
above n-dimensional equation reads exactly as

Xi
t = Xi

0 +

∫ t

0
bi(Xs)ds +

n∑
k=1

∫ t

0
σi,k(Xs)dBk

s, 1 ≤ i ≤ n,

we implicitly assume that b, σ and X are such that all coefficients bi(X) and σ2
i, j(X)

are locally integrable on R+.
As for the definitions of standard concepts connected with stochastic differential

equation theory we refer our reader to [3].
The purpose of this paper is to find easy to apply conditions on the coefficients b

and σ that would force arbitrary solution to the equation (1) that starts in K
• to stay in K forever, hence to define a diffusion in K,

and moreover
• to get the boundary S either absorbing or reflecting.

Absorbing and reflecting barriers for a diffusion has been for some time a frequented
topic in stochastic analysis, see chapter 12 in [2], for example.

Coming back to the equation (1), the Itô formula yields

d f (Xt) = L f (Xt)dt + dMt, (2)

where

L f (x) =
n∑

i=1

∂ f
∂xi

(x)bi(x) +
1
2

n∑
i, j=1

∂2 f
∂xi∂x j

(x)ai j(x) (3)

= grad f (x)T · b(x) +
1
2

tr
(
f ′′(x) · a(x)

)
,

dMt = grad f (Xt)T · σ(Xt)dBt,

a(x) = σ(x)σ(x)T , grad f (x) =
(
∂ f
∂x1

(x), ...,
∂ f
∂xn

(x)
)

and

f ′′(x) =
(
∂2 f
∂xi∂x j

(x)
)

1≤i, j≤n

is an n × n matrix.
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Further, we get

d[ f (X)]t = d[M]t = grad f (Xt)T · a(Xt) · grad f (Xt)dt (4)

=

n∑
i, j=1

∂ f
∂xi

(Xt) ·
∂ f
∂x j

(Xt) · ai j(Xt)dt

=

n∑
j=1


n∑

i=1

∂ f
∂xi

(Xt) · σi j(Xt)


2

dt,

where [X] denotes the quadratic variation of X. The differential operator L f (x) and
the coefficient grad f (x)T ·σ(x) are important when trying to study a boundary behav-
ior of a solution X to (1).

2. D i f f u s i o n i n [ f ≤ c] a n d b o u n d a r y e q u a t i o n s

The following lemma provides sufficient conditions on the coefficients in (1) to
define a diffusion in K.

Lemma 1 Assume that there is an open neighborhood G of boundary S such that
for all x ∈ G ∩ Ke

grad f (x)T · a(x) · grad f (x) = 0 (5)

and

L f (x) ≤ 0. (6)

Then X ∈ K almost surely for an arbitrary solution X with an initial condition
X0 = x0, where x0 ∈ K.

Proof. If X is a solution to (1) with X0 = x0 ∈ K then

f (Xv) − f (Xu) =
∫ v

u
L f (Xs)ds +

∫ v

u
gradT f (Xs) · σ(Xs)dBs (7)

∀ − ∞ < u < v < ∞
hold outside a P-null set N.

What we have to prove is that P(Nr) = 0 for all r ∈ Q+ where
Nr = [ f (Xr) > c]. Hence, consider an ω ∈ Nr and assume that ω � N. Put

u = u(ω) = sup{s ≤ r : Xs(ω) ∈ K}
and observe that there is some u < v = v(ω) < r such that

(Xu, Xv) ⊂ G ∩ Ke, f (Xu) = c, f (Xv) > c

hold, where (Xu, Xv) = {Xs, s ∈ (u, v)}. Since ω � N, it follows by (7) that f (Xv) −
− f (Xu) = f (Xv) − c ≤ 0, hence a contradiction. It follows that Nr ⊂ N, therefore
P(Nr) = 0. �
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Lemma 1 motivates us to define a boundary equation for S as the equation (1) if
there is a neighborhood G ⊃ S such that

L f (x) = 0 (8)

and

grad f (x)T · σ(x) = 0 (9)

hold for all x ∈ G.
Lemma 1 applied simultaneously to the pairs ( f , c) and (− f ,−c) proves the follow-

ing remark.

Remark 2 Any solution X to a boundary equation (1) with X0 = x0 ∈ S will stay
in S forever almost surely.

Because we plan to involve boundary equations when simulating a diffusion in K
we need some procedure how to construct them for a given boundary S . In other
words, we need to establish coefficients b(x) and σ(x) in (1) to exhibit a boundary
equation.

Assume that there exists an ε > 0 such that

Kε := {x : f (x) ≤ c + ε} is a bounded set

and
grad f (x) � 0, x ∈ S ,

hold. Hence, there exists a number 0 < δ < ε such that

Gδ := {x : | f (x) − c| < δ}, is a bounded set, |grad f (x)| ≥ δ > 0, ∀x ∈ Gδ.

Define

b(x) = −1
2
· div n(x) · n(x), σ(x) = In − n(x) · n(x)T , x ∈ Gδ, (10)

where

n(x) =
grad f (x)
|grad f (x)| , div n(x) =

n∑
i=1

∂ni

∂xi
(x).

Assuming that f ∈ C 3(Rn), then all coordinates bi(x) and σi j(x) are C 1(Gδ). It
follows by the extension theorem proved by H. Whitney (see [1], p.50) that they
possess extensions in C 1(Rn). It follows that bi(x) and σi j(x) are Lipschitz on Gδ

because G ⊂ H, where H is a convex bounded set. Hence, the coefficient b, σ have
globally Lipschitz extensions b∗, σ∗. Now, we prove that the equation with these
coefficients b∗ and σ∗ is a boundary equation.

Denote g = grad f (x) and ζ = g ·gT , then g is an eigenvector of matrix ζ associated
with the eigenvalue λ = |g|2. Hence, g is an eigenvector of σ∗ associated with the
eigenvalue λ = 0 for all x ∈ Gδ. Especially, σ∗ is an idempotent matrix and

grad f (x)T · σ∗(x) = 0, ∀x ∈ Gδ,

hence the condition (9) is satisfied.
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Now, we have to verify the condition (8). To simplify our notation write

∂i f :=
∂ f
∂xi

and ∂i j f :=
∂2 f
∂xi∂x j

and compute

∂i|g| = ∂i

√√ n∑
j=1

(∂ j f )2 =
1
2
|g|−1 ·

n∑
j=1

(2∂ j f · ∂ ji f )

div n =
n∑

i=1

∂i

(
∂i f
|g|

)
=

n∑
i=1

∂ii f · |g| − ∂i f · ∂i|g|
|g|2

=
1
|g|2


n∑

i=1

∂ii f · |g| −
n∑

i=1

∂i f
n∑

j=1

|g|−1∂ j f · ∂ ji f



=
1
|g|


n∑

i=1

∂ii f −
n∑

i=1

n∑
j=1

∂i f
|g| ·

∂ j f
|g| ∂ ji f



grad f T · b = −1
2
· gT · div n · n = −1

2
· div n · |g|

= −1
2
·


n∑
i=1

∂ii f −
n∑

i=1

n∑
j=1

∂i f
|g| ·

∂ j f
|g| ∂ ji f



= −1
2

tr
(
f ′′ · σ∗) = −1

2
tr
(

f ′′ · σ∗ · σ∗T
)
.

It has been verified for all x ∈ Gδ, hence (8) and (9) are true statements.

Example 1 The boundary equation on the unit circle in R2. In this case we have
f (x1, x2) = x2

1 + x2
2 and c = 1. The construction suggested by (10) needs to compute

grad f (x) = (2x1, 2x2)T , n(x) =
1√

x2
1 + x2

2

(x1, x2)T =
(x1, x2)T

|x|

divn(x) =
2∑

i=1

∂

∂xi

xi

|x| =
|x| − x2

1
|x|

|x|2 +
|x| − x2

2
|x|

|x|2 =
1
|x| .

Thus we get

b(x) = −1
2
· 1
|x| ·

(x1, x2)T

|x| and σ(x) =
1
|x|2

(
x2

2 −x1 · x2
−x1 · x2 x2

1

)
,

and the boundary equation

dXt = −
1
2
|Xt |−2

(
X1,t
X2,t

)
dt + |Xt |−2

(
(X2,t)2 −X1,t · X2,t
−X1,t · X2,t (X1,t)2

)
dBt. (11)
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Another possibility is presented in [4], Example 5.1.4., p. 67, where we find the
following SDE:

dYt = −
1
2

(
Y1,t
Y2,t

)
dt +
(
−Y2,t 0
Y1,t 0

)
dBt. (12)

We can easily verify, that

grad f (x)T · σ(x) = 0 and L f (x) = 0 ∀x ∈ R2,

hence the equation (12) is a boundary equation again.
A natural question arises: How many boundary equations may be constructed in

this case? Looking into it in a detail observe that conditions (8) and (9) may be
rewritten as

2(x1 · b1(x) + x2 · b2(x)) = −(σ2
11(x) + σ2

12(x) + σ2
21(x) + σ2

22(x)) (13)

x1 · σ1i(x) = −x2σ2i(x), i = 1, 2. (14)

It follows by (13), that b(x) = (b1(x), b2(x)) could not be chosen arbitrarily, be-
cause we expect (x1 · b1(x) + x2 · b2(x)) as a nonnegative term. Further, it is obvious
by (14) that σ(x) has to be chosen as

σ(x) =
(
−g1(x) · x2 −g2(x) · x2
g1(x) · x1 g2(x) · x1

)
,

where g1(x) and g2(x) are arbitrary functions. Hence

a(x) = (g1(x)2 + g2(x)2)
(

x2
2 −x1 · x2

−x1 · x2 x2
1

)

and we get the equation

2(x1 · b1(x) + x2 · b2(x)) = −(g1(x)2 + g2(x)2)(x2
1 + x2

2). (15)

We observe that given an arbitrary b(x) such that (x1 · b1(x) + x2 · b2(x)) ≤ 0
we may construct functions g1(x) and g2(x) to satisfy (15). Observe also that the
function (g1(x)2 + g2(x)2)) in uniquely determined in R2 \ {(0, 0)}. Hence, the matrix
a(x) is uniquely defined by the coefficient b(x) and consequently b(x) determines the
distribution of a unique weak solution X to all possible boundary equations with the
coefficient b(x) (see [4], p.149).

Having a fixed solution X to (1), the boundary S is said to be reflecting for X if
outside a P-null set, there is no pair 0 ≤ u < v < ∞ such that Xs ∈ S for all s ∈ (u, v)
and we shall say that the boundary S is absorbing for X if outside a P-null set the
implication

Xt ∈ S ⇒ Xt+s ∈ S , s ≥ 0, t ≥ 0
holds.
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Recall that having an equation (1) with a unique weak solution X then the above
definitions coincide with the standard ones formulated in terms of the correspond-
ing Markov semigroup (Px, x ∈ Rn): The boundary S is said to be reflecting and
absorbing if

Px(Z0 = ∅) = 1 and Px(Z = R+) = 1 ∀x ∈ S , respectively,

where Z = {t ≥ 0 : Xt ∈ S } and Xt is the corresponding canonical process.

Lemma 3 Consider a solution X to (1) and assume that there is an open neigh-
borhood G ⊃ S such that (5) and (6) hold for all x ∈ G ∩ Ke. Moreover suppose that
L f (x) < 0 is true for all x ∈ S . Then S is a reflecting boundary for X.

Proof. We will apply the same idea as in the proof of Lemma 1. Let N is a P-null
set such that (7) holds outside the set N. Assume that ω � N and that there exist times
u < v such that Xs(ω) ∈ S for all s ∈ (u, v). Then

f (Xv) − f (Xu) = 0 =
∫ v

u
L f (Xs)ds,

hence a contradiction. �

Lemma 4 Consider an equation (1) that has a unique strong solution such that

τ := inf{t ≥ 0 : Xt ∈ S } < ∞ almost surely if X0 ∈ K.

Moreover, assume that there is a boundary equation

dXt = b∗(Xt)dt + σ∗(Xt)dBt (16)

such that
b∗(x) = b(x), σ∗(x) = σ(x) holds for all x ∈ S

where b∗ and σ∗ are Lipschitz continuous in an open neighborhood G ⊃ S . Then S
is an absorbing boundary for X.

Proof. We may assume without loss of generality that the coefficients b∗ and σ∗

are globally Lipschitz. Hence, there is a solution X∗ to (16) with X∗0 = Xτ. Define

Yt = Xt if t ≤ τ and Yt = X∗t−τ if t ≥ τ
and observe that Yt is a solution to (1) with Y0 = X0 that is absorbed by S . Since
X = Y almost surely, the unique solution X possess the property, too. �

3. S i m u l a t i o n s

In this section, we suggest a method how to define a diffusion in K with either
absorbing or reflecting boundary S = [ f = c]. Fix a function f ∈ C 2(Rn), a constant
c and an equation (1). We suggest the following two steps to modify (1) in order to
get a diffusion in K = [ f ≤ c].
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• We consider an equation

dXt = b∗(Xt)dt + σ(Xt)∗dBt (17)

where the coefficients are defined on an open neighborhood G ⊃ S of S such
that solutions to (17) do not leave K.
• Chose ε > 0 and denote Kε := {x ∈ K : |x−y| ≥ ε, ∀y ∈ S }. Further construct

the equation

dXt = b̂(Xt)dt + σ̂(Xt)dBt, (18)

where

b̂(x) = b(x) x ∈ Kε

= b∗(x) x ∈ G \ K

= d(x) · b(x) + (1 − d(x)) · b∗(x) x ∈ K \ Kε ,

and where d(x) := 1
ε
inf
y∈S
|x−y| and σ̂ is constructed from σ and σ∗ by the same

way as b̂ from b and b∗.
If (1) has coefficients that are Lipschitz in K and (17) coefficients with the property
in G, then (18) has Lipschitz coefficients in G ∪ K. It is obvious that any solution to
(18) is diffusion in K.

Example 2 Diffusion in the unit circle in R2. In this case, we have
f (x1, x2) = x2

1 + x2
2 and c = 1. Therefore K = {x ∈ R2 : |x| ≤ 1} and S = {x ∈ R2 :

: |x| = 1}.
Consider (1) in the form:

dXt =

(
1 0
0 1

)
dBt.

In other words we plan to modify a 2-dimensional Brownian motion to get a diffu-
sion in K with S either a reflecting or an absorbing boundary.

We start with an example of absorbing boundary. In this case we employ (12) as
an equation (17), therefore

b∗(x) =
1
2

(−x1,−x2)T , σ∗(x) =
(
−x2 0
x1 0

)

and choosing ε = 0.1 we define the coefficients in (18) by:

b̂(x) = (0, 0)T if |x| ≤ 1 − ε

=
|x| − 0.9

0.1
· b∗(x) if 1 − ε < |x| < 1

= b∗(x) if |x| ≥ 1
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and

σ̂(x) =
(

1 0
0 1

)
if |x| ≤ 1 − ε

=
|x| − 0.9

0.1
· σ∗(x) +

1 − |x|
0.1

(
1 0
0 1

)
if 1 − ε < |x| < 1

= σ∗(x) if |x| ≥ 1.

Simulation of a solution to equation (18) is shown on the left hand side of Figure 1.
Finally, we construct a diffusion with S as a reflecting boundary. First we need an

equation (17). Choosing the σ∗(x) as above we get

L f (x) = 2(x1 · b1(x) + x2 · b2(x)) − x2
1 − x2

2.

Hence,a possible candidate to satisfy the requirements of Lemma 3 is given as
b∗(x) = (−x1,−x2)T , that provides an equation (17) in the form

dXt =

(
−X1,t
−X2,t

)
dt +
(
−X2,t 0
X1,t 0

)
dBt.

Thus we have constructed equation (18) whose diffusion coefficient coincides with
σ̂ employed in the previous example with S as an absorbing boundary, while its shift
coefficient b̂ that increases twofold than b̂ used to construct the absorbing boundary.
Simulation of the corresponding diffusion is shown by the right hand side of Figure 1.

Example 3 Assume that

f (x1, x2) = x2
1 + x2

2, x1 ≥ 0

= 4x2
1 + x2

2, x1 < 0,

and choose c = 1. Consider (1) in the form

dXt =

(
1 0
0 1

)
dBt,

as in Example 2. Even though our f does not belong to C 2 in this case, we still can
construct diffusion in K = [ f ≤ 1]. For an absorbing boundary we shall procced as
follows: The coefficient σ∗ has to be defined as

σ∗(x) =
(
−x2h1(x) −x2g1(x)
x1h1(x) x1g1(x)

)
x1 ≥ 0

=

(
−x2h2(x) −x2g2(x)
4x1h2(x) 4x1g2(x)

)
x1 < 0, (19)

where h1, h2, g1 and g2 are arbitrary functions. It follows by (8) that

2x1b∗1(x) + 2x2b∗2(x) + (h2
1(x) + g2

1(x)) · (x2
1 + x2

2) = 0 x1 ≥ 0

8x1b∗1(x) + 2x2b∗2(x) + (h2
2(x) + g2

2(x)) · (x2
1 + 4x2

2) = 0 x1 < 0.
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Wanting the coefficients b∗ and σ∗ continuous we put

h1(0, x2) = h2(0, x2) = g1(0, x2) = g2(0, x2) = b∗2(0, x2) = 0.

Hence, we choose h1(x) = h2(x) = x1, g1(x) = g2(x) = 0. Thus

b∗(x) = −1
2

(x3
1, x

2
1x2)T , x1 ≥ 0

= −2(x3
1, x

2
1x2)T , x1 < 0.

and equation (17) is given as

dXt = −
1
2

(
X3

1,t
X2

1,tX2,1

)
dt +
(
−X1,tX2,t 0

X2
1,t 0

)
dBt X1,t ≥ 0

= −2
(

X3
1,t

X2
1,tX2,1

)
dt +
(
−X1,tX2,t 0

4X2
1,t 0

)
dBt X1,t < 0.

Choosing ε = 0.1 and denoting Kε := {x ∈ K : f (x) ≥ 1 − ε} we define the
coefficients in (18) as:

b̂(x) = (0, 0)T if f (x) ≤ 1 − ε

=
f (x) − 0.9

0.1
· b∗(x) if 1 − ε < f (x) < 1

= b∗(x) if |x| ≥ 1

Figure 1: the left hand side shows a diffusion in the unit circle with absorbing boundary S while the 
right hand one provides a diffusion with S as a reflecting boundary
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and

σ̂(x) =
(

1 0
0 1

)
if f (x) ≤ 1 − ε

=
1 − f (x)

0.1

(
1 0
0 1

)
+

f (x) − 0.9
0.1

σ∗(x) if 1 − ε < f (x) < 1

= σ∗(x) if f (x) ≥ 1.

The equation (18) defines a diffusion in K with S = [ f = 1] as an absorbing
boundary . It is possible to show, that the points [0, 1] and [0,−1] absorb arbitrary
solution X to (18).

Finally, we shall construct a diffusion with S as an reflecting boundary. To con-
struct the corresponding equation (17) chooseσ∗ defined by (19) with h1(x) = h2(x) =
= x1 and g1(x) = g2(x) = 0. Further define a shift coefficient b∗ by

b∗(x) = −2(x3
1, x

2
1x2)T , x1 ≥ 0

= −8(x3
1, x

2
1x2)T , x1 < 0. (20)

That quadruplicates the b∗ used to construct S as an absorbing boundary. Obvi-
ously the corresponding equation (18) defines a diffusion that has reflecting bound-
ary S .

Since b∗(0, x2) = σ∗(0, x2) = 0 holds for the both reflecting and absorbing equa-
tion (17) we may combine the pair of them to get an equation that defines a diffusion
absorbed by S whenever x1 > 0 and reflected one if x1 < 0. The corresponding
simulations are presented by Figure 2.

−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
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1
.0

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

X1

X
2

Figure 1: The left hand side shows a diffusion in the unit circle with absorbing boundary S while the
right hand one provides a diffusion with S as a reflecting boundary.

Figure 2: The left hand side visualizes a diffusion with S ∩ [x1 < 0] and S ∩ [x1 > 0] as an absorbing
and reflecting boundary, respectively. A diffusion that is absorbed by S if x1 > 0 and reflected by S if

x1 < 0 is shown on the left

Figure 3: The left hand side shows a diffusion with S as an absorbing boundary, the right hand one a
diffusion with reflecting boundary S .
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Example 4 Having f (x1, x2) = |x1| + |x2| and c = 1 we get that K = [x : f (x) ≤ 1]
is the square with vertices [0, 1], [1, 0], [−1, 0] and [0,−1]. Because f � C 2, we shall
proceed in a manner of Example 3 to construct a diffusion in the square K.

First we exhibit a diffusion that makes the boundary S = ∂K absorbing. The
boundary is a union of four C 2-curves. In the first quadrant, the curve is given by
x1 + x2 = 1, in the second one we have −x1 + x2 = 1, etc. The boundary equation for
the boundary given by x1 + x2 = 1 is defined by

dX1 = h(x) ·
(

1
−1

)
dt +
(

g1(x) g2(x)
−g1(x) −g2(x)

)
dBt, (21)

where h, g1 and g2 can be chosen arbitrarily. We chose h, g1 and g2 so that the coef-
ficients of (21) are equal to zero for all x such that x1 = 0 or x2 = 0, therefore the
vertices [1, 0] and [0, 1] will be the absorbing points of solution to (21). This equation
will be employed as a boundary equation (17) in the first quadrant. Boundary equa-
tions for the remaining three quadrants are constructed in the same way. Therefore
the equation (17) is defined by

dX1 = b∗(Xt)dt + σ∗(Xt)dBt

=

(
0
0

)
dt +
(

X1,tX2,t 0
−X1,tX2,t 0

)
dBt if X1,tX2,t ≥ 0

=

(
0
0

)
dt +
(

X1,tX2,t 0
X1,tX2,t 0

)
dBt if X1,tX2,t < 0.

Choose ε = 0.1 and define the coefficients in (18) by

b̂(x) = (0, 0)T

and

σ̂(x) =
(

1 0
0 1

)
if f (x) ≤ 1 − ε

=
1 − f (x)

0.1

(
1 0
0 1

)
+

f (x) − 0.9
0.1

σ∗(x) if 1 − ε < f (x) < 1

= σ∗(x) if f (x) ≥ 1.

The above equation generates a diffusion in K with absorbing boundary S . It is
obvious that the vertices of K are absorbing points for arbitrary solution to (18). A
simulation of this diffusion is presented on the left side in Figure 3.

Now, we construct a diffusion with S as a reflecting boundary. We shall first specify
the coefficients σ∗ and b∗ in (17). One can easily verify that a possible choice is

σ∗(x) = 0 (22)
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and

b∗(x) = (−x1x2,−x1x2)T if x1 ≥ 0, x2 ≥ 0

= (−x1x2, x1x2)T if x1 < 0, x2 ≥ 0

= (x1x2, x1x2)T if x1 < 0, x2 < 0

= (x1x2,−x1x2)T if x1 ≥ 0, x2 < 0. (23)

The equation (18) with coefficients b∗ andσ∗ given by (23) and (22) defines a diffusion
in K with reflecting boundary S . A simulation of this diffusion is shown on the right
in Figure 3.

The functions f considered in Example 3 and Example 4 are not in C 2, hence not
in a competence of the Lemmas 3 and 4. Their corresponding suitable localizations
read as follows:

Denote S 2 the set of points x ∈ S such that there exists en open neighborhood
Ux � x in which the function f is C 2 and S 1 = S \ S 2.

Lemma 5 Consider that equation (1) has unique strong solution X and assume
that for all x ∈ S 2 there is an open neighborhood Ux � x such that (5) and (6) hold
for all y ∈ Ux ∩ Ke. Moreover suppose that L f (x) < 0 is true for all x ∈ S 2 and
b(x) = σ(x) = 0 hold for all x ∈ S 1.

Then S 2 is a reflecting boundary, which means that outside a P-null set N, there is
no pair 0 ≤ u < v < ∞ such that Xs ∈ S 2 for all s ∈ (u, v) and all points x ∈ S 1 are
absorbing points for X.

Figure 3: the left hand side shows a diffusion with S as an absorbing boundary, the right hand one a 
diffusion with reflecting boundary S
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Lemma 6 Consider an equation (1) that has a unique strong solution such that

τ := inf{t ≥ 0 : Xt ∈ S } < ∞ almost surely if X0 ∈ K.

Moreover, assume that there is an equation

dXt = b∗(Xt)dt + σ∗(Xt)dBt (24)

where b∗ and σ∗ are Lipschitz continuous in an open neighborhood G ⊃ S and for
all x ∈ S 2 there exists an open neighborhood Ux � x such that for all y ∈ Ux (8) and
(9) hold. Further assume that

b∗(x) = b(x), σ∗(x) = σ(x) holds for all x ∈ S ,

and b∗(x) = σ∗(x) = 0 for all x ∈ S 1.
Then S is an absorbing boundary for X.

The points x ∈ S 1 are absorbing points for X due to uniqueness of the solution X.
The proof of Lemma 5 and Lemma 6, respectively, for x ∈ S 2 is analogous to the
proof of Lemma 3 and Lemma 4, respectively.

R e f e r e n c e s

[1] F, W. H.: Functions of Several Variables, Addison-Wesley, INC., 1965.
[2] F, A.: Stochastic Differential Equations and Applications-volume 2, Academic press, INC.,

1976.
[3] K, O.: Foundations of Modern Probability, second edition, Springer-Verlag, 2002.
[4] Ø, B.: Stochastic Differential Equations: An Introduction with Applications, sixth edition,

Springer-Verlag, 2007.

math_10_1�indd   86 1�6�2010   20:40:58


		webmaster@dml.cz
	2014-05-02T07:35:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




