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In the present article we show the existence of a probability limit identification function
on any separable metrizable topological space and an application of such function in sto-
chastic analysis. The convergence in probability on topological spaces is studied as well.

1. I n t r o d u c t i o n

Probability limit identification function (PLIF) is a function f : RN → R such that
for every sequence X1, X2, . . . of real valued random variables defined on a probability
space (Ω,A , P), whose coordinates converge in probability (denote the probability
limit X), the set

{ω ∈ Ω : f (X1(ω), X2(ω), . . . ) � X(ω)} (1.1)
is contained in a P-null set of A . Function f does not depend on the underlying
probability space and does not have to be mesurable. The concept of the PLIF was
introduced by G. Simons in [3]. He showed that a PLIF exists iff a SPLIF does, where
the SPLIF is a PLIF for 0-1 valued random variables converging in probability to a
constant (note that each PLIF is also a SPLIF). The existence of a PLIF under the con-
tinuum hypothesis was proved by Štěpán in [5] by a transfinite construction strongly
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supported by the continuum hypothesis. To the authors’ best knowledge the result
has not yet been proved without using the hypothesis. Later on Blackwell showed in
[1] that there is no Borel SPLIF. The proof was based on Oxtoby’s category 0-1 law.

Consider now a topological space (T,G ) and a function f : TN → T . The function
f is called a PLIF on T if for any probability space (Ω,A , P) and for any sequence
X1, X2, . . . of (Borel) random variables Xn : (Ω,A ) → (T,B(T )), n ∈ N converg-
ing in probability to a random variable X the set (1.1) is contained in a P-null set of
A . In the present article we will show that such function exists under the contin-
uum hypothesis if the topological space is separable and metrizable. For this purpose
we will make use of the fact that such a space and the Hilbert cube are homeomorphic.

PLIFs may be used for construction of functional representations in stochastic
analysis. First we will show the functional representation of the quadratic variation
of any continuous local martingale. Let f be a PLIF on R and M any continuous local
martingale with quadratic variation 〈M〉. Applying f on the sequence that approxi-
mates quadratic variation in probability (such approximation sequence may be found
in [2], Proposition 17.17), we get a.s. representation of 〈M〉t. Repeating this proce-
dure in all positive rational points we almost surely get 〈M〉(ω) from M(ω) on the set
of positive rational numbers and 〈M〉 can be then uniquely continuously completed
on the whole nonnegative real line. This shows the existence of the mapping V such
that for every continuous local martingale M we have

V(M(ω)) = 〈M〉(ω) for almost all ω.

Next we can construct the functional representation of a stochastic integral. Consider
C = C (R+) the space of all continuous functions defined on the nonnegative real line
with metric d defined as follows

d( f , g) =
∞∑

n=1

2−n
(
max

t≤n
| f (t) − g(t)| ∧ 1

)
.

The space (C , d) is separable and let fC be a PLIF on C . Consider again M any con-
tinuous local martingale and any progressive process X such that∫ t

0 X2
s d〈M〉s < ∞ a.s. for all t ≥ 0. By using functional representation of qua-

dratic variation we can create the sequence Xn of predictable step processes such that∫
XndM →P

∫
XdM in (C, d) (see [2], Lemma 17.23). The construction of these ap-

proximation processes is based on trajectories X(ω) and M(ω) only and the integrals
of step processes can by determined from trajectories as well. Applying the PLIF fC
on the sequence

∫
XndM results in functional representation of stochastic integral,

that is the mapping I with the following property

I
(
X(ω),M(ω)

)
=

( ∫
XdM

)
(ω) for almost all ω,
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for any continuous local martingale M and process X such that
∫

XdM exists. If the
filtration of the underlying stochastic base is complete, it easily follows that the pro-

cess I
(
X(ω),M(ω)

)
is an adapted continuous local martingale and therefore we may

consider it to be the integral
∫

XdM.

Functional representation of stochastic integral can be further used to construct
functional representation of weak solutions of stochastic differential equations. Con-
sider an equation

dXt = σ(t, X)dBt + b(t, X)dt, (1.2)
where B is a Brownian motion and σ, b are progressive coefficients. It is shown in [2]
(Lemma 21.8) that there exists a measurable mapping F̂ such that, if process X with
distribution L (X) is a solution of the local martingale problem for (σσ′, b) and u is
a uniformly distributed random variable on (0, 1) independent of X, then

B(ω) = F̂
(
L (X), X(ω), u(ω)

)

is a Brownian motion and (X, B) with induced filtration solves equation (1.2). In
the same monograph (Theorem 21.7 and Theorem 18.12) we can find that B can be
constructed as a stochastic integral B =

∫
g1(σ(s, X))dM +

∫
g2(σ(s, X))dW, where

M is a continuous local martingale defined as a function of trajectories X(ω) and
b(t, X(ω)) and W is (some) Brownian motion independent of M. Using functional
representation of stochastic integrals in the construction of B and Lemma 3.22 in
[2] we get a mapping F (for the coefficients σ, b) such that for every process X which
solves the local martingale problem for (σσ′, b) and u a uniformly distributed random
variable on (0, 1) independent of X there exists a Brownian motion B such that

B(ω) = F
(
X(ω), u(ω)

)
for almost all ω

and the pair (X, B) with induced filtration solves the equation (1.2). Considering com-

plete filtration the process F
(
X(ω), u(ω)

)
itself is the searched Brownian motion. In

comparison with F̂, the mapping F does not need the distribution of X as a parameter,
on the other hand F need not be measurable.

2. T h e c o n v e r g e n c e i n p r o b a b i l i t y o n t o p o l o g i c a l s p a c e s

Let (T,G ) be a topological space and (Ω,A , P) a probability space. Consider
Borel random variables X, X1, X2, . . . with values in T defined on (Ω,A ). We say
that the sequence X1, X2, . . . converges in probability to X (write Xn →P X), if for
any open set G ∈ G

P
(
Xn � G, X ∈ G

)
→ 0 for n→ ∞. (2.1)
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Let us state a pair of simple (perhaps well known) observations in connection with
the above definition.

Lemma 2.1 Assume a separable metrizable space T and T-valued random vari-
ables X, X1, X2, . . . Fix an equivalent metric d on T . Then (2.1) holds if and only if
d(Xn, X)→ 0 in probability.

Hence, (2.1) extends consistently the standard definition of the convergence in
probability. For the case of completeness we offer a possible proof.

Proof. Assume (2.1) and consider ε > 0 and δ > 0. It follows by separability of T
that

P[X ∈
k⋃

j=1

G j] > 1 − δ,

where G j = {x ∈ T : d(x, x j) < ε} for some x j ∈ T and k ∈ N. Then

P[d(X, Xn) > 2ε] ≤ δ + P[d(X, Xn) > 2ε, X ∈
k⋃

j=1

G j] ≤ δ +
k∑

j=1

P[X ∈ G j, Xn � G j]

and that proves that d(Xn, X) → 0 in probability. If this is assumed, if F is a closed
set in T and ε > 0 then, denoting by Fε the closed ε-neighborhood of F, we get

P[X ∈ T \ F, Xn ∈ F] ≤ P[X ∈ T \ Fε , Xn ∈ F] + P[X ∈ Fε \ F] ≤
≤ P[d(X, Xn) > ε] + P[X ∈ Fε \ F].

Letting n→ ∞ and the ε → 0 we prove (2.1). �

Lemma 2.2 Assume that (2.1) holds for G ∈ Q where Q is a subbase for G and
that the probability distribution of X is a Radon probability measure. Then Xn → X
in probability.

Hence, assuming that T is a Polish space it suffices to verify (2.1) for G ∈ Q where
Q is an arbitrary topological subbase.

Proof. First observe that the property (2.1) is closed on finite unions and intersec-
tions. Indeed, if G j ∈ G for j = 1, . . . , k are sets such that (2.1) holds then

P
[
Xn �

k⋂
j=1

G j, X ∈
k⋂

j=1

G j

]
≤

k∑
j=1

P[Xn � G j, X ∈ G j]

and

P
[
Xn �

k⋃
j=1

G j, X ∈
k⋃

j=1

G j

]
≤

k∑
j=1

P
[
Xn �

k⋃
j=1

G j, X ∈ G j

]
≤

≤
k∑

j=1

P[Xn � G j, X ∈ G j].
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Thus we may assume w.l.g. in our proof that Q is a subbase closed on finite unions
and intersections. Consider G ∈ G and ε > 0. It follows that there is a compact set
K ⊂ G such that P[X ∈ G \ K] < ε and that K ⊂ Gε ⊂ G for a set Gε ∈ Q. This
concludes the proof as

P[Xn � G, X ∈ G] ≤ ε + P[Xn � Gε , X ∈ K] ≤ ε + P[Xn � Gε , X ∈ Gε].

That proves (2.1) for all G ∈ G . �

Recall that T is an uniformizable space if it is a Hausdorff space the topology of
which is generated by the subbase G 0 that consists of the sets

{x ∈ T : | f (x) − f (x0)| < ε}, x0 ∈ T, f ∈ C(T ), ε > 0. (2.2)

Hence, assuming that T is an uniformizable Radon space it is enough to verify
(2.1) for G ∈ G 0 where G 0 is the topological subbase defined by (2.2).

Lemma 2.3 Assume that T is an uniformizable topological space and that PX is a
Radon probability measure on T . Then

Xn
P−→ X ⇐⇒ f (Xn)

P−→ f (X) ∀ f ∈ C(T ). (2.3)

Hence assuming that T is an uniformizable Radon space then (2.3) is equivalent to
(2.1).

Proof. The implication⇒ is obvious. Assuming (2.3) we prove that (2.1) holds for
all G ∈ G 0 where G 0 is the subbase (2.2). Use Lemma 2.2 to conclude the proof. �

Lemma 2.4 Consider a cube T = [0, 1]J where J � ∅, denote as p j : T →
→ [0, 1] the projections and consider T-valued random variables Xn, X such that PX

is a Radon probability measure on T . Then

Xn
P−→ X ⇐⇒ p j(Xn)

P−→ p j(X) ∀ j ∈ J. (2.4)

Recall that PX is a Radon measure automatically if J is at most countable set. To
prove Lemma 2.4 apply Lemma 2.2 observing that the sets

p−1
j (G), G ⊂ [0, 1] an open set, j ∈ J,

form a topological subbase for T .

The probability limit X in sense of (2.1) is not determined uniquely almost surely
generally. We shall scrutinize the problem in the case of a metrizable space T .

Lemma 2.5 Assume that Y, X, X1, X2, . . . are T-valued random variables where T
is a metrizable space and PY and PX are Radon measures on T . Then

Xn
P−→ Y, Xn

P−→ X =⇒ X = Y almost surely.



34

Proof. Denote by µ the joint probability distribution of (X, Y) in T 2 and observe
that µ is a probability measure on B(T ) ×B(T ) ⊂ B(T × T ). It follows that having
ε > 0 there is a compact rectangle K = K1 ×K2 such that µ(K) ≥ 1− ε holds. Further,
the restriction of µ to K denoted as µK is obviously a Radon measure, especially
τ-additive measure, on the compact metric space K since

[B(K1) ×B(K2)] ∩ K =B(K).

It follows by Lemma 2.3 that f (X) = f (Y) almost surely for all f ∈ C(T ) and therefore

µK(Kf ) = µ(Kf ) = µ(K), where Kf := {(x, y) ∈ K : f (x) = f (y)} ∀ f ∈ C(T ).

Since each Kf is a closed set we apply the τ-additivity of µK to get

µ
( ⋂

f∈C(T )

Kf

)
= inf

f∈C(T )
µ(Kf ) = µ(K) ≥ 1 − ε

and therefore P[ f (X) = f (Y),∀ f ∈ C(T )] ≥ 1 − ε, hence

P[ f (X) = f (Y),∀ f ∈ C(T )] = 1 and X = Y almost surely.

�

3. T h e e x i s t e n c e o f a P L I F o n s e p a r a b l e m e t r i z a b l e s p a c e s

To prove the existence of a PLIF on any separable metrizable space we will need
three useful lemmas. First of them shows how to construct PLIFs on subspaces, the
second shows how to construct PLIFs on product spaces and the last constructs PLIFs
on homeomorphic spaces.

Lemma 3.1 Let (T,G ) be a topological space and (U,Q) its nonempty subspace
with the induced topology, i.e. ∅ � U ⊂ T and Q = {G ∩ U : G ∈ G }. If there exists
a PLIF on T then there exists a PLIF on U as well.

Proof. Consider fT a PLIF on T . For a sequence (u1, u2, . . . ) ∈ UN define mapping
fU : UN → U as follows

fU(u1, u2, . . . ) =


fT (u1, u2, . . . ), if fT (u1, u2, . . . ) ∈ U,
c otherwise,

where c ∈ U is any fixed constant. Then fU is the PLIF on U. The argument is as
follows: Consider U-valued Borel random variables X, X1, X2, . . . such that Xn → X
in probability, i.e. such that P[Xn � G∩U, X ∈ G∩U]→ 0 holds for arbitrary G ∈ G .
Observing that X, X1, X2, . . . are at same time T -valued Borel random variables we
conclude the proof. �

Lemma 3.2 Let (Ti,Gi), i ∈ N be Polish topological spaces. If there exist PLIFs
on each Ti then there exists a PLIF on

∏
i∈N Ti with the product topology.
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Proof. Label T =
∏

i∈N Ti the product space and G the product topology on T .
Consider any sequence {xn}∞n=1 = {(x1

n, x
2
n, . . . )}∞n=1 in T (i.e. xi

n ∈ Ti). Define the
mapping f : TN → T in the following way

f (x1, x2, . . . ) =
(

f1(x1
1, x

1
2, . . . ), f2(x2

1, x
2
2 . . . ), . . .

)
,

where fi is a PLIF on Ti.

We can easily show that f is a PLIF on T . Consider any sequence of T -valued
Borel random variables {Xn}∞n=1 converging in probability to Y . It follows that Xi

n →
→ P Yi with n → ∞ for all i ∈ N. Applying PLIFs fi we get for each i ∈ N the
following

fi(Xi
1(ω), Xi

2(ω), . . . ) = Yi(ω) for almost all ω.
As a result we have for the mapping f

f (X1(ω), X2(ω), . . . ) = Y(ω) for almost all ω.

�

Lemma 3.3 If H and T are homeomorphic topological spaces and H has a PLIF
then T possesses a PLIF as well.

Proof. Consider an homeomorphism v : T ↔ H and a PLIF fH on H. Then
fT : TN → T defined by

fT (x1, x2, . . . ) = v−1( fH(v(x1), v(x2), . . . )), x j ∈ T,

is a PLIF on T . The argument reads as follows: Consider a sequence X1, X2, . . . of
T -valued Borel random variables that converges in probability to a variable X. Further
set

Z = v(X) Zn = v(Xn) ∀n ∈ N.
Note that Z, Z1, Z2 . . . are Borel random variables with values in H and Zn →P Z.
Therefore we have

fH(Z1(ω), Z2(ω), . . . ) = Z(ω) for almost all ω.

Using that and the definition of fT we get

fT (X1(ω), X2(ω), . . . ) = v−1
(

fH

(
v(X1(ω)), v(X2(ω)), . . .

))
=

= v−1
(

fH

(
Z1(ω), Z2(ω), . . .

))
= v−1

(
Z(ω)
)
=

= v−1
(
v(X(ω))

)
= X(ω) for almost all ω.

�

Now we can prove the main theorem of this article. We will be using the fact that
any separable metrizable space is homeomorphic to a subspace of the Hilbert cube
(see [4], Theorem 2.1.32) and preceding lemmas.
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Theorem 3.4 Under the continuum hypothesis there is a PLIF on any separable
metrizable topological space.

Proof. Consider any separable metrizable topological space T . Let v : T → H be
a homeomorphism T into the Hilbert cube H = [0, 1]N (with the product topology).
Denote HT = v(T ) subspace of H with the induced topology. As under the continuum
hypothesis there is a PLIF on R (see [5]), we get by applying lemmas 3.1 and 3.2 the
existence of a PLIF on HT . Lemma 3.3 then shows the existence of a PLIF on T . �

4. C o n c l u s i o n

In the Theorem 3.4 we showed the existence of a PLIF on a separable metrizable
space. As Lemma 2.5 suggests there is a chance that a PLIF exists on any Radon
metrizable space, i.e. any metrizable topological space T such that arbitrary finite
Borel measure on T is inner regular with respect to compact subsets of T . As far as
we know this problem is left open.
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