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We present a nontrivial example how to generate non-Euclidean geometries from associa-
tive unital algebras. We consider bundles of the sphere of the degenerate non-Euclidean
space and its two models. The first (conformal) model is obtained by the mapping S onto a
plane passing through the origin. It is analogous to the stereographic mapping. The second
model (projective) is constructed by the Norden normalization method, where we project
the sphere onto a plane of normalization defining the metric and Christoffel symbols which
allow us to find geodesic curves.

1. I n t r o d u c t i o n

A lot of models of non-Euclidean spaces were studied in the past, especially spaces
of a constant curvature, projective spaces and the conformal planes (e.g. [10], [11],
[12], [19]). There exists a lot of studies on how these models can be generated by
algebras. It is well known that algebras define some structures in bundle manifolds
of different types (e.g. [5], [9], [13]). In the literature, we can find many applications
of this approach on the cases of non-Eucledian spaces (e.g. [4], [6], [16], [17], [20]).

We would like to present non-standard models within this framework. In the pre-
liminaries we describe how an associative algebra generates a vector space and we
also discuss some of its properties. In the next section we define a sphere and the
map S in this vector space and we use it to construct a conformal model. In the last
section we remind the reader of some facts about the Norden normalization method
[7] and we use it for the construction of a projective model.
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Foundations of the theory of finite-dimensional associative algebras were made
by E. Cartan (1898), Wedderburn (1908) and F. E. Molin (1983), who described the
structure of any algebra over an arbitrary base field [2]. E. Study and E. Cartan in
[15] classified all 3 and 4-dimensional unital associative irreducible1 algebras up to
an isomorphism. This classification can be also found in [18]. In this paper we
consider only one type of 3-dimensional algebra A.

2. P r e l i m i n a r i e s

Let A be an unital associative 3-dimensional algebra and {1, e1, e2} be its basis with
the identity element 1. The multiplication rules are:

(e1)2 = 1, (e2)2 = 0, e1e2 = −e2e1 = e2. (1)

The algebra A is the set of upper triangular matrices(
x0 x2
0 x1

)
= x0 · 1 + x1 · e1 + x2 · e2, where

1 =
(

1 0
0 1

)
, e1 =

(
1 0
0 −1

)
, e2 =

(
0 1
0 0

)
(2)

are basic elements [2].
The algebra A admits the following conjugation

x = x0 + x1e1 + x2e2 → x = x0 − x1e1 − x2e2

with the property xy = y x.
We consider the bilinear form (x, y) which takes real values and determines a de-

generate scalar product:

(x, y) =
1
2

(xy + yx) = x0y0 − x1y1. (3)

It defines the structure of a degenerate pseudo-Euclidean vector space of rank 2
on A. (It is also possible to call this space “semi-pseudo-Euclidean”, but later we
will call it just “pseudo-Euclidean”.) The set of invertible elements G = {x ∈ A |
| (x0)2− (x1)2 � 0} is a non-Abelian Lie group with the same multiplication rule ([1]).
Its underlying manifold is obtained from R3 by removing two transversal planes,
hence it consists of 4 connected components.

The distance is defined as usual, d(x, y)2 = (x − y, x − y). The geodesic curves x(t)
are then

x0 = a0t + b0 x1 = a1t + b1 x2 = f (t)
where f (t) is an arbitrary function of t and a0, a1, b0, b1 are the numerical coefficients.

In the basis (2) we can find two subalgebras: R(e1) with basis {1, e1}, it is an algebra
of double numbers, and a subalgebra R(e2) with basis {1, e2}, it is an algebra of dual

1 Irreducible means indecomposable into a direct sum of algebras.
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numbers. The set of their invertible elements H1 = {x0 + x1e1 ∈ R(e1) | x2
0 − x2

1 � 0}
and H2 = {x0 + x2e2 ∈ R(e2) | x0 � 0} are Lie subgroups of the Lie group G.

The space of right cosets H1x defines a trivial bundle (G, π,M = G/H1) over
the real line R with the structure group H1, where π is a canonical projection ([3]).
The fiber is a plane without two transversal lines and the structure group is H1. The
manifold of the group G is diffeomorphic to direct sum R × H1. The coordinate view
of the canonical projection π is:

π(x) =
x2

x0 − x1
. (4)

The equation of fibers is:

u(x0 − x1) − x2 = 0, u ∈ R. (5)

Let us investigate the isometry group of the pseudo-Euclidean space G. We can
easily find that it has no dilations and inversions while there is a vertical translation
x → x + a, a ∈ G. Furthermore, the isometry group includes rotations, resp. anti-
rotations,

x′ = ax or x′ = xa

with |a|2 = 1, resp. |a|2 = −1. These elements can be represented as:

a = coshϕ ± sinhϕ e1 + u sinhϕ e2,

resp. a = sinhϕ ± coshϕe1 + u coshϕ e2,

where u ∈ R. The anti-rotations map the elements with the positive norms into the
elements with the negative norms and visa versa.

The bilinear form (3) in the algebra A takes the real values, therefore it is possible
to present it as: (x, y) = 1

2 (xy+yx) = 1
2 (xy+yx). Consequently, in the case of rotations

the hyperbolic cosine of an angle between x and x′ is equal to

cosh(x, x′) =
(x, ax)
|x||ax| =

1/2(xax + axx)
|x|2 =

1/2(xx a + axx)
|x|2 =

1
2

(a + a) = coshϕ, (6)

and the same for the right multiplication. Similarly we get sinhϕ for anti-rotations.
Note that the angle ϕ does not depend on x.

Isometries
x′ = axb, (7)

where |a|2 = ±1, |b|2 = ±1, are compositions of rotations and/or anti-rotations
x′ = ax and x′ = xb. We see that (7) defines proper rotations and anti-rotations.

Similarly,
x′ = axb (8)

are compositions of the reflection x′ = x and transformations (7). These are improper
rotations and anti-rotations.
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Proposition. Any proper or improper rotation/anti-rotation of the pseudo-
Euclidean space G can be represented by (7) or (8).

Proof. Rotations and anti-rotations (7), (8) are compositions of odd and even num-
bers of reflections of planes passing through the origin. There corresponds an or-
thonormal vector n to each plane. If vectors x1 and n are collinear, then x1n = nx1
and x′1 = −nx1n = −nnx1 = −x1. If vectors x2 and n are orthogonal, then x2n+nx2 = 0
and x′2 = −nx2n = nnx2 = x2. On the other hand, any vector x can be represented
by a sum of vectors x1 and x2. It means, that a reflection of the plane is: x′ = −nxn.
Therefore, the composition of even, resp. odd number of reflections of planes are
isometries (7), resp. (8). �

Corollary. Only translations, rotations and anti-rotations are isometries of G.
They all can be written in a known form (for further discussion see e.g. [19])


x′0 = x0 coshϕ + x1 sinhϕ + a0
x′1 = x1 coshϕ + x0 sinhϕ + a1
x′2 = u0x0 + u1x1 + u2x2 + a2

(9)

where a = aiei ∈ G and ui ∈ R.
Let us introduce adapted coordinates (u, λ, ϕ) of the bundle in semi-Euclidean

space, here u is a basic coordinate, λ, ϕ are fiber coordinates. If |x|2 > 0, we de-

note λ = ±
√

x2
0 − x2

1 � 0, the sign of λ is equal to the sign of x0. The adapted
coordinates of the bundle in this case are:

x0 = λ coshϕ, x1 = λ sinhϕ, x2 = uλ expϕ, (10)

where λ ∈ R0, u, ϕ ∈ R.
If |x|2 < 0, then we write λ = ±

√
x2

1 − x2
0, the sign of λ is equal to the sign of x1:

x0 = λ sinhϕ, x1 = λ coshϕ, x2 = uλ expϕ. (11)

The structure group acts as follows:

u′ = u, λ′ = λρ, ϕ′ = ϕ + ψ, (12)

where the element a(0, ρ, ψ) of the structure group acts on the element x(u, λ, ϕ) ∈ G.
This group consists of 4 connected components.

3. C o n f o r m a l m o d e l o f a s p h e r e

Definition. We call semi-Euclidean sphere with an unit radius the set of all ele-
ments of algebra A whose square is equal to one,

S 2(1) = {x ∈ A | x2
0 − x2

1 = 1}.
Analogously, the set of elements with an imaginary unit module |x|2 = −1 we call
semi-Euclidean sphere with an imaginary unit radius S 2(−1).
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One of these spheres can be obtained from another by rotation. The isometries (9)
are now constrained by additional relation x2

0 − x2
1 = 1, therefore, only rotations and

vertical translations remain, a0 = a1 = 0.
We consider the subbundle of the bundle (G, π,M = G/H1) of semi-Euclidean

sphere S 2(1), i.e. the bundle π : S 2(1) → M. The fibers of the new bundle are
intersections of S 2(1) and planes (5). The restriction of the group of double numbers
H1 to S 2(1) is a Lie subgroup S 1 of double numbers with an unit module

S 1 = {a0 + a1e1 ∈ H1 | a2
0 − a2

1 = 1} .

This group consists of two connected components. The bundle (S 2(1), π,M) is a
trivial bundle of the group S 2(1) by the Lie subgroup S 1 to right cosets.

We define coordinates adapted to the bundle on semi-Euclidean sphere S 2(1). If
x ∈ S 2(1) then from (10) we get λ = ε, ε = ±1. The parametric equation of semi-
Euclidean sphere in the adapted coordinates (u, ϕ) is:

r(u, ϕ) = ε(coshϕ, sinhϕ, u expϕ), (13)

where u is a basis coordinate, ϕ is a fiber coordinate. Different values of ε correspond
to different connected components of semi-Euclidean sphere S 2(1).

Let us define the action of the structure group S 1 on semi-Euclidean sphere. From
(12) and using the adapted coordinates of elements a(0, ε1, ψ), x(u, ε, ϕ) ∈ S 2(1) we
get:

u′ = u, ε′ = εε1, ϕ′ = ϕ + ψ.

This group also consists of two connected components.
The metric tensor for semi-Euclidean sphere has the matrix representation:

(gi j) =
(

0 0
0 −1

)
.

The linear element of the metric is:

ds2
1 = −dϕ2. (14)

Now, we want to define the conformal model of the bundle (S 2(1), π,R). For
that we need to introduce the conformal map of the sphere to a disconnected plane
f : S 2(1) → Q ∈ R2. Q is located at x0 = 0. We know that the sphere consists of
two disconnected components, one with x0 > 0, and other with x0 < 0. We choose a
pole at the first one, N(1, 0, 0). All points of S 2(1) except the line passing through the
pole N are stereographically projected to Q such that the first component of the sphere
with x0 > 0 is mapped on {(0, x1, x2)| x1 ∈ (−∞,−1)∪(1,∞), x2 ∈ R}while the second
component with x0 < 0 is mapped on the strip {(0, x1, x2)| x1 ∈ (−1, 1), x2 ∈ R}. We
denote x, y coordinates on Q such that the x axis lies along x1 while the y axis along
x2. Then

x =
x1

1 − x0
, y =

x2

1 − x0
. (15)
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An inverse map f −1 : Q→ S 2(1), where x � ±1, is:

x0 = −
1 + x2

1 − x2 , x1 =
2x

1 − x2 , x2 =
2y

1 − x2 . (16)

If we substitute formulas (15) into (13) then we obtain the relations between coordi-
nates x, y and adapted coordinates u, ϕ which are on semi-Euclidean sphere:

f : x =
sinhϕ
ε − coshϕ

, y =
u expϕ
ε − coshϕ

.

Then the inverse map is:

ϕ = ln
(
ε

x − 1
x + 1

)
, u = − 2y

(1 − x)2 . (17)

Note that the lines x = ±1 are not included in the mapping and Q consists of three
disconnected components. Also, the line x0 = 1, x1 = 0 has no image in this map-
ping. We add it by hand, identifying the image of this line with the points {(x, y)| x =
= ±∞, y ∈ R} on Q. Then two disconnected parts {(x, y)| x ∈ (−∞,−1), y ∈ R} and
{(x, y)| x ∈ (1,∞), y ∈ R} are connected and we call this plane C2.

In particular, after enlarging Q into C2 by the infinitely distant point and ideal line
crossing this point, then the stereographic map f becomes diffeomorphism S . Note
that the infinitely distant point is the image of point N. The ideal line is the image of
the straight line belonging to S 2(1) and crossing the pole: x0 = 1, x1 = 0.

Let us now consider the commutative diagram:

S 2(1)
S−→ C2

π↘ ↙ p
R

The map p = π ◦ S −1 : C2 → R is defined by this diagram. We find the coordinate
form of this map:

u = − 2y
(1 − x)2 .

The map p : C2 → R defines the trivial bundle with the base R and the structure
group S 1.

Theorem. Let S is the map : S 2(1) → C2 as described before. Then S is a
conformal map.

Proof. The metric on G induces the metric on C2. In the coordinates x, y it has the
form:

ds̃2 = −dx2. (18)

Let us find the metric of semi-Euclidean sphere from the metric on C2. From (17)
we get dϕ = 2

x2−1 dx and using (14) and (18) we find:

ds2
1 =

4
(x2 − 1)2 ds̃2.
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Hence, the linear element of semi-Euclidean sphere differs from the linear element of
C2 by a conformal factor and therefore, the map S is conformal. �

We find the equation of fibers on C2. The 1-parametric fibers family of the bundle
(S 2(1), π,R) in the adaptive coordinates (13) is: u = c, c ∈ R. From (17) we get the
image of this family under the map S :

y = −c/2 · (x − 1)2. (19)

The C2 plane is also fibred by this 1-parametric family of parabolas.

4. T h e p r o j e c t i v e c o n f o r m a l m o d e l

Now we construct the projective semi-conformal model of the sphere S 2(1) and
the principal bundle on it. We use a normalization method of A.P.Norden [7], [8]. A.
P. Shirokov in his work [14] constructed conformal models of Non-Euclidean spaces
with this method.

Definition. A hypersurface Xn−1 as an absolute in a projective space Pn is called
normalized if with every point Q ∈ Xn−1 there is associated:
1) a line PI which has the point Q as the only intersection with the tangent space Tn−1,
and
2) a linear space Pn−2 that belongs to Tn−1, but it does not contain the point Q.
We call them normals of the first and second types, PI and PII .

In order to have a polar normalization, PI and PII must be polar with respect to the
absolute Xn−1.

We enlarge the semi-Euclidean space 2E3
1 to a projective space P3. Here kEn

l de-
notes a n-dimensional semi-Euclidean space with the metric tensor of rank k, and l is
the number of negative inertia index in a quadric form. We consider homogeneous co-
ordinates (y0 : y1 : y2 : y3) in P3, where xi =

yi
y3
, i = 0, 1, 2. Thus S 2(1) : x2

0 − x2
1 = 1

describes the hyperquadric in P3:

y2
0 − y2

1 − y2
3 = 0 . (20)

Here the projective basis (E0, E1, E2, E3) is chosen in the following way. The
vertex E0 of basis is inside the hyperquadric. The other vertices E1, E2, E3 are on its
polar plane, y0 = 0. The line E0E3 crosses the hyperquadric at poles N(1 : 0 : 0 : 1),
N′(1 : 0 : 0 : −1). Vertices E1, E2 lie on the polar of the line E0E3. The vertex of the
hyperquadric coincides with the vertex E2.

The stereographic map of the projective plane P2 : y0 = 0 to the hyperquadric (20)
from the pole N(1 : 0 : 0 : 1) is shown on the picture. Let U(0 : y1 : y2 : y3) ∈ P2.
If y3 = 0, then the line UN belongs to the tangent plane TN : y0 − y3 = 0 of the
hyperquadric (20) at the point N and in this case the intersection point of the line UN
with the hyperquadric is not uniquely determined. If y3 � 0, then the intersection
point of the line UN with the hyperquadric is unique. So, we choose the line E1E2 :
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: y3 = 0 as the line at infinity. In the area y3 � 0 we consider the Cartesian coordinates
x1 =

y1
y3
, x2 =

y2
y3
. Then the plane α : y0 = 0, y3 � 0 becomes a plane with an affine

structure A2. It is possible to introduce the structure of semi-Euclidean plane 1E2 with
the linear element

ds2
0 = dx2

1 . (21)
The hyperquadric and the plane α do not intersect each other or intersect in two
imaginary parallel lines

x2
1 = −1 . (22)

The restriction of the stereographic projection to the plane α maps the point
U(0 : x1 : x2 : 1) into the point X1

X1(−1 − x2
1 : 2x1 : 2x2 : 1 − x2

1) . (23)

So, the Cartesian coordinates xi can be used as the local coordinates at the hyper-
quadric except the point of its intersection with the tangent plane TN .

We construct an autopolar normalization of the hyperquadric. As a normal of the
first type we take lines with the fixed center E0 and as a normal of the second type
we take their polar lines which belong to the plane α and cross the vertex E2 of the
hyperquadric. The line E0X1 intersects the plane α at the point

X(0 : 2x1 : 2x2 : 1 − x2
1) .

In this normalization the polar of the point X intersects the plane α on the normal PII .
Thus for any point X in the plane α there corresponds a line which does not cross this
point. It means that the plane α is also normalized. The normalization of α is defined
by an absolute quadric (22).

E2

E1

E0X1

U
E3

y0= 0

N

X
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We consider the derivative equations of this normalization. If we take normals of
the first type with fixed center E0, then the derivative equations ([7], p. 204) have the
form:

∂iX = Yi + liX ,
∇ jYi = l jYi + p jiX .

(24)

The points X, Yi, E0 define a family of projective frames. Here Yi are generating
points of the normal PII .

We can calculate the values (X, X), (X, Yi) on the plane α using the quadric form,
which is in the left part of equation (20). So, (X, X) = −(1 + x2

1)2.
Let us find coordinates of the metric tensor on the plane α. Hence, we take the

Weierstrass standardization

(X̃, X̃) = −1, X̃ =
X

1 + x2
1

.

Then the coordinates of the metric tensor are the scalar products of partial derivatives
gi j = −(∂iX̃, ∂ jX̃):

(gi j) =


4
(1+x2

1)2 0
0 0

 .
We got the conformal model of the polar normalized plane α : y0 = 0, y3 � 0 with a
linear element

ds2 =
dx2

1

(1 + x2
1)2
. (25)

It means that the following theorem is true:
Theorem. The non-Euclidean plane α is conformally equivalent to semi-Euclidean

plane 1E2.
The points X and Yi are conjugated with respect to the polar (20) and (X, Yi) = 0.

From this equation and the derivative equations (24) we can get the non-zero connec-
tion coefficients:

Γ1
11 = Γ

2
12 = Γ

2
21 = −

2x1

1 + x2
1

, Γ2
11 =

2x2

1 + x2
1

.

The sums Γs
ks = ∂k ln c

(1+x2
1)2 (c = const) are gradients, so the connection is equiaffine.

Curvature tensor has the following non-zero elements:

R 2
121· = −R 2

211· = −
4

(1 + x2
1)2
.

Ricci curvature tensor Rsk = R i
isk· is symmetric: R11 =

4
(1+x2

1)2 . Metric gi j and curva-

ture R i
rsk· tensors are covariantly constant in this connection: ∇kgi j = 0, ∇lR i

rsk· = 0.
This can be summarized into a proposition:
Proposition. The autopolar normalization of the hyperquadric (20) constructed

above defines an equiaffine connection on it with symmetric Ricci curvature tensor
and covariantly constant metric and curvature tensors.
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The infinitesimal linear operators for the quadric are


L1 = y0
∂
∂y1
+ y1

∂
∂y0
,

L2 = y0
∂
∂y3
+ y3

∂
∂y0
,

L3 = y1
∂
∂y3
− y3

∂
∂y1
.

(26)

Solving geodesic equations we find parametric solutions
{

x1 = tan(ωt + φ),
x2 = (c1e2iωt + c2e−2iωt) sec2(ωt + φ). (27)

where c1, c2, ω, φ are integration constants. Eliminating the parameter t we can
rewrite these equations in a simple form

x2 = A(x2
1 − 1) + Bx1,

where A and B are arbitrary constants. We see that the solution represents parabolas
and lines in x1x2−plane.

Let us consider the bundle of this plane by the double numbers subalgebra. We
write the equations of fibers of semi-Euclidean sphere S 2(1) in homogeneous coordi-
nates: {

(y0 − y1)v − y2 = 0,
y2

0 − y2
1 − y2

3 = 0. (28)

This 1-parametric family of curves fibers the hyperquadric and it defines a bundle on
it. The image of these fibers under the stereographic projection from the pole N to
the plane α is:

x2 = −v/2 · (x1 + 1)2.

It is 1-parametric family of parabolas (compare with (19)).

C o n c l u s i o n

General program is to study non-Euclidean spaces generated by unital associative
algebras. In this paper we give an example of pseudo-Euclidean space and then we
present two ways how to construct models of its fibration, which are conformal and
projective models of pseudo-Euclidean sphere. For both models we get metric and
images of a fibration. For the second we use a normalization method to construct an
equiaffine connection, then we find infinitesimal linear operators and geodesics.

We would obtain the similar results for the space of right cosets by the Lie sub-
group H2 (it is the subgroup of invertible dual numbers) and the bundle of the group
G by H2. However, H2 is a normal divisor of the group G. Therefore, the spaces of
right and left cosets coincide.
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