Acta Universitatis Carolinae. Mathematica et Physica

Jaroslav Ježek; Tomáš Kepka; Per Němec
 Commutative semigroups with almost transitive endomorphism semirings

Acta Universitatis Caroline. Mathematic et Physica, Vol. 52 (2011), No. 2, 29--32

Persistent URL: http://dml.cz/dmlcz/143676

Terms of use:

© Univerzita Karlova v Braze, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Commutative Semigroups with Almost Transitive Endomorphism Semiring

JAROSLAV JEŽEK ${ }^{\dagger}$, TOMÁŠ KEPKA, PETR NĚMEC
Praha

Received December 16, 2010

In the paper, commutative semigroups with almost transitive endomorphism semirings are investigated.

In many classical situations, endomorphisms and/or automorphisms operate transitively on some algebraic structures. Such considerations appeared e.g. in our investigation of commutative semigroups that are simple over their endomorphism semirings (see [1]). In this note, we present a slight generalization of the transitive action.

Throughout the paper, let $A=A(+)$ be a commutative semigroup and $E=$ $=\operatorname{End}(\mathrm{A}(+))$ be the full endomorphism semiring of A (clearly, E is a unitary semiring and A is a left E-semimodule). Further, $\operatorname{Aut}(\mathrm{A})$ is the group of automorphisms of $A(+), \mathbb{N}$ denotes the set of positive integers and \mathbb{N}_{0} is the set of non-negative integers. As usual, $0=0_{A}$ ($o=o_{A}$, resp.) will denote the neutral (absorbing, resp.) element of A and $0_{A} \in A(o \in A$, resp.) means that A has the neutral (absorbing, resp.) element. An element $a \in A$ is idempotent if $a=a+a$ and $\operatorname{Id}(\mathrm{A})$ denotes the set of all idempotent elements. A is a semilattice if $A=\operatorname{Id}(\mathrm{A})$. A subset I of A is an ideal if $I \neq \emptyset$ and $A+I \subseteq I$. A subsemigroup B of A is fully invariant if $f(B) \subseteq B$ for every $f \in E$. We shall say that A is ems-simple if $|A| \geq 2$ and $|B|=1$ whenever B is a fully invariant subsemigroup with $B \neq A$ (then $B=\{a\}$ for some $a \in \operatorname{Id}(\mathrm{~A})$).

[^0]2000 Mathematics Subject Classification. 20M14
Key words and phrases. Commutative semigroup, ideal, endomorphism
E-mail address: kepka@karlin.mff.cuni.cz, nemec@tf.czu.cz

Obviously, for each $a \in A, E(a)=\{f(a) \mid f \in E\}$ is a fully invariant subsemigroup of A and $a \in E(a)$. In particular, if $E(a)=\{a\}$ then $a \in \operatorname{Id}(\mathrm{~A})$. We shall say that E operates on A

- transitively if for all $a, b \in A$ there is $f \in E$ such that $f(a)=b$ (i.e., $E(a)=A$ for every $a \in A$);
- almost transitively if there is $w \in A$ such that for all $a, b \in B_{w}=A \backslash\{w\}$ there is $f \in E$ such that $f(a)=b$ (i.e., $B_{w} \subseteq E(a)$ for every $a \in B_{w}$.
Clearly, if E operates on A transitively then it operates almost transitively and for w can be chosen any element. Further, if $|A|=2$ then E operates almost transitively on A (indeed, if $w \in A$ then $B_{w}=\{v\}$ and $v \in E(v)$).

In the rest of the paper, we shall always assume that E operates almost transitively on A (i.e., $w \in A$ is such that $B_{w}=A \backslash\{w\} \subseteq E(a)$ for every $a \in B_{w}$) and $|A| \geq 2$.

1. Basic properties

1.1 Lemma. If $w \in \operatorname{Id}(\mathrm{~A})$ then $E(a)=A$ for every $a \in B_{w}$.

Proof. The mapping f defined by $f(x)=w$ for each $x \in A$ is an endomorphism, and hence $w=f(a) \in E(a)$ for every $a \in B_{w}$.
1.2 Lemma. If $a \in \operatorname{Id}(\mathrm{~A})$ then $E(a) \subseteq \operatorname{Id}(\mathrm{A})$.

Proof. Obvious.
1.3 Lemma. Just one of the following two cases takes place:

- $E(w)=\{w\}$ (and then $w \in \operatorname{Id}(\mathrm{~A})$).
- $E(w)=A$.

Proof. If $E(w) \neq\{w\}$ then there is $f \in E$ such that $a=f(w) \neq w$. Then $B_{w} \subseteq$ $\subseteq E(a)=E(f(w)) \subseteq E(w)$ and, of course, $w \in E(w)$.
1.4 Lemma. If $w \in \operatorname{Id}(\mathrm{~A})$ and either $\operatorname{Id}(\mathrm{A}) \neq\{\mathrm{w}\}$ or $E(w) \neq\{w\}$ then A is a semilattice and E operates transitively on A.

Proof. Combine 1.1, 1.2 and 1.3.
1.5 Lemma. Assume that $w \notin E\left(a_{0}\right)$ for at least one $a_{0} \in B_{w}$. Then:
(i) B_{w} is a fully invariant subsemigroup of A and $w \notin E(a)=B_{w}$ for every $a \in B_{w}$.
(ii) $\operatorname{End}(\mathrm{B})$ operates transitively on B.

Proof. (i) $B_{w}=E\left(a_{0}\right)$ is a fully invariant subsemigroup of A. If $a \in B$ and $f \in E$ are such that $w \in E(a)$ then $a=g\left(a_{0}\right)$ for some $g \in E$ and $w=f g\left(a_{0}\right) \in E\left(a_{0}\right)$, a contradiction.
(ii) For every $f \in E$, the restriction $f \mid B_{w}$ is an endomorphism of B_{w} by (i).
1.6 Corollary. Just one of the following two cases takes place:

- $E(a)=A$ for every $a \in B_{w}$.
- $w \notin E(a)$ for every $a \in B_{w}$.
1.7 Remark. Let $T=\{(u, v) \in A \times A \mid u \notin E(v)\}$. According to 1.5 , either $u \neq w$ for all $(u, v) \in T$ or $(w, a) \in T$ for every $a \in B_{w}$. Similarly, using 1.3, either $v \neq w$ for all $(u, v) \in T$ or $(a, w) \in T$ for every $a \in B_{w}$.
1.8 Proposition. If E does not operate transitively on A and $|A| \geq 3$ then w is uniquely determined.

Proof. Suppose that there are $v, w \in A$ such that $B_{w} \subseteq E(x)$ for all $x \in B_{w}, B_{v} \subseteq$ $\subseteq E(y)$ for all $y \in B_{v}$ and $v \neq w$. As $|A|>2$, there is $c \in A$ with $v \neq c \neq w$. With respect to 1.6 , if $E(a) \neq A$ for some $a \neq w$ then $w \notin E(c)$ and $w \notin E(v)$, hence $E(v)=\{v\}$ by $1.3, v \in \operatorname{Id}(\mathrm{~A})$ and $E(c)=A$ by 1.1, a contradiction. Thus $E(a)=A$ for all $a \neq w$. Symmetrically, $E(a)=A$ for all $a \neq v$, hence $E(w)=A$ and E operates transitively on A.

2. Classification with respect to idempotents

2.1 Assume now that $w \notin \operatorname{Id}(\mathrm{~A})$ and $\operatorname{Id}(\mathrm{A}) \cap \mathrm{B}_{\mathrm{w}} \neq \emptyset$. By $1.2, B$ is a semilattice. Of course, $E(w)=A$ by $1.3, w \neq v=2 w=4 w=2 v, B=\operatorname{Id}(\mathrm{A})$ is a fully invariant subsemigroup of A and $A=B \cup\{w\}$. Since $w \notin \operatorname{Id}(A), f(w)=w$ and $f(v)=v$ for each $f \in \operatorname{Aut}(\mathrm{~A})$. Thus automorphisms do not operate almost transitively on A whenever $|A| \geq 3$. If $|A| \leq 3$ then A is isomorphic to one of the following semigroups A_{1}, A_{2}, A_{3}, A_{4} :

A_{1}	W		W	v	A_{2}	w	v	u	
			w		v	v	v		
w		v			v	v	v	v	v
v		v		v	u	v	v	u	
A_{3}	W		V	u	A_{4}	W	v	u	
w	v		v	u	w	v	v	w	
v	v		v	u	v	v	v	v	
u	u		u	u	u	w	v	u	

2.2 Now, suppose that $w \in \operatorname{Id}(\mathrm{~A})=\{\mathrm{w}\}$. Then $E(a)=A$ for every $a \in B_{w}$ by 1.1 and $E(w)=\{w\}$. Of course, A is ems-simple and E does not operate transitively on A. Further, $f(w)=w$ and $f(B)=B$ for every $f \in \operatorname{Aut}(\mathrm{~A})$. Nevertheless, it may happen that $\operatorname{Aut}(\mathrm{A})$ operates transitively on B (i.e., for all $a, b \in B$ there is $f \in \operatorname{Aut}(\mathrm{~A})$ such that $f(a)=b)$.
2.3 Now, let us suppose that $w \in \operatorname{Id}(\mathrm{~A})$ and $B \cap \operatorname{Id}(\mathrm{~A}) \neq \emptyset$. Then A is a semilattice, $A=B \cup\{w\}$ and E operates transitively on A.
2.4 Finally, suppose that $\operatorname{Id}(\mathrm{A})=\emptyset$. Then A is infinite. Moreover, $E(w)=A$ and $B \subseteq E(a)$ for every $a \in B$. If $E(a)=A$ (i.e., $w \in E(a))$ for at least one $a \in B$ then E operates transitively on A. On the other hand, if $E(a)=B$ for every $a \in B$ then B is a fully invariant subsemigroup of A and $\operatorname{End}(\mathrm{B})$ operates transitively on B.
2.5 Suppose that A is not ems-simple. Then just one of the following two cases takes place:

- $\operatorname{Id}(\mathrm{A})=\mathrm{B}, A=B \cup\{w\}, 2 w \neq w$ and B is a fully invariant subsemigroup of A (and a semilattice).
- $\operatorname{Id}(\mathrm{A})=\emptyset, A=B \cup\{w\}, 2 w \neq w, B$ is a fully invariant subsemigroup of A and End(B) operates transitively on B.

References

[1] Ježek, J., Керкa, T., and Němec, P.: Commutative semigroups that are simple over their endomorphism semirings, Acta. Univ. Carolinae Math. Phys. 52/2 (2011), 37-50.

[^0]: \dagger Deceased February 13, 2011
 Department of Algebra, MFF UK, Sokolovská 83, 18675 Praha 8, Czech Republic (T. Kepka)
 Department of Mathematics, ČZU, Kamýcká 129, 16521 Praha 6 - Suchdol, Czech Republic (P. Němec)

 The work is a part of the research project MSM 0021620839 financed by MŠMT and partly supported by the Grant Agency of the Czech Republic, grant \#201/09/0296.

