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QUASITRIVIAL SEMIMODULES VII

TOMAS KEPKA, PETR NEMEC
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The paper continues the investigation of quasitrivial semimodules and related problems.
In particular, strong endomorphisms of semilattices are studied.

This part is a continuation of [1], [2], [3], [4], [5] and [6] with main emphasis on
strong endomorphisms of semilattices. The notation introduced in the preceding parts
is used. All the results collected here are fairly basic and we will not attribute them
to any particular source.

1. Congruences

Let M be a non-trivial semilattice. Let a, b,c € M and denote by n,; the congru-
ence of M generated by the pair (a, b).

1.1 Proposition. (i)z,, = idy.
(ii)) Tab = Tha-

(111) Ta+e,b+c c Tab-

(IV) Ta.a+b ) Th.a+b c Tab-
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Proof. It is easy. O

1.2 Proposition. Let u,v € M, u # v. Then (u,v) € m,y, if and only if the following
two conditions are satisfied:

() u+a+b=v+a+b;

@) uefu+a,u+byandve{v+a,v+b}

Proof. Define arelation 7 on M by (u,v) € miff u+a+b = v+a+b and eitheru = v
oru € {u+a,u+b}andv € {v+a,v+ b}. One checks easily that 7 is a congruence
of M and (a, b) € n. Consequently, 7, C 7.

Conversely, let (#,v) € m,u # v. Thenu +a+ b = v + a + b and we have to
distinguish the following four cases:

letu+a=wuwandv+a=v. Thenu+b=u+a+b =v+a+b =v+b,
(u+b,v+b) € myp, (U,u+b) = (u+a,u+b) € myp and (v,v+b) = v+a,v+b) € myp.
Consequently, (4, V) € m,p.

Letu+ b = uand v + b = v. This case is symmetric to the preceding one.

Letu+a=wuandb+v =v. Thenu+b =u+a+b=v+a+b =v+a,
wu+b,v+a)en,p, (U,u+b) =Ww+a,u+b)en,p,andiv+a,v) = (v+a,v+b) € myy.
Consequently, (i, v) € mgp.

Letu + b = uand v + a = v. This case is symmetric to the preceding one.

We have proved that (4, V) € 7,5, and so w C 7w, p. O

1.3 Corollary. Assume that a < b. Then (u,v) € nt,y, if and only ifu + b = v + b and
eitheru=voru+a=uv+a=v O

1.4 Lemma. Assume that a < b. Then the interval {c|a < ¢ < b} is a block of the
congruence .

Proof. Easy to see. m|
1.5 Proposition. Let a,b,c,d € M. Then n,, = n.4 if and only if {a, b} = {c, d}.

Proof. If {a,b} = {c,d} =Aandif |A|=1thena =b,c=dand n,p, = idy = 4.
If |A| = 2 then a # b, ¢ # d and either (a, b) = (¢,d) or (a,b) = (d, ¢). In both cases,
the equality 7, = m. 4 is clear.
Conversely, assume that 1, = 7. 4. If @ = b then 7, ;, = idy,, and hence 7. 4 = idy,
and ¢ = d. In the remaining part of the proof, we will asume that a # b and ¢ # d.
By 1.2, we get the following two equalities:
(@) a+b+c=a+b+d,
B)a+c+d=b+c+d.
Furthermore, at least one of the following four cases takes place:
() a+c=c,a+d=d,
2 b+c=c,b+d=d,
B)a+c=c,b+d=d,
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@4 b+c=c,a+d=d.
Symmetrically, at least one of the following four cases takes place:

(@ a+c=a,b+c=0b;

b) a+d=a,b+d=b;

(c)a+c=a,b+d=h,

(d)ya+d=a,b+c=hb.

The rest of the proof is divided into ten parts.
(i) Let (1a) be true. Thena = c¢,a <dand a < b. Using (o), wegetb=a+b+c =
=a+b+d=b+dandd < b. Using (B), wegetd =a+c+d=b+c+d=b+d
and b < d. Thusa =cand b =d.
(i1) Let (1b) be true. Thena = d, a < cand a < b. Using (@), we getb+c = a+b+c =
=a+b+d=>b.Using (B),wegetc=a+c+d=b+c+d=>b+c. Thusa =dand
b =c.

(iii) Let (1c) be true. Thena = ¢, a < d < b. Using (B), we getd =a+c+d =
=b+c+d=b+d,b<d. Thusa=cand b =d.
(iv) Let (1d) be true. Thena = d, a < ¢ < b. Using (B8), we getc = a+c+d =

=b+c+d=b+c=b.Thusa=dand b = c.

(v) The cases (2a),...,(2d) are dual to the preceding four cases.

(vi) Let (3a) be true. Thena = ¢ < b < d. Using (@), we getb = a+b+c =
=a+b+d=d Thusa=cand b =d.

(vii) Let (3b) be true. Then b = d < a < c¢. Using (@), we getc = a+ b +c¢
=a+b+d=a Thusa=cand b =d.

(viii) Let (3¢c) be true. Thena = cand b = d.

(ix) Let (3d) be true. Then b < d < a < c¢ < b, and hence a = b = ¢ = d (a contra-
diction, in fact).

(x) The cases (4a),...,(4d) are dual to the preceding four cases. O

1.6 Remark. If M is finite, [M| = n > 2, then the number of non-identical principal
congruences of M is just ”(”T_l)
1.7 Remark. (i) If Oy, 0y € M then 1y, = M X M follows from 1.2. According to
1.5, we have ., = M x M iff {a, b} = {0, 0}.
(i1) Assume that a,b € M are such that a # b, a, b are minimal in M and, for every
x € M, eithera < xor b < x. If, moreover, o)y € Mand a+b = oy thenn,, = M XM
follows from 1.2.
(iii) Let a, b € M be such that ,;, = M X M. Since n,; # idys, we have a # b.

First, assume that a < b. Using 1.2(2), we get a = 0y. Using 1.3(1), we get
b = oy. Similarly, if b < a then b = 0y and a = oy,.

Now, assume that the elements a,b are not comparable. Using 1.2(1), we get
a+b=oy. lfueM,u+oy,theeithera <u,b £ uorb < u,a £ u. Consequently,
a and b are minimal elements (see (ii)).

1.8 Lemma. Leta,b € M. Thenn,), = a4 (07 Tqp C Myaep) iffa < b (ora+b =b).
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Proof. We have 71,44 C 7ap. Thus myp = w4 a4 ift (a, b) € 1,415 Our result now
follows from 1.3 (or 1.5). O

1.9 Lemma. Let a,b,c e M, a < c < b. Thenm,. G 74 p.
Proof. Use 1.3 (or 1.5). O

1.10 Proposition. The following conditions are equivalent for a congruence o of M:
(1) o is a minimal congruence of M.
(1) o = m,p, where a,b € M, a < b and b < c for every ¢ € M such that a < ¢
(equivalently, a + ¢ = b + ¢ for every ¢ € M such that a + ¢ # a).

Proof. (i) implies (ii). Let (a,b) € o, a # b. Assume that b £ a, the other case
being symmetric. Since o is minimal and idy, # 7, C o, we have o = ;. Moreover,
since b £ a, we geta < a+b,idy # mg44p € Map and 7w, 41p = Map. By 1.8, a < b.
Letc € M be suchthata < c. If b £ c then ¢ < b + c and 7. 4. # idy. Anyway,
(¢,b+c) = (a+c, b+c) € m,y, and hence 7. pic € 0 = m,p. Since o is minimal, we have
Tepe = Map and (a, b) € . pye. Using 1.2(2), we geta € {a+c,a+b+c} = {c,b+c},
a contradiction. Thus b < c.

(ii) implies (i). Since a # b, we have o = m,; # idy. Now, let (c,d) € o, c #d. It
follows from 1.2(2) thata < canda < d,andhencec+ b =d + b by 1.2(1). Ifa # ¢
thenb < c,c=b+c =b+d. Similarly, ifa # dthenb <d,d =b+d =b +c.
Since ¢ # d, we have eithera =cora=d. fa=cthenb=a+b=c+b =d+ b,
a<d<bandb <d,sothat b = d. Similarly, if a = d then b = c. We have proved
that {a, b} = {c, d}. The rest is clear. O

1.11 Remark. Let o be a minimal congruence of M. By 1.10 (and its proof), there
are a,b € M such that o = m,5, a < b and a + ¢ = b + ¢ for every ¢ € M such that
a+ c # a. Then b covers a and o = idy U {(a, b), (b, a)}. (In fact, if 1.10(i) is true
then idy, U {(a, b), (b, a)} is a congruence and, of course, it is minimal.)

1.12 Remark. (i) If oy € M and a € M \ {0y} is maximal in M \ {oy} then 7,,0 is a
minimal congruence of M.
(1) If Opy € M and the set M \ {0y} has the smallest element, say a, then 7y, is a
minimal congruence of M.

1.13 Remark. Leta,b € M, a < b. Then nr,;, = kerd, N &, (see [6, 2.8, 2.13].

2. The semiring of strong endomorphisms (a)

An endomorphism f € E = End(M(+)) is called strong if f(o) € o for every
congruence o of M. The set of all strong endomorphisms of M will be denoted
by E@.
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2.1 Proposition. (i) The set E'” is a subsemiring of E.
(i) E(ﬁ) C E(U)-

Proof. 1t is easy. O
2.2 Proposition. The semiring E'7 is not ideal-simple.
Proof. EV is a proper non-trivial ideal of the semiring E7. O

2.3 Proposition. The following conditions are equivalent for f € E:
(i) feEY.
(i) f(map) S map foralla,b e M, a < b.
(iii) Ifa,b,c,d € M are suchthata < b, a < ¢, a <d, b+c = b+dand f(c) # f(d)
then a < f(c), a < f(d)and b + f(c) = b+ f(d).

Proof. Clearly, (i) implies (ii) and (ii) is equivalent to (iii) (see 1.3). It remains to
show that (ii) implies (i). For, let o be a congruence of M and let (a,b) € 0, a # b. If
a < bthen (f(a), f(b) € f(map) € map € 0. The case b < ais similar. Finally, ifa £ b
and b £ athena < ¢, b < ¢, where c = a + b, (f(a), f(c)) € 0 and (f(b), f(c)) € o.
Thus (f(a), f(b)) € o. o

2.4 Proposition. The following conditions are equivalent for f € E:
() f € E9 anda < f(a) for everya € M.
(i1) f(kerd,) € kerd, and a < f(a) for every a € M.
(i) fa+b)=a+ f(b)(=b+ f(a))foralla,b € M.

Proof. (i) implies (ii). Thus implication is trivial.
(i1) implies (iii). We have (b,a + b) € A,, and hence (f(b), f(a + b)) € A, and
a+ fb)=a+ fla+b)=a+ fla)+ f(b) = fla) + f(b) = fla+b).
(iii) implies (i). First, f(a) = f(a + a) = a + f(a) yields a < f(a). Further, if
(c,d) € myp, where ¢ # dand a < b,thena < c,a <dand c+ b = d+ b (use 1.3).
From this, a < f(a) < f(c),a < f(a) < f(d), f(c)+b = f(c+b) = f(d+D) = f(d)+b
by (iii), and hence (f(c), f(d)) € m,p. By 2.3, we get f € E(”). ]

2.5 Proposition. (i) The set EVY = { f € E|a < f(a) foreverya € M} is a sub-
semiring of E7.

(i) E(rfl) + E(rr) C E(GI)-

(iii) E? U {idy} € EV (notice that E? U {idy} is a subsemiring of E).

Proof. It is easy. O

67



2.6 Proposition. Let f € E((’) be suchthat Py ={a € M|a £ f(a)} # 0. Then:

(1) f(Py) = {wy} is a one-element set and P; = {a € M|a £ wy} (so that Py is a
principal prime ideal of M).

(i) wr#oyandwy € Qr ={ae€ Ml|a< f(a)).

(i) Oy ={a € M|a < wy} is a subsemilattice of M and wy = og,.

(iv) (M) < Oy.

V) fwp) = wy.

(Vi) fla+b) =a+ f(b) forall a,b € Qy (and f|Q; is a strong endomorphism of Q).
(vi) a+ f(b) =a+wy foralla € Pyand b € M.

(viii) f(a+b) =a+ f(b)foralla e Qr, b e M.

Proof. First, take a € Py and put N, = M + a. Then N, is an ideal of M, o, =
= (N, X N,) Uidy, is a congruence of M and (a,a + x) € o, for every x € M. Since
f € E9, we get (f(a), f(a) + f(x) € ga. If f(a) # f(a) + f(x) then f(a) € N,,
f(a) = a+yforsomey € M and a < f(a), a contradiction with a € Py. Thus
fla) = f(a) + f(x) and f(x) < f(a). We have proved that f(M) < f(a) for every
a € Py. In particular, we have f(Py) = {ws}. Since a £ f(a) = wy, we have
a £ wy for every a € P;. Conversely, if @ € M is such that a £ wy then a £ f(a),
since f(a) < wy. Consequently, Py = {a € M|a £ wy} is a principal prime ideal,
Qr={aeMla<wys}andws =o0g, € Qy. Since f(M) < f(a) = wy forall a € Py,
we see that f(M) C Qy. Since Py # (), we see that wy # oy. Since wy € Q, we have
wy < f(wy) € Qy, and therefore ws = f(w;. We have proved that (i),...,(v) are true.

Leta,b € M. Then (b,a + b) € kerd,, and hence (f(b), f(a) + f(b)) € kerd, and
a+ f(b) =a+ f(a)+ f(b). If a € QO then a + f(a) = f(a) and we get a + f(b) =
= f(a)+ f(b) (i.e., (vi) and (viii) are true). If a € Py then a+ f(b) = a+ f(a)+ f(b) =
=a+ fla+b)=a+wy,sincea+b € Py (ie., (vil) is true). O

2.7 Proposition. f> = f for every f € E.

Proof. If a € M is such thata < f(a) then f*(a) = f(f(a)+a) = f(a)+ f(a) = f(a)
by 2.6(vi). If a £ f(a) then f(a) = wyand f>(a) = f(wy) = wy = f(a) (use 2.6 again).
Thus f? = f. ]

2.8 Proposition. The following conditions are equivalent for f € E:
(i) feE?.
(1) f(kerd,) € kerd, and f(&,) € &, for every a € M.
(iii) The following are true:
(iil) Ifa € M is such that |f(M + a)| = 2 then f(M +a) C M + a;
(iii2) Ifa,b,c € M are such thata+ b = a + c then a + f(b) = a + f(c).

Proof. (i) implies (ii). This is trivial.
(i1) implies (iii). If [f(M + a)| > 2 then, for every b € M, there is ¢ € M with
f(b+a) # f(c+a). Of course, (b +a,c+a) € &, and so (f(b+ a)f(c+ a)) € &,.
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But f(b + a) # f(c + a) implies f(b + a) € M + a. This is (iiil), and (iii2) follows
immediately from the inclusion f(kerd, C A,.
(iii) impliews (ii). We can proceed conversely.
(ii) implies (i). Using 1.13, we get f(m,p) C 7,y for all a,b € M, a < b. Now
f €E“ by2.3. O

2.9 Proposition. The following conditions are equivalent for f € E:
(i) feE?.
(ii) The following are true:
@iil) f(a+b)=a+ f(b) foralla,b e M, a < f(a);
(1i2) a+ f(b) =a+ f(a) forall a,b e M, a £ f(a);
(113) f(a) = f(a+b)foralla,be M, a £ f(a).

Proof. (i) implies (ii). See 2.6(viii),(vii),(i).
(i1) implies (i). We are going to check the conditions 2.8(iiil),(iii2). Leta € M. If
a < f(a) then f(M +a) C M +aby (iil). If a £ f(a) then f(M + a) = {f(a)} by (ii3).
Now, 2.8(iiil) is clear.

Let a,b,c € M be such thata + b = a + ¢. Then f(a + b) = f(a + ¢), and so
a+ f(b) = a+ f(c) by (iil), provided that a < f(a). On the other hand, if a £ f(a)
thena + f(b) = a+ f(a) = a + f(c) by (ii2). Now, 2.8(iii2) is clear. O

2.10 ConstrucTION. Letw e M, w # oy, P={xeM|x£w}landQ=M\P={ye
€ M|y < w}. Then P is a principal prime ideal of M, w € Q, Q is a subsemilattice
of M and w = 0p. Let g be an endomorphism of Q satisfying the following two
conditions:

(1) gla+b)=a+g)foralla,be Q,

2) a+glby=a+wforallae Pand b € Q.

According to 2.4, g is a strong endomorphism of Q and a < g(a) for every a € Q.
Now, define a transformation f of M by f(P) = {w} and f|Q = g. One checks easily
that fe E,P={aec Ml|a £ f(a)}and Q = {a € M|a < f(a)}. Also the conditions
2.9(iil),(ii2) and (ii3) are clear. Thus f € E©.

2.11 Remark. If f € E is such that a ¢ f(a) for at least one a € M then f is
obtained just in the way described in 2.10 (see 2.6).

2.12 ConstrucTioN. First, put N = M if o)y € M and N = M U {oy} if o)y ¢ M.
Further, let A denote the set of ordered pairs (a,b) € N X N suchthata € M,a < b
anda+x=b+ xforevery xe N, x £ b (and b £ x).
(1) Clearly, (a,a) € A and (a,oy) € A for every a € M.
(i1) If (a, b),(c,d) € A then (a + ¢,b + d) € A.

Indeed, we have a +c e M,a+c <b+dandif x £ b+dthenx £ b, x £ d,
a+x=b+x,c+x=d+xand, finally,a+c+x=a+d+x=b+d+ x.
(iii) If (a, b), (c,d) e Aand ¢ < b,d £ b then (a + ¢,b) € A.
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Indeed, a+ce M,a+c <bandifx £ bthena+x=b+xanda+c+ x =
=b+c+x=>b+nx.

@iv) Let (a,b) € A. Define a transformation «,; of M by k,p(x) = a+xifx e M
and x < b, and k,5(x) = b if x € M and x £ b. Using 2.10, we get k., € E.
Put E(K) = {kapl(a,b) € A}. Clearly, k,, = 0, for every a € M and k,, = A,.
Consequently, EV ¢ E® and E® ¢ E®.

(v) Let (a,b), (c,d) € A. Then K + Ke.a = Kaeb+d-

Indeed, (@ + c,b+d) € Aby (ii). If x £ b+ dthen x £ b, x £ d and (k. +
+ Kea)(X) = Kap(X) + Keg(x) = b +d = Kgyepra(x). f x < b+ dand x £ b, x £ d then
(Kap+Kead)(X) = Kap(X)+Kea(X) = b+d = x+b+d = x+a+c = Kgyepra(X). If x < b+d,
x £ band x < dthen (ky p+Keq)(X) = Ko p(X)+Keq(X) = D+x+Cc = X+a+¢ = Kgrepra(X).
The case x < b +d, x < band x £ d is similar. Finally, if x < b and x < d then
(Kap + Kea)(X) = Kap(X) + Kea(X) = X+ a + ¢ = Kgpepra(X).

(vi) Let (a,b), (c,d) € A, d < b. Then k,pkeq = Katc.a+d-

Indeed, (a + c,a+d) € Aby (i) and (ii). If x £ a +d then x £ a, x £ d and
KapKed(X) = Kap(d) = a +d = Kgyeara(X). If x < d then kypkea(X) = Kap(x +¢) =
=X+a+¢=Kpseard(X). f x < a+dand x £ d then k,pkea(X) = kgp(d) =a+d =
=a+d+x=a+c+X=Kgrcara(X).

(vii) Let (a, b), (c,d) € A, d £ b, ¢ < b. Then Kk, pkeq = Katcp-

Indeed, (a + ¢, b) € A by (iii). If x £ b then k.4 £ b and Kk, pkeq(X) = b = Kgie p(X).
If x < b, x < dthen kypkea(X) = Kgp(X +¢) = X+ a + ¢ = Kgiep(x). Finally, if x < b,
x&dthenx+c=x+d £ band x+ c <b, acontradiction.

(viil) Let (a, b), (c,d) € A, ¢ £ b. Then Kk, pkea = Kpp = Op.

Indeed, k. 4(x) £ b for every x € M.

(ix) Using (v),...,(viii), we see that E(’() is a subsemiring of E‘T). Notice that E(l) U
UE® c E® and EV U E® is a subsemiring of E®.

(x) idy, € E@ iff 0yy € M. Then idy = ko.,.

(xi) Define an addition and a multiplication on A by (a,b) + (¢,d) = (a + ¢, b + d),
and (a,b)(¢c,d) = (a+c,a+d)ifd < b, (a,b)(c,d) = (a+c,b)ifd £ b, c < b and
(a,b)(c,d) = (b,b) if ¢ £ b. The mapping (a,b) — K, is an isomorphism of the
algebraic structure A onto the semiring E®'. Thus A becomes a semiring isomorphic
to E®.

(xii) Define an addition and multiplication on M X {0, 1} by (a,0) + (b,0) = (a + b, 0),
(a, 1) + (b, 1) = (a+ b, 1), (a,0) + (b,1) = (a+ b,1) = (a, 1) + (b,0), (a,0)(b,0) =
=(a,0) = (a,0)(b, 1), ((a, 1)(b, 1) = (a+b, 1), (a, 1)(b,0) = (a+b,0). In this way, we
obtain a semiring that is an isomorphic copy of the semiring EVUE®). This semiring
is bi-ideal-simple but neither ideal-simple nor congruence-simple.

2.13 Proposition. The following conditions are equivalent:
(1) Oy e M.
(i) E@ = EW,
(iii) E(rfl) — E(Y)_
(iv) idy € EW.
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(v) idy € E.
(vi) The semiring E® has a left or right multiplicatively neutral element.
(vii) The semiring E? has a left or right multiplicatively neutral element.
(viii) The semiring E(’() ( E("), resp.) has the additively neutral element.
(ix) The semiring EY has the additively neutral element.
If these conditions are satisfied then koo = 0 is additively neutral in E("), Koo = Ao =
= idy is multiplicatively neutral both in E® and E™ and «y, is additively neutral
in E™.

Proof. (i) implies (ii),.. . (ix). First, let f € E). If a < f(a) forevery a € M (i.e.,
if f € E“Y) then the equality f = Ag) follows from 2.9(iil). Thus E“Y = EO),
Next, if Py ={a € M|a £ f(a)} # O then0O € M\ Py = Qrand f = Kr©)w, (use
2.6(i),(vi),(vii)). It follows that E” = E® (of course, /) = Kf(0).0)-

Clearly, idy = ko, = Ao is multiplicatively neutral both in E® and in E®’. Besides,
Ao 1s additively neutral in E' @ and Koo = 0 1s additively neutral in £ ),

(ii) implies (iv) and (vi). We have idy € E7.

(iii) implies (v) and (vii). We have idy, € E"l).

(iv) implies (ii) and (v) implies (vii) trivially.

(vi) implies (i). First, let (a, b) € A be such that «,; is left multiplicatively neutral in
EW. If ¢ € M is such that ¢ £ b then k.. = k,pkc = Kp (see 2.12(viii)), and hence
¢ = b, a contradiction. It follows that b = oy. Now, by 2.12(Vi), Kgg = KapKaa =
= Kg+d.a+a fOr every d € M. It follows that a = Oy € M and «,p, = ko, = Ao = idy.

Next, let x,; be right multiplicatively neutral in £ @ Then Keo = KeoKap = Katebte
for every ¢ € M (see 2.12(vi)), and hence a + ¢ = ¢, b + ¢ = oy. It follows that
a=0y € Mandb =oy. Again, k., = ko, = dg = idy.

(vii) implies (i). We have 4,14, = A4 for all a,b € M and the rest is clear.

(viii) implies (i). Let ,; be additively neutral in £ . Then Kee = Kap +Kee = Kateare
foreveryce M. Thusa+c=c=b+canda =0y = b.

(ix) implies (i). We have A, + A, = A4 for all a,b € M and the rest is clear. O

2.14 Proposition. The semiring E'”) is bi-ideal-simple if and only if 0y € M.

Proof. By [6, 3.1], E‘? is bi-ideal-simple iff S € E®. Since idy, € E‘7, the result
follows from [6, 3.4] O

2.15 Remark. We have 0, = k.4 < Ky for all (a,b) € A. It means that E¥ C E@,
By [6, 3.1], the semiring E® is bi-ideal-simple (cf. 2.14).

2.16 Corollary. The semiring E7 is bi-ideal-simple if and only if E“ = E® (and if
and only if Oy € M). O

2.17 ExampLE. (i) Let M be a chain (i.e., a + b € {a,b} for all a,b € M). Then
A={(a,b)lae M,be N,a<b}(see?2.12).
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(ii) Let M be an antichain (i.e., o)y € M and a+ b = oy for all a,b € M, a # b). Then
A ={(a,a),(a,oy)|a € M}. Consequently, E® = E(l) U E(V) (see 2.12(vii)).

3. The semiring of strong endomorphisms (b)

3.1 Proposition. Let a,b € M, a < b, and let P be a prime ideal of M. Then
Qab.P € E("l) if and only if b = oy, a is maximal in M\ {oy} and P ={x € M |x # a}
(i.e., P is principal, be Pandae M\ P={ye M|y <a}).

Proof. First, let g,pp € E"l). By 2.4(ii), 0upp(Xx +y) = X 4+ 04p.p(y) for all
x,y € M. If x,y e M\ Pthen we geta = x+ a, and hence M \ P = {u|u < a} and
P={v|v £a}. Consequently, be P, M\ P<a<b,v<g,pp(v)=>b,P<band,
finally, M < b. Thus b = oy. lfa<z<btheno,, =b = p,pp(z+a) =2+04pp(a) =
= 7+ a = z. It means that z is maximal in M \ {0),}. Conversely, assume that b = oy,
ais maximal in M \ {oy}and P = {x € M| x £ a}. Due to 2.4(iii), we need to check
that o, pp(x +y) = x + 0,pp(y) forall x,y € M. If x,y ¢ Pthen x +y ¢ P and
Capp(x+Yy) =a=x+a=x+04pp1),since M\ P ={ulu <a}. If ye Pthen
x+y€ePando,pp(x+y)=b=oy=x+oy=x+b=x+0,pp(). lfxecP,y¢P,
thenx+ye Pand g,pp(x+y) =b =0y = x+a=x+04pp(y),since x £ a and a is
maximal. ]

3.2 Proposition. Let a,b € M, a < b, and let P be a prime ideal of M. Then
Oapp € EO\E“Y ifand only if b # oy, P = {x|x £ a}and a + x = b + x for every
x € P(i.e., Pis principal, be Pandae M\ P ={y|y < a}).

Proof. First, let 0, p € E \E("l). We have P = {x|g,pp(x) = b}and b =
= 0ap.P(X) = O], p(X) = Qup.p(b) by 2.7. Thus b € P. Similarly, M\P = {y|0usr(y) =
= a}and a = 0upr(y) = 02, (V) = Oupp(@). Thus a € M \ P. Since 0qpp ¢ E7V,
the set P, = {u|u £ Qa,b,p’(z;)} is non-empty. By 2.6(i), there is w € M such that
Oap.p(P1) = {w}. Thatis, P = {u|lu £ w}. Butw € {a,b}. If w = a then b € P| and
b = papp(b) = w = a, a contradiction. It follows that w = b and P; € P. By 2.6(ii),
we have b # oy. If x € Py then x+a = x + 04 p(a) = x + b by 2.6(vii). If x £ b then
x € Pi. Now, leta < x < b. If g4 p(x) = athen x € Py. If 9, p(x) = b then x ¢ P,
and b = 0,4p.p(X) = 0upp(X +a) = x + 04pp(a) = x + a = x by 2.6(viii) and we get
X+ a = x + b trivially. Finally, if x £ a theneitherx £ band x+a =x+ b or x < b,
a<a+x<banda+x=a+a+x=>b+a+x=>b=b+xagain. We have proved that
x+a = x+ b whenever x £ a. Moreover, 0, p(x) +a = gapp(x+a) = 0gpp(x+b) =
= 04b.P(X) + b, so that 0, p(x) = b and {x|x £ a} C P. On the other hand, if y < a
then 045 P(Y) < Qap.p(@) = a, 0app(y) =aandy € M\ P. Thus P = {x|x £ a}.
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Now, conversely, assume that b # oy anda + x = b+ xforevery x € P = {u|u £
£ a}. It follows from 2.1 that o, p ¢ E("l. To show that 0, p € E‘f), we check the
conditions 2.9(iil,2,3).

Let x € M be such that x < 0,5 p(x) = a. If 04pp(y) = athenx+y e M\ P
and g pp(x+y) =a =x+a = x4+ 0,pp©). If 04pp(y) = bthen x +y € P and
QupP(X+y)=b=x+D=x+04pr1)

Let x € M be such that x < 0,5 p(x) = b. Then g, pp(x+y) =b=x+b. lf x<a
then b = 0,5 p(x) < 04p.p(a) = a, a contradiction. Thus x £ a and x + a = x + b. The
equality b = x + 0, p(y) is clear and we have checked the condition 2.9(iil).

Let x € M be such that x £ g, p(x) = a. Then x + a = x + b, and hence
X+ a=p,4pp(y) forevery y € M. Further, x € P and 0,5 p(X) = b = 04 p(x + ).

Let x € M be such that x £ g, p(x) =b. Thenx+a = x+b, x+0,pp(x) =x+b =
=X+ 04pp(y) and g, p(x) = b = g4, (x +y) for every y € M. We have checked the
conditions 2.9(ii2,3). O

3.3 Proposition. Let a,b € M, a < b, and let P be a prime ideal of M. Then
Oab.p € E ifand only if P = {x|x £ a} and b < P + a (then P is principal, b € P,
a€ M\ Pandb covers a; 0,pp € E("l) iff b=opy)

Proof. Combine 2.1 and 2.2. O

3.4 Remark. (i) Let N be a subsemilattice of M such that N is not upwards cofinal
in M. Then the set P of x € M such that x £ u for every u € N is non-empty. One
checks easily that P is a prime ideal of M.

Now, assume that P = {x|x £ a} forsome a € M (a # oy). If u € N then u < u,
ué¢ P,u<a. Itmeansthat N <aand N C M\ P. Moreover, a ¢ P and a < w for at
leastone w € N. Itis clear thata = og, where K = {v|v < uforsomeu e N} = M\P
is a subsemilattice of M. Of course, a = w, and so a € N and a = oy as well.
Conversely, if oy € Nthen P = {x|x £ oy }.

(i) If a; < a; < a3 < ... is an infinite strictly increasing chain then N = {a;, a;,
as,...}1is a subsemilattice of M and oy ¢ N.

(iii) Let N be a subsemilattice of M such that oy ¢ N. Choose a; € N arbitrarily.
Then a; # oy, and hence a; < a, for some a, € N, etc. We get an infinite chain
a; < ay < az < ... of elements from N. If N is not upwards cofinal in M then the
chain is not upwards cofinal either.

(iv) Let P be a prime ideal of M. Then N = M \ P is a subsemilattice of M. If P is
principal then P = {x|x £ a} forsome a € M, N = {y|y < a}, a # oy, and hence
a = oy. Conversely, if oy € Nthen P = {x|x ¢ N} = {x|x £ oy}, so that P is
principal.

(v) Leta; < a; < az < ... be an infinite strictly increasing chain of elements from
M. Put P = {x|x £ a; for every i } and assume that P # 0 (e.g., if o)y € M), i.e., that
the chain is not upwards cofinal. Then P is a prime ideal and P is not principal.

(vi) The following conditions are equivalent:
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(vil) Every prime ideal of M is principal.
(vi2) If N is a subsemilattice of M such that oy ¢ N then N is upwards cofinal
in M.
(vi3) If a; < a; < asz < ... is an infinite strictly increasing chain of elements from
M then the chain is upwards cofinal in M.
Moreover, if 0y, € M then these conditions are equivalent to:
(vi4) There is no infinite strictly increasing chain of elements from M.

3.5 Proposition. The following conditions are equivalent:
(1) If o is a congruence of M such that |\M/o| = 2 then o = ker(f) for a strong
endomorphism f of M.
(1) If P is a prime ideal of M then there are a,b € M such that a < b and the
endomorphism 0qp p is Strong.
(ii1) If P is a prime ideal of M then P is principal, P = {x|x £ a}, a # oy, and
there is b € M such thata < b and b < P + a.
@iv) The following two conditions are true:
(ivl) Every infinite strictly increasing chain of lements from M is upwards
cofinal.
(iv2) Forevery a € M \ {0y}, the ideal { x|a < x} has the smallest element.
(v) The following two conditions are true:
(v1) No infinite strictly increasing chain of elements from M has an upper
bound.
(v2) Foreverya € M\ {oy}, the ideal { x|a < x} has the smallest element.

Proof. (i) implies (ii). The relation o = (P X P) U(N X N), where N = M\ P,is a
congruence of M and |M/o| = 2. Now, o = ker(f) for a strong endomorphism f and
it is easy to see that f = 90,5 p for some a,b € M, a < b.

(ii) is equivalent to (iii). This follows from 3.3

(i1) implies (i). Since |[M/o| = 2, we have o = (P X P) U (N X N), where P is a prime

ideal and N = M \ P. The rest is clear.

(iii) implies (iv). Every prime ideal is principal and (ivl) follows from 3.4(vi3).

Furthermore, given a € M \ {oy}, the set P = {x|x £ a} is a prime ideal and,

by (iii), there is b € M witha <b < P+ a.If a <ythen b < 7+ a =y. Thus b is the

smallest element of the ideal { y|a < y }.

(iv) implies (v). Clearly, (ivl) implies (v1).

(v) implies (iv). We have to show that (iv1) is true. Using (v2), for any a € M \ {oy}

we find the uniquely determined element f(a) such that a < f(a) and f(a) is the

smallest element of the set { x|a < x}. Now, suppose that a; < a; < a3 < ... is
a chain that is not upwards cofinal. Put b; = a; and b;;; = fi(a;) fori > 1. Then

by < b, < by < ... and f(b;) = bjy;. Moreover, by < ay, by = f(a;) < ap and

biv1 = f(by) < f(a;) < a;41. Consequently, the chain b < by < b3 < ... is not cofinal

either and there is ¢ € M such that ¢ £ b; for every i. Let j > 1 be such that b; £ ¢

for k > j (use (v1)). We get ¢, by < by + ¢, so that by < by +cand by + ¢ = byy; + c.
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Thus bj +c¢ = bj +c =bjp+c=---=dand b; <d forevery i, a contradiction
with (v1).

(iv) implies (iii). By (iv1) and 3.4(vi), P is principal, so that P = { x| x £ a } for some
a € M,a # oy. By (iv2), b < P + a, where b is the smallest element of the set
{x|a<x}. ]

3.6 Remark. Let M satisfy the equivalent conditions of 3.5.
(1) If o)y € M then every chain of elements from M is finite.
(i1) If 0yy € M then (M, <) is similar to an ordinal.

(ii1) If Opz, 0ps € M then M is a finite chain.

3.7 REMark. (i) Leta € M \ {om}, P = {x|x £ a}. Assume that g, p is strong
for every b such that a < b. It follows from 3.3 that b is uniquely determined and
{b} = {y|a < y}. In particular, b = 0y, and a is maximal in M \ {oy}.

(ii) Assume that the endomorphism o, p is strong whenever a,b € M, a < b and
P={x|x £ a}. Then oy € M and every element from M \ {0y} is an atom.

(ii1) Qup.p € E") for all a,b € M with a < b and all prime ideals P iff |[M| = 2.

4. The semiring of strong endomorphisms (c)

4.1 Lemma. Let a < b and f € E be such that ker(f) = n,p. Then:
1) fa) = f(b).

(i) f(c) < f(a) for c < a.

(i) f(b) < f(d) for b < d.

@iv) f(a) = f(b) = f(e) fora < e < b.

Proof. By 1.3, (u,v) € myp iff u+b =v+bandeitheru =vora < u,a <.
Since (a,b) € n,, = ker(f), we have f(a) = f(b). Since (c,a) ¢ m,p, we have
f(c) # f(a), however f(c) < f(a), and hence f(c¢) < f(a). Similarly, f(b) < f(d).
Finally, (a, e) € n, and f(a) = f(b). ]

4.2 Lemma. Let a < b, x € M be arbitrary and let f € E be such that ker(f) = m,p
and f? = f. Then:

1) x+b=f(x)+0>.

() x <biff f(x) < b.

(i) If b < x then f(x) < x.

@iv) If b < f(x) then x < f(x).

W Ifb < xand b < f(x) then x = f(x).
(vi) f(b) < b.

(vii) If x # f(x) then a < x and a < f(x).
(viii) If a £ x or a £ f(x) then x = f(x).
(ix) a < f(a).
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(x)a < f(a) = f(b) < b.
(xi) If b covers a then either a = f(a) = f(b) or f(a) = f(b) = b.

Proof. Since f2(x) = f(x), we have (x, f(x)) € ker(f) = . and the rest is easy
(use 4.1(1)). O

4.3 Lemma. Letc < a < b and let f € E be such that ker(f) = mup, f(eq) C Ty
and f* = f. Then a = f(a) = f(b).

Proof. We have (f(c), f(a)) € f(n.4) € 7.4, and hence a + f(c) = a+ f(a) = f(a)
(use 4.2(ix)). By 4.2(viii), ¢ = f(c), and therefore a = a + ¢ = a + f(c) = f(a). By
4.2(x), a = f(a) = f(b). O

4.4 Lemma. Let a < b < d and let f € E be such that ker(f) = ngp, f(Tpa) C Tpa
and f> = f. If f(b) # f(d) then f(a) = f(b) = b.

Proof. We have (f(b), f(d)) € f(xya) € pa. If f(b) # f(d) then b < f(b) and the
equality f(a) = f(b) = b follows from 4.2(x). O

4.5 Lemma. Letc <a < b <dandlet f € E be such that ker(f) = n,p, (f(c), f(a)) €
€ 7tear (f(b), f(d)) € mpy and f* = f. Then a = b.

Proof. By 4.3, we have a = f(a) = f(b) and 4.1(ii1) implies f(b) # f(d). Thus
f(@) = f(b)=bby4.4,andsoa = b. O

4.6 Corollary. Let ¢ < a < b < d. Then a = b, provided that there is f € E such
that ker(f) = mqp. O

4.7 Lemma. Letc <a < b, d < b, a £d, and let f € E be such that ker(f) = n,p,
(f(c), f(a)) € ey and f* = f. Then d < a.

Proof. By4.3,a = f(a) = f(b). Sinced < b, we have f(d) < f(b) =a.Ifa £ f(d)
then d = f(d) < a follows from 4.2(viii) (since a £ d, we get d < a). On the other
hand, if a < f(d) then f(a) = a = f(d) and (a,d) € ker(f) = m,p. Consequently,
either a = d or a < d. In both cases, a < d, a contradiction. O

4.8 Lemma. Let c < a < band d < b. Then d < a, provided that there are f,g € E”
such that ker(f) = m,; and ker(g) = m,q (if a < d).

Proof. Ifa £ dthend < aby4.7. If a < d then a = d by 4.6. O

4.9 Proposition. Assume that for all a,b € M, a < b, there is f € E© such that
ker(f) = m,p. Then just one of the following two cases holds:
(1) oy € M and every element from M \ {0y} is minimal;
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(2) oy € M, the set M \ {0y} has just ane maximal element, say w, and for every
ae M\ {oy,w}#0, a <wand ais minimal.

Proof. Combine 4.6 and 4.8. O

5. The semiring of strong endomorphisms (d)

5.1 ExampLe. Let M be an antichain (i.e., 0y € M and every element from M \ {0}
is minimal).

(1) Oy € M iff IM| = 2 (equivalently, M is a chain).

(i1) Let f be a transformation of M such that f(a) € {a, 0y} for every a € M. We
claim that f € E“V,

Indeed, f(a + a) = f(a) = f(a) + f(a). If a # b then f(a + b) = f(0) = o0 and
f@) + f(b) € {o,a+ b} = {0}). Thus f € E and a < f(a) for every a € M. The
condition (iil) is clearly satisfied and f € E“V by 2.9.

(iii) Let f € E"l). By 2.9(ii), we have f(a + b) = a + f(b) for all a,b € M. In
particular, f(0) = a + f(0), a < f(0) and f(0) = o. Furthermore, if b # f(b) then
o= f(o) = f(f(b) + b) = f(b) + f(b) = f(b). Thus f(a) € {a, oy} for every a € M.
(iv) Combining (ii) and (iii), we conclude that E(‘”) is just the set of all transforma-
tions f of M such that f(a) € {a, 0y} for every a € M (then f(0) = 0).

(v)Let f € E9\E“YD. Then Py =f{a€ Mla £ f(a)} ={a € M| f(a) # a,on} # 0.
By 2.6, f(Py) = {wy} and Py = {ala £ wy} ={ala # wy} = M\ {ws}. By 2.6(v),
fwy) =wy. Thus f = o,

(vi) Combining (iv) and (v), we see that E(") = E("l) UED = El) Uuf{f: M-
— M| f(a) = a, o0y for everya € M }.

(vii) Let o be a congruence of M. Then o = (N X N) U idy, where N is the block of
o with oy € N. If f(N) = 0 and f(a) = a for every a € M \ N then f € E“Y and
ker(f) = o.

5.2 ExampLE. Let M be a nearantichain (i.e., o)y € M, the set M \ {0y} has the greatest
element, say zy, and a < z); for every a € M \ {oy,zy}) and |M| > 4. Clearly,
0y & M. Put N = M \ {oy}. Then N is a subsemilattice of M and oy = 7.

(i) Let f € E‘T) be such that f(N) € N. If o is a congruence of N then o U idy,
is a congruence of M, f(o U idy) € o U idy, and hence f(o) € o. It follows that
g = fIN is a strong endomorphism of N. By 5.1(vi), either g = o,|N for some u € N
or g(v) € {v, z} forevery v € N.

(i1) Let f be a transformation of M such that f(N) € N and g = f|N is an endo-
morphism of N. Clearly, f € E iff f(N) < f(0). Now, assume that f € E and that
g is a strong endomorphism of N (see (i)). If a £ g(a) for at least one @ € N then
g = oy|N for some u € N and u = f(a) = f(a + oy) = f(oy) by 2.9(113). Thus
f =0, Ifa < g(a) for every a € N then g(a) € {a,zy}. Since z; € g(N), we have
Zm < flom) < oy, so that f(oy) € {2y, om}.
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The endomorphism g = f|N is strong, and hence 2.9(ii1,2,3) are true for a,b € N.
If a = b = oy then the conditions are true as well. If a £ f(a) for at least one
a € N then f = o, for some u € N and there is nothing to check. Consequently, let
f(a) € {a,zy} for every a € N. The condition 2.9(iil) is clear for a = oy or b = oy
and the conditions 2.9(ii2,3) are clear for a = o). We have proved that f € E©.
Clearly, f € E“Viff f(oy) = oy (and f(a) € {a,zy), a € N).
(iii) Let f € E be such that f(N) € N. Then oy € f(N) and oy = f(a) for some
a € N. Consequently, f(zy) = flzu + a) = f(zy) + f(a) = f(zy) + oy = 0p.

Now, assume that f € E. By 2.9(ii2), zys + f(x) = zs + f@Zn) = 2m + op = 0y
for every x € M. Consequently, f = o,
Gv) E9V = {f: M — M| f(oym) = oy } andf(a) € {a, zy} for every a € N }.
WV ED =ED UEY U {f:M— M|f(oy) = zy and f(a) € {a, zy} for every a €
€N\ {0, )).
(vi) Let o be a congruence of M. Let A and B be the blocks of o such that 0y, € A
and z; € B. If C is a block of ¢ such that |C| > 2then C = Aor C = B. If |A| > 2
then A = B and o = ker(f) for some f € E‘T) (use(v)). If |JA| = 1 and |B] > 2 then
o = ker(g) for some g € E“V.

5.3 ExampLE. Let M = {0, a, 0o}, where 0 < a < o.
(i) Clearly, the three-element chain M has just four congruences: o; = idy, 02 =
={(0,a),(a,0)} Uidy, 03 = {(a,0),(0,a)} Uidy and o, = M X M.
(i) E = EOULidy UL fi, for foo fin f5» fshs where £(0) = 0 = fi(a), fi(0) = a, f(0) =
=0 = fa(@), f2(0) = o, f3(0) = a = f3(a), f3(0) = o, f4(0) = 0, fa(@) = fi(0),
/5(0) =0, f5(a) = 0 = f5(0), f6(0) = a, fe(a) = 0 = fs(0).

Clearly, EV = {idy, f3, fo} and E = EO U ED U {fi, fu). Thus E\ E =
={f2. fs}
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