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In the paper, commutative semigroups with almost transitive endomorphism semirings are
investigated.

In many classical situations, endomorphisms and/or automorphisms operate tran-
sitively on some algebraic structures. Such considerations appeared e.g. in our inves-
tigation of commutative semigroups that are simple over their endomorphism semir-
ings (see [1]). In this note, we present a slight generalization of the transitive action.

Throughout the paper, let A = A(+) be a commutative semigroup and E =

= End(A(+)) be the full endomorphism semiring of A (clearly, E is a unitary semir-
ing and A is a left E-semimodule). Further, Aut(A) is the group of automorphisms of
A(+), N denotes the set of positive integers and N0 is the set of non-negative integers.
As usual, 0 = 0A (o = oA, resp.) will denote the neutral (absorbing, resp.) element
of A and 0A ∈ A (o ∈ A, resp.) means that A has the neutral (absorbing, resp.) ele-
ment. An element a ∈ A is idempotent if a = a + a and Id(A) denotes the set of all
idempotent elements. A is a semilattice if A = Id(A). A subset I of A is an ideal if
I � ∅ and A + I ⊆ I. A subsemigroup B of A is fully invariant if f (B) ⊆ B for every
f ∈ E. We shall say that A is ems-simple if |A| ≥ 2 and |B| = 1 whenever B is a fully
invariant subsemigroup with B � A (then B = {a} for some a ∈ Id(A)).
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Obviously, for each a ∈ A, E(a) = { f (a) | f ∈ E } is a fully invariant subsemigroup
of A and a ∈ E(a). In particular, if E(a) = {a} then a ∈ Id(A). We shall say that E
operates on A

– transitively if for all a, b ∈ A there is f ∈ E such that f (a) = b (i.e., E(a) = A
for every a ∈ A);

– almost transitively if there is w ∈ A such that for all a, b ∈ Bw = A \ {w} there
is f ∈ E such that f (a) = b (i.e., Bw ⊆ E(a) for every a ∈ Bw.

Clearly, if E operates on A transitively then it operates almost transitively and for w
can be chosen any element. Further, if |A| = 2 then E operates almost transitively on
A (indeed, if w ∈ A then Bw = {v} and v ∈ E(v)).

In the rest of the paper, we shall always assume that E operates almost transitively
on A (i.e., w ∈ A is such that Bw = A \ {w} ⊆ E(a) for every a ∈ Bw) and |A| ≥ 2.

1. B a s i c p r o p e r t i e s

1.1 Lemma. If w ∈ Id(A) then E(a) = A for every a ∈ Bw.

Proof. The mapping f defined by f (x) = w for each x ∈ A is an endomorphism,
and hence w = f (a) ∈ E(a) for every a ∈ Bw. �

1.2 Lemma. If a ∈ Id(A) then E(a) ⊆ Id(A).

Proof. Obvious. �

1.3 Lemma. Just one of the following two cases takes place:
• E(w) = {w} (and then w ∈ Id(A)).
• E(w) = A. �

Proof. If E(w) � {w} then there is f ∈ E such that a = f (w) � w. Then Bw ⊆
⊆ E(a) = E( f (w)) ⊆ E(w) and, of course, w ∈ E(w). �

1.4 Lemma. If w ∈ Id(A) and either Id(A) � {w} or E(w) � {w} then A is a
semilattice and E operates transitively on A.

Proof. Combine 1.1, 1.2 and 1.3. �

1.5 Lemma. Assume that w � E(a0) for at least one a0 ∈ Bw. Then:
(i) Bw is a fully invariant subsemigroup of A and w � E(a) = Bw for every a ∈ Bw.
(ii) End(B) operates transitively on B.

Proof. (i) Bw = E(a0) is a fully invariant subsemigroup of A. If a ∈ B and f ∈ E
are such that w ∈ E(a) then a = g(a0) for some g ∈ E and w = f g(a0) ∈ E(a0),
a contradiction.
(ii) For every f ∈ E, the restriction f |Bw is an endomorphism of Bw by (i). �

1.6 Corollary. Just one of the following two cases takes place:
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• E(a) = A for every a ∈ Bw.
• w � E(a) for every a ∈ Bw. �

1.7 Remark. Let T = { (u, v) ∈ A × A | u � E(v) }. According to 1.5, either u � w
for all (u, v) ∈ T or (w, a) ∈ T for every a ∈ Bw. Similarly, using 1.3, either v � w for
all (u, v) ∈ T or (a,w) ∈ T for every a ∈ Bw.

1.8 Proposition. If E does not operate transitively on A and |A| ≥ 3 then w is
uniquely determined.

Proof. Suppose that there are v,w ∈ A such that Bw ⊆ E(x) for all x ∈ Bw, Bv ⊆
⊆ E(y) for all y ∈ Bv and v � w. As |A| > 2, there is c ∈ A with v � c � w. With
respect to 1.6, if E(a) � A for some a � w then w � E(c) and w � E(v), hence
E(v) = {v} by 1.3, v ∈ Id(A) and E(c) = A by 1.1, a contradiction. Thus E(a) = A for
all a � w. Symmetrically, E(a) = A for all a � v, hence E(w) = A and E operates
transitively on A. �

2. C l a s s i f i c a t i o n w i t h r e s p e c t t o i d e m p o t e n t s

2.1 Assume now that w � Id(A) and Id(A) ∩ Bw � ∅. By 1.2, B is a semilattice.
Of course, E(w) = A by 1.3, w � v = 2w = 4w = 2v, B = Id(A) is a fully invariant
subsemigroup of A and A = B∪{w}. Since w � Id(A), f (w) = w and f (v) = v for each
f ∈ Aut(A). Thus automorphisms do not operate almost transitively on A whenever
|A| ≥ 3. If |A| ≤ 3 then A is isomorphic to one of the following semigroups A1, A2,
A3, A4:

A1 w v
w v v
v v v

A2 w v u
w v v v
v v v v
u v v u

A3 w v u
w v v u
v v v u
u u u u

A4 w v u
w v v w
v v v v
u w v u

2.2 Now, suppose that w ∈ Id(A) = {w}. Then E(a) = A for every a ∈ Bw by 1.1 and
E(w) = {w}. Of course, A is ems-simple and E does not operate transitively on A.
Further, f (w) = w and f (B) = B for every f ∈ Aut(A). Nevertheless, it may happen
that Aut(A) operates transitively on B (i.e., for all a, b ∈ B there is f ∈ Aut(A) such
that f (a) = b).
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2.3 Now, let us suppose that w ∈ Id(A) and B ∩ Id(A) � ∅. Then A is a semilattice,
A = B ∪ {w} and E operates transitively on A.

2.4 Finally, suppose that Id(A) = ∅. Then A is infinite. Moreover, E(w) = A and
B ⊆ E(a) for every a ∈ B. If E(a) = A (i.e., w ∈ E(a)) for at least one a ∈ B then E
operates transitively on A. On the other hand, if E(a) = B for every a ∈ B then B is a
fully invariant subsemigroup of A and End(B) operates transitively on B.

2.5 Suppose that A is not ems-simple. Then just one of the following two cases takes
place:

• Id(A) = B, A = B∪ {w}, 2w � w and B is a fully invariant subsemigroup of A
(and a semilattice).
• Id(A) = ∅, A = B∪ {w}, 2w � w, B is a fully invariant subsemigroup of A and

End(B) operates transitively on B.

R e f e r e n c e s

[1] Ježek, J., Kepka, T., and Němec, P.: Commutative semigroups that are simple over their endomor-
phism semirings, Acta. Univ. Carolinae Math. Phys. 52/2 (2011), 37–50.

A classification of one-element extensions of commutative semigroups is presented.

In the investigation of various classes of commutative semigroups, it often happens
that A = B∪ {w}, where B is a subsemigroup of A and w � B (see e.g. [1], [2]). In this
short note, we present a classification of such one-element extensions.

1. R e g u l a r t r a n s f o r m a t i o n s

Throughout the paper, let A = A(+) be a commutative semigroup. Further, N de-
notes the set of positive integers and N0 is the set of non-negative integers. As usual,
0 = 0A (o = oA, resp.) will denote the neutral (absorbing, resp.) element of A and
0A ∈ A (o ∈ A, resp.) means that A has the neutral (absorbing, resp.) element. An
element a ∈ A is idempotent if a = a + a and Id(A) denotes the set of all idempotent
elements. A is a semilattice if A = Id(A). A subset I of A is an ideal if I � ∅ and
A + I ⊆ I. A transformation f : A→ A is said to be regular if f (a + b) = a + f (b) for
all a, b ∈ A. Regular transformations form a submonoid of the transformation monoid
T (A). The following observations are straightforward:
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