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KYBERNETIKA — VOLUME 50 (2014), NUMBER 1, PAGES 46-65

RELAXED STABILITY CONDITIONS FOR INTERVAL
TYPE-2 FUZZY-MODEL-BASED CONTROL SYSTEMS

TAO ZHAO, JIAN XI1AO, JIALIN DING, XUESONG DENG AND SONG WANG

This paper proposes new stability conditions for interval type-2 fuzzy-model-based (FMB)
control systems. The type-1 T-S fuzzy model has been widely studied because it can represent
a wide class of nonlinear systems. Many favorable results for type-1 T-S fuzzy model have
been reported. However, most of conclusions for type-1 T-S fuzzy model can not be applied to
nonlinear systems subject to parameter uncertainties. In fact, Most of the practical applications
are subject to parameters uncertainties. To address above problem, an interval type-2 T-S fuzzy
model has been proposed to approximate nonlinear systems subject to parameter uncertainties,
and stability conditions for interval type-2 FMB control systems have also been presented in
the form of linear matrix inequalities (LMIs). The aim of this paper is to relax the existing
stability conditions. The new stability conditions in terms of LMIs are derived to guarantee
the stability of interval type-2 FMB control systems. The theoretical poof is given to show
the proposed conditions reduce the conservativeness in stability analysis. Several numerical
examples are also provided to illustrate the effectiveness of the proposed conditions.

Keywords: interval type-2 fuzzy set, interval type-2 T-S fuzzy system, linear matrix in-
equalities, stability analysis

Classification: 93E12, 62A10

1. INTRODUCTION

Nonlinear system control has important applications in real life [23[24]. Type-1 T-S
fuzzy model provides a powerful tool for modeling complex nonlinear systems. Based on
parallel-distributed-compensation (PDC) control scheme, type-1 FMB control systems
have been proposed. Many stability results for type-1 FMB control systems have been
presented by using Lyapunov stability theory. Tanaka and his colleagues did a pioneering
work on the stability analysis of type-1 T-S fuzzy systems, and the basic stability condi-
tion for ensuring stability of type-1 T-S fuzzy systems was given in [19]. To reduce the
conservatism in stability analysis of type-1 FMB control systems, many valuable stability
conditions for type-1 FMB control systems were obtained in [3}|6l(13]|14L|16}20,/21}/25]. Tt
is seen that the common quadratic Lyapunov function is used to investigate the stability
of type-1 FMB control systems in [3,(6}/13}/141|16}/20,[21}/25]. However, it is recognized
that the common quadratic Lyapunov function is independent of membership functions,
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which may lead to conservativeness. To further reduce the conservatism in stability anal-
ysis, several non- quadratic Lyapunov functions have been proposed, such as piecewise
Lyapunov functions [4,5,/22] and fuzzy Lyapunov functions [12,/8,12}/15,(17,/18].

It is noted that parameter uncertainties were not considered in the aforementioned
stability results. The grades of membership of the T-S fuzzy systems may become un-
certain in value if the original nonlinear plants have uncertain parameters. Hence, the
stability results obtained by PDC technique would vanish. Of course, the aforemen-
tioned type-1 stability results cannot also applied in this situation. However, Most
of the practical applications are subject to parameters uncertainties. Consequently, a
type-1 non-PDC fuzzy controller was proposed to handle these systems subject to pa-
rameters uncertainties, and the stability conditions in the form of LMIs were also derived
in [7]. Another solution is to utilize interval type-2 T-S fuzzy systems to represent the
nonlinear systems subject to parameters uncertainties [11]. The interval type-2 fuzzy
controller was also designed to stabilize the interval type-2 T-S fuzzy systems in [11].
The stability conditions for interval type-2 FMB control systems were presented in the
form of LMIs. It is proved that the interval type-2 T-S fuzzy systems are more suitable
to handle nonlinear systems subject to parameters uncertainties because these param-
eters uncertainties can be captured by the footprint of uncertainty (FOU) of interval
type-2 fuzzy sets. As a result, less conservative results may be obtained because the
information of the lower and upper membership functions can be applied in stability
analysis. Furthermore, the stability conditions of interval type-2 fuzzy control systems
under imperfect premise matching were presented in [10].

In this paper, new stability conditions for interval type-2 FMB control systems are
presented. It is proved that the proposed conditions include those of [11] as a particular
case. This paper is organized as follows. The interval type-2 T-S fuzzy model and the
interval type-2 fuzzy controller proposed in [11] are reviewed briefly in Section 2. New
stability conditions for interval type-2 FMB control systems are derived in Section 3.
Several numerical examples used to illustrate the effectiveness of the proposed conditions
are presented in Section 4. The last section concludes this paper.

2. INTERVAL TTYPE-2 FMB CONTROL SYSTEMS

In this section, the interval type-2 T-S fuzzy model which can represent a class of
nonlinear plants subject to parameters uncertainties is recalled.

2.1. interval type-2 T-S fuzzy model

The interval type-2 T-S fuzzy model was proposed in [11]. It can be described by a set
of fuzzy IF-THEN rules:

Rule : if fy(2(t)) is Mi and,..., and fy(z(t)) is M7, then

z(t) = A;z(t) + Biu(t) (1)
where /]\ZZ is an interval type-2 fuzzy set, a = 1,2,...,¢; i =1,2,...,p; ¥ is a positive
integer; A; € R™*" and B; € R™*™ are known constant matrices; z(t) € R"*! is the
system state vector; and z(t) € R™*! is the input vector. The firing strength of the th
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rule is the following interval sets:

where
wi(a(t) = U (fr(2(8) X ugp (fa(2(2))) x - UN(fw( z(t))),
w (x(t) = Ung; (fr(@())) x agp (fa(2(t))) x - - X UN(fw( ()

in which w7 (fa(2(t))) € [0,1] and a5 (fa( (t))) € [0,1] denote the lower and upper

grades of membershlp7 respectively.
The inferred interval type-2 T-S fuzzy model is defined as

p

&(t) = Zwi(w(t))(Aix(f) +Biu(t)) (2)

where

> wila(t) = 1 (3)

in which v,(z(t)) € [0,1] and o;(z(t)) € [0,1] are nonlinear functions and satisfy
v; (z(t)) + v;(x(t)) =1 for all 4.
2.2. interval type-2 fuzzy controller
The interval type-2 fuzzy controller proposed in [11] can be represented by the following
format: Rule j: if fy(x(t)) is M{ and, ..., and f,(2(t)) is M, then
u(t) = Gja(t) (4)

where G; € R™*", j =1,2,...,p are the feedback gains to be determined. The final
output of the interval type-2 fuzzy controller is defined as

u(t) = 3y (1)) + 5 (2(1))) () 5)
j=1
where
CUL X C(JU X
s (a(t)) = ) L Byt = i )
35 (ko0 + o o) 35 (ko0 + o o)
S (wy(a(t) + @5(a(1)) = 1 ©)
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In the following analysis, w;(z(t)),w;(z(t)) and @;(z(t)) are denoted as w; , w; and
w;, respectively, for simplicity. Thus, the interval type-2 FMB control system formed by
(2) and (5) is shown as follows:

B(t) =) wi | A Zw +@;)Ga(t)
=30 )wile; @) (Ai+ BiGy) (). (1)

3. MAIN RESULTS

In this section, new stability conditions for interval type-2 FMB control systems are
presented in the form of LMIs. To investigate the system stability of (7), the following
Lyapunov function candidate is considered:

V(t) = 2(t) Px(t) (8)
where P = PT € R7*" > 0. From (7) and (8), we have

V(t) =2(t)TPx(t) + 2(t)TPi(t)
= Z Zwi(gj + @j)l‘(t)T ((Al + BiGj)TP + P(Al + BZG]))x(t) (9)

Denote M = P71 2(t) = M~ 'z(t) and G; = N;M™!, where N; € R™*" for all j.
From (9), we have

=2(t)TT2(t) (10)

where II = Z p -1 wi(gj + a)j)Qij and Q” = AlM + MAZT + B,LN] + N;FBzT

Tt is seen from (10) that I < 0 implies V(¢) < 0. The shape information of member-
ship functions was introduced in [23] to reduce the conservativeness. This information is
still used in the following analysis. Based on the property of the membership functions
that Y27, wi = >0 (w; +w;) = 1, it follows that Y7, (w; —w; —@;) = 0.

Thus,

p P
E=> 3 (wi—w, — @) x (w;(C; + CT) +w,;(D; + DY) + 0;(E; + E))
i=1 j=1
=0 (11)

where C;,D;, E; € #"*™ are the slack matrices to reduce the conservativeness.

—w; + piw,; + 0i1@; + ;1 > 0 for all ¢, x(t) and system parameters,
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— piaw; — 0520; + Yi2 > 0 for all 4, 2(¢) and system parameters,
where p;1, 041, %i1, pi2, Ti2 and ;2 are scalars to be determined. Defining R;; + RZ.Tj >0,

where R;; = RjiT € R™*" . Based on the above two assumptions, the following
inequality holds:

PP
¢ = ZZ(*Wi+pilwi+Uilwi+’Yil) X (wj — pjawj — 0o +72) (Rij + RE) > 0. (12)
i=1 j=1
Thus, it follows that II <II + E+ @ from (10), (11) and (12). Therefore,
N<I+=2+¢

p
= Z Zwle (Rw +R] + Z Yo (Rik + R =D v (Ryy + R

i=1 j=1 k=1

P p
- ZZ'YM'YZ? Ry +Ri’) - Cj — CJ‘T)
=1

k=1

p p
+) ) wiw, (Pﬂ(Rij +R) + pn(Rji + R = D pjove (R + R
k=1

+ Z'Ykajl(Rjk +R;")+Qi;+D; +D;7 - C; — CiT>

k=1
PP p
+ Z Zwi@j <(7j2(Rij +R;") +ouRi + Ry — Z o271 (Rigj + R ")
i=1j=1 k=1

+Z’yk20ﬂ(R]k + Rjk ) + Qij + Ej + EjT - C; — CiT>

k=1
P

—ZZ (pilij(Rz] +R;;" )+D; +D )
i=1 j=1
P

- ZZ iwy (leUﬂ(Rw +Ri; ) ""711/)12(Rﬂ +Rji ) +E;+E 4 +D; +D )
=1 j=1
p P

=YD oy (Uﬂajz(Rv:j +Ry;T )+ E; + EjT> : (13)
=1 =1

For simplicity, some special matrices are introduced to represent the complex matrices
of (13). Define W¥? € R"*", i,j =1,2,...,p, u,v=1,2,...,3. Let

M@

= <R” + R+ Z%2 i+ Raip) Y1 (R + Ry (14)

k=1

P
> 2 (Re + Ry ™) — } 2,..,p

k=11=1
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p
UE ()T = (Pﬂ(RiJ‘ +Ri; ) + o (Ryi + Ryi") = D pjovia (Rey + Rag ")
k=1

P
+ kazpﬂ(Rjk +R;z")+ Qi +D; +D,;7 —C; - CiT> , (15)

k=1
iaj:1727"'7p

p
U (U = (UjQ(Rij +Ri;T) + o (Ryi + Ryi") =Y ooy (Riy + Ray ™)
k=1

p
+> 2ot Rk + Rje") + Qi + B + BT — C; — CF) . (16)
k=1

ij=12...,p

‘1’1232 == (pilij(Rij +Ry;1)+D; + DjT) ,i,7=1,2,...,p (17)

U4 (U7 = (PuUﬂ(Rw +R;;") +0j1p2(Ryi + RyiT) (18)

B+ BT+ Di+ D7), i j=1,2,.p

W — (aﬂajz(Rij +R;T)+E; + EjT) Cij=1,2,...p. (19)

From (14) to (19), (13) can be rewritten as:

p p p p p p
S 9 PEILTIES ) PEILENRLE LIRS 3) pRENTE RULTD
i=1j=1 i=1j=1 i=1 j=1
p P p p p p
15 3) SERITEIND 3) SIENIE BRI IOND 9) DETIL S INNNEY
i=1j=1 i=1j=1 i=1 j=1

It can be seen that (20) has been presented in [11]. New stability results for interval
type-2 FMB control systems are derived on the basis of (20) in the following analysis.

Theorem 3.1. The interval type-2 FMB control system (7) is asymptotically stable
if there exist predefined scalars of p;1, 041, Vi1, pi2, iz and ;2 such that —w; + piw, +
oi1w; + vi1 > 0 and w; — piow,; — 040l + vie > 0 are satisfied, and there exist matrices
C;,D;,E; e R j=1,...,p; N; € R™*" j=1,...,p; M =MT € Rn*"; R;; =

RﬂT € éRnXﬂ’ l-j - 1 Y2 Szn - (S’lLlj) Si]z = (Sijl) ]u (Yim) Yijl =
(Yijz)T Zéu = (Ziz])T Zi]z - (Zijz) g%nxn L = 17"'7p7.] # .] - 1 "ap7l =



52 T. ZHAO, J. XIAO, J. DING, X. DENG AND S. WANG

1,2,3; Sin = (Séii)T7Y§ii = (Yéii)T7Z§ii = (Ziu)T e RN =1,...,pl = 1,2,3;
Sé‘ik = (Sgcij)T’ Séjk = (Sgcji)T’ Sékj = (Sé‘ki)T’Yé'ik = (Yfm‘j)TaYéjk = (chji)TvYékj =
(Yé‘ki)T’ Z;’ik = (ng'j)Tﬂ Zéjk = (chji)Tv Zékj = (Zéki)Tvi =1,...,p—1l,j=i+l,...,p—

Lk=j4+1,...,p1=1,23 T, U, WL, ijk=12...,p1=123such that

the following LMIs are satisfied: R;; + R;;” >0, i,j = 1,2,... P; M > 0; and
Uil <8k, i=1,...,p
\111212 <Szziia i= 17 By %
U3 <SY, i=1,....p

NN
R

A/_\A/_\A/_\,_\/_\,_\/_\,.\/.\
[\V)
NN N 2NED SN N NGt NI

U+ U+ (U <8+ T+ (T ) i=1,pj=1,....p 25
Ui+ U0+ (U7 <SY, + U + (UL i=1,...,pi=1,....p 26
U2+ 02+ (DT <YL+ T3+ (T3,)T,i=1,...,pj=1,....p

U2 402 0% <YZ YR+ (YR =1, p AL =1...,p (28

[\V)
Ne=)

U2+ 08 4+ (W) <Y+ Wh + (Wi i=1,...,pi=1,....p

151 %] W]

Ui+ ‘I’glf) + (W}?)T SZ}ji +U?’ii + (U?ii)Tvi =1...,pj=1,...,p

w
(=}

UE 0 4+ (U <ZE, + Wi+ (Wh)Ti=1,...,p,j=1,....p 31

Ui+ U5+ U+ 4 U+ 0
§Sgl‘¢k + (Sgl‘z'k)T + ngk + (Szljk)T + Sgkj + (S%kj)Tv
i=1,...p—2j=i+1,....p—Lk=j+1,....,p (33)
W T 9 T
<83, + (S?kj)T + T + (Tzljk)T + T + (Tgl‘ik)T
i=1,.p—=1, j=i+1,....p k=1,....p (34)
W R 4w ()
Ss?kj + (S?kj)T + U}jk + (U}jk)T + U}ik + (U;m)T
i=1,....,p—1, j=i+1,....,p, k=1,...,p (35)
W+ )T 4 U ()
<Y+ (Vi) + T5 + (T5)" + Thy + (Th)"
i=1,p =1, p—1, k=j+1,....p (36)
Ui? 4+ (U5) T+ Wi (Ui) T + U5+ (U5
Swgl'ik + (le'ik)T + U?jk + (Uz?jk)T + T?kj + (Ti?;cj)T
i=1,....p, j=1,....,p, k=1,...,p (37)
W+ U ()T + Ul ()

<Zjy + (Zjl'ik-)T + U + (U?jk)T + U, + (ngj)T
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i=1,....p, j=1,...,p—1, k=j5+4+1,...,p (38)
U2+ U 4+ RO 4+ U+ U
SY21k+(szk) +Y1]k+(Y1]k) +Y1k] (Y1k])
i=1,....p—2 j=i+1,....p—1, k=j+1,....p (39)
U+ W2+ U ()T + U+ (V)T
SYf’k] + (Y'Lk:j> + W2zk + (szk) + Wz]k + (WZQJ]C)T
i=1,....p—1,j=i+1,....p, k=1,...,p (40)
US4+ U+ UE (0T 4+ I+ ()T
§221k+(zjzk) +W’L]k+(wl]k) +W'Lk‘j (Wzk])
i=1,....p, j=1,....p—1, k=j+1,....p (41)
e e SrE R e e
<Z]lk)+(zjzk‘) +Z?jk+(zz_]k:) +Z? (sz])

i=1,...,p—=2, j=i+1,...,p—1, k=j+1,...,p (42)
s, T, U
(Th" Yl Wl <0, i=1,...,p,1=1,2,3 (43)
)" wh' z
where
_Sim S§1i2 T Siup Yilil Y§1i2 s Yilip_
Sl _ 827,'1 S2i2 T SZZp Yl _ Y2i1 Y2i2 e Y2ip
_Slpil S;ZQ e S;lmp Yinl Ylp7,2 T Yinp_
_Zilil Z§1z2 T Z;llp _Tilil Tili? T Tilip-
Z2i1 Z2i2 e Z2’Lp TQil T2i2 e TQip
Zi=| 0 T L Ti=| 0 T
_Zi)'il Z;i)zQ T Z;lmp _T;inl T;lon e Tiﬂip_
Uilil U§1i2 e Uilzp Wilzl W§122 T W;lip
Ul _ U2i1 U2i2 T U27,p Wl W2i1 W2i2 T W2ip
Ui. Ui, Ul Wl Wl VV.W
pil pi2 pip. pil pi2 pip.

The feedback gains are defined as: G; = N;M™!, j=1,2,....p

Proof. Based on the property of the membership functions that Y %_; w; = Z?Zl (w;+
w;) =1, it is clear that 1 7 | (w; +w; + @;) = 1. From (20), we have

p
HS%Z(UJIC"‘W)C"'WIC {Zzwzwj z] +Zzwz \1112 %_]Q)T)

=1 j=1 =1 j=1
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p P P P
30 Sy (W (U)T) 30D s (0 + 30 i (02 + (8)7)
=1 1 i=1 j=1 i=1 j=1
p ]p J J
+ZZWiwj(\I/?J$)}
i=1 j=1

p p p p
:% {Zwis‘l’%}ﬁ-ZwiS\I& +Zw3q]33} Z Z wi2wj(\lf%¢1+\ll}jl+\ll;i1)

=1 i=1 i=1 j=1,j74

+ZZ% w (W + 0P+ +Zsz 0 (V3 + W33 + (V5)7)

i=1j=1 i=1 j=1
P P

YO w (W 4+ w57+ +Z Z w e, (U + U7+ v7)
i=1 j=1 i=1 j=1,5#1

30w (U W (UE)T) + 30 S ey (4 0+ ()T
i=1j=1 i=1 j=1

+ZZM (W3 + W3+ ( +Z Z D2, (UE + 0¥ 4w
i=1j=1 i=1 j=1,j#i
1 p—2 p—1 P

+5922 > wiwswi (Wi + Vi + Vi + Wi + WGk + i)

i=1 j=i+1 k=j+1

P
+ZZZWM\I’ U W (T U 4 (w)T)
i+1

i=1j= k=1

P
+30 3T S wiwen (] + W+ (U g+ (w7
i=1 j=i+1 k=1

P

p p—1

3TN wiww (U U w2+ ()T R+ (W)

i=1 j=1 k=j+1

+ZZZW On (U + (T 4 U+ (U v ()T
i=1 j=1 k=1

p p—1 p

0D DT i (R U W ()T W ()T

i=1 j=1 k=j+1

+ZZ Z wwwy (W57 + W57+ Wi + U7 + U5 + U2)

i=1j=i4+1k=75+1

S S e (U U W (T W (D))
i=1 j=1+1 k=1
p p—1

+ZZZWM 8+ 0 0 4 (0P P 4 ()T

i=1 j=1k=7+1
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P
0 Y @@+ U+ w4+ v+ ) ¢ (44)

i=1 j=i+1 k=j+1

From (21) to (42), (44) can be represented as:

1 P p P ~ 1 p P T
<3 {Zwﬁszlii"_zwiSY?ii+Zw?Z?ii Z wiw;(Siji+Si;+(Sii;) ")
i=1 i=1 i=1 i=1 j=1,5%#1
+ Z Zwl =3 S’L]l + Tu] + 7,7,] + Z Zwl w] S?jl + Uu] + ( u]) )
=1 j=1 =1 j=1
+ZZw wi (Y + T + (T3) +Z Z w, w; (Y5 + Y5, + (Yi,)")
=1 j=1 i=1 j=1,j#1¢
P p
+ Z Zﬂizt:}j (ijz + W121] u] + Z Zw Wy Zzgz + Uju (szz)T)
i=1 j=1 i=1 j=1

+ Z sz Zz2]z + W?u + W?u + Z Z UJ w] Zf]l + Z“J + (Zflj)T)

=1 j=1 i=1 j=1,j#1

p—2 p—1

1
5 Z Z Z wiw;jw( ]7«k+(s]’bk) +ka+(szyk) +Szk] (Szkj) )

1=1 j=i+1k=j+1

P
i=1 j=i+1 k=1

+ Z Z Zwi‘*’j@k(s?kj + (8%)" + Ui + (Uiie) " + Uji + (Uja) )
i=1 j=it1 k=1
p p—1 p - -
+ Z Z Z wigjﬂk(Ygl'uc + (Yiu) " + T + (T wk) + T + (Ti) ")

i=1 j=1 k=j+1

P p P
+ Z Z Zwiﬂj@k (ngzk + (lezk)T + U?jk + (Uz?jk)T + T?kj + (T?kj)T)
i=1 j=1 k=1
p p—1 p -
+ Z Z Z wi@;k(Zjoe + (Zja) " + Ul + (UG)" + Ul + (Uh)")
i=1 j=1 k=j+1
p—2 p—1
+ Z Z Z w;w wy (Y7 + (Y5 " + Y5+ (Vo) + Yo, + (Yi,)")
i=1 j=i+1 k=j+1

+ Z Z Zw (4) wk zkj + ( zk]) + W]2'Lk + (W]'Lk) + W'L]k + (ka)T)
i=1 j=i4+1 k=1

p p—1

+ Z Z Z w,@@n(Zik + (Z3)" + Wik + (Wiie) " + Wiy + (Wi)T)
i=1 j=1k=7+1
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p—2 p—1 P
o - P T P P T . P T
+ Z Z Z @@ @k (Z5i, + (Ziix) + Zijw + (Zijn) + Ll + (Zirg) )}

i=1 j=i+1k=j+1

. S T} U} . S, T, U}
:§wer (T}); Y . Wilr+- -+ iwprT (Tzl,):; Y, . W, |r
U (Wi zZi U) (W) 7,
. [ st T U] . [ s; T, U]
+ iger (T?)i Y? . W2 r4---+ igprT (Tf,): YZQ, . Wg T
(UD)” (Wi)  Zi | (U (W7 Z |
. [ s} T} U} . [ s) T, U]
+ 5o’ (T?)z Y3 : Wi | o (Tf,):TF Y3 : w3 | r
(U (Wi Z | (U3 (W) Z3 ]
. [s T . [ oo w
=T %Zw ahH" vl W |r+T é w |[(THT Y2 W |r
= [oht owh'oz N (CORN O
e [ m
+r 5w (T?) Y!? W] |r (45)
=oloht ow' oz
where r = [wil ... wpl wil ... w,I w1l ... @,I]. Thus, the conditions (43) implies
= < 0. The whole proof is completed. (|

Remark 1. The conservativeness of stability analysis results can be reduced by intro-
ducing several slack matrices. However, too many variables would increase computation
burden. Thus, it is very important to develop fast algorithm to reduce the computation
time in future work.

To illustrate that the conditions of Theorem [B.1] reduce the conservativeness in sta-
bility analysis, the results of [11] are firstly recalled with some modified notations in
Lemma [3:2] The theoretical poof is also given to show that the conditions of Theorem
[3.1] obtain more relaxed results than those of Lemma [3.2]

Lemma 3.2. (Lam and Seneviratne [11]) The interval type-2 FMB control system of
(7) is asymptotically stable if there exist predefined scalars of p;1, 041, 7i1, pi2, 0i2, and
vi1 such that —w; + pj1w; + giw; + v > 0 and w; — piow; — o4i; + vi2 > 0 are
satisfied, and there exist matrices of C;,D;,E; € Re, j=1,...p; M = MT e Rjrxn,
Rij = RjiT, Sij = SjiT,Yij = inT, Zij = ZjiT, Tija Tijawij S §R, Z,j = ]., R ) such
that the following LMIs are satisfied: R;; + RijT >0,25=12,....0; M > 0;

v oS, i=1,2,...,p. (46)

Uil + 5 < Sy + (8y)T, 7=1,2,...,p,0 <. (47)
U2 4 (U7 < Ty + (Ti))", i =1,2,...,p. (48)
v+ (T <U; + (U7, i=1,2,..,p. (49)
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U2 < Yii=1,2,...,p.
\1}123'2 + \II?ZQ <Y+ (Yij)T7 1=1,2,...,p.
U 4+ (U < Wi+ (Wiy)T, i, =1,2,...,p.

U < Zy,i=1,2,...,p.
U OB < Zi+ (Zij)", j=1,2,...,pi <.
S T U
™ Y W| <0 i=12,...,p.
u?” wt 7
Where
[S11 Si2 Sip Yii Yoo Yi, Z11 Zio
S S21 S22 Sap Y21 Yoo Yo, Zy1 Za
_Spl Sp2 Spp Ypl Yp2 Ypp Zpl Zp2
[T11 Tie Tip Ui U U, Wi Wi,
To1 Tao T2y Uz Uy Us, Wa Wa
T = . 7U = . . . ) =
_Tpl Tp2 Tpp Upl UP2 Upp Wpl WP2

The feedback gains are defined as G; = N;M™!, j=1,2,...,p.

It is proved that Theorem always offers more relaxed results than Lemma [3.2]in

the next Theorem.

Theorem 3.3. The set of solutions to LMIs in Lemma is a subset of solutions to

LMIs in Theorem [3.11

Proof. Assume Sij = SjiT,Yij = inT,Zij = ZjiT,Tij S Ujiv and Wij € RMX" ig
a set of solutions to Lemma [3.2] and suppose some variables in Theorem [3.] are chosen

particularly by:

Séu:szasfdlzslu 221,,p,j§él, j:17"'7p7 l:17273
Sli=Sui=1,...,p, 1=1,2.3

Shik =Sk Stk =Sik,Sly; =Sy, i=1,...,p—2, j=i+1,...,p—1,
k=j+1,...,p,1=1,2,3

Y_ézz:Y]uYflL]z:Yma ’L:1,7p,j7£17 ]:175p7l:17273

Y. =Yui=1,...,p =123

Y =Y Y =Yu, Y, =Yy i=1,...p—2 j=i+1,...p—1,
k=j+1,...,p, 1=1,2,3

Zém:Z]uZi]z:Zma ’LZI,,p, ]#17]:175p7l:17273
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Zh,=Zui=1,....,p, 1=1,23  (63)

2 =T, Ly = Zig, Zly; = Zij, i=1,....p—2, j=i+1,....p—1,  (64)
k=j+1,...,p,1=1,2,3

T, =T, i,j,k=1,....p, 1=1,2,3  (65)
Ul =Ui, i k=1,...p,1=1,23  (66)
Wi =W, i,jk=1,...p1=123 (67)
With the particular choice of (57), (60) and (63), the inequalities (21), (22) and (23)
coincide with (46), (50) and (53), respectively.
In Lemma (47) can be equivalently written as
Summing (68) and (46), we have
U+ U+ U <S8+ S+ Sy, i=1,...,pj#i, j=1,...,p. (69)

With the particular choice of (56), the inequality (69) can be represented as
11 11 11 1 1 LT _ S
Wi + W + W5 <Sp+ S5+ (Si) s i=1,...,p 0 #F4, j=1,...,p. (70)

Tt is clear that the feasibility of (46) and (47) implies that of (70). On the other hand,
the solutions to (70) are the subset of solutions to (24). Thus, the solutions to (46) and
(47) are the subset of solutions to (24).

Similarly, it can be derived that the solutions to (46) and (48)—(54) are also the
subset of solutions to (25)—(32).

Select 1 <14 < j < k < p. From (47), the following inequalities hold:

Ui+ Wi <S5+ (Si;)" (71)
Ul + Wi < Sip + (Sin)” (72)
Wi+ Wi < Sji+ (S0)" (73)

Summing (71), (72) and (73), we have
‘I/}jl + ‘Ifjlll + Ol 4wl 4 ‘Ifjli + \I/}é < S+ (Sij)T + S+ (Sin) T + Sk + (Sjk)T- (74)

Obviously, (74) is equal to (33) with the particular choice of (58). It is sure that the
feasibility of (47) implies that of (33).

Similarly, it can be checked that the feasibility of (47)-(49), (51), (52) and (54)
implies that of (34)—(42).

With the particular choice of (56) —(67), the inequality (43) is reduced as (55).

Thus, we can conclude that the set of solutions to (46)—(55) is a subset of solutions
0 (21)—(43). The whole proof is completed. O

It can be seen form Theorem [B.3] that Theorem [B.1] obtains more relaxed results than
Lemma



Relaxed stability conditions for interval type-2 fuzzy-model-based control systems 59

4. SIMULATION EXAMPLE

In this section, several simulation examples are introduced to illustrate the effectiveness
of the proposed conditions.

Example 4.1. Consider an interval type-2 T-S fuzzy system with the following rules:
Rule 1: if z1(¢) is My, then (t) = Aqz(t) + Byu(t);
Rule 2: if z1(¢) is My, then z(t) = Agz(t) + Bau(t);

where

2 — —1.5 2+ —10+0b 1 3
xl(t>e[10,10},A1[3+§j 5 ],Az[ T ],Bl{b_JBQH

It is assumed that 10.40 < a < 10.60,5.92 < b < 6.00. The control rules are as follows:
Rule 1: if 21 (t) is My, then u(t) = Grz(t);
Rule 2: if z1(¢) is M, then u(t) = Gax(t).
The lower and upper membership functions are listed as follows:
wE(1(t) = 025+ 0.25 x e (@=9°/2  ,U(3, () = 0.25 + 0.25 x e~ (@=5)°/8),
wi (@1(8)) = 1= w (21(t), wj (21(8)) = 1 = w (z1(1)).

6.01

6 ® ® o o
5.99 o o o o
5.98 o o o

o
5.97 o
5.96
5.95
5.94
10.35 10.4 10.45 105 10.55 10.6

a

Fig. 1: Stability region for Theorem [3.1] and Lemma [3.2)

The same scalars satisfying the assumptions are adopted for both Theorem [3.1] and
Lemma 1 to make an unbiased comparison. It can be shown that the assumptions hold
with Pi1 = 031 = 2,[)7;2 =042 = 0.1,’}/1'1 = —0.1 and Yi2 = —0.1, for i = 1,2 By employ—
ing Lemma the stability region is shown in Figure 1 indicated by crosses. Based
on the conditions in Theorem the stability region is shown in Figure 1 indicated by
open circles. It can be found from Figure 1 that Theorem provides a larger stability
region than Lemma [3.2] Hence, the proposed conditions obtain more relaxed results.
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Example 4.2. Consider the following nonlinear system:
#1(t) = sin(ea(6)) + (Myz:2(8) + 1)u(?)
@1 (t) = sin(za(t)) + (Mpa1* (1) + 1)u(t)
where x1(t) € [—a,a],xz2(t) € [-b,b], M, € [1,2],a =1 and b = 1. M, is regarded as

parameter uncertainty. The above nonlinear system subject to parameter uncertainty
can be represented by the following interval type-2 T-S fuzzy model:

Rule 1: if 21 (¢) is Mll and x2(t) is M217 then &(t) = A1z(t) + Byu(t);
Rule 2: if zq(¢) is Mll and zo(t) is MQQ, then 2(t) = Asxz(t) + Baou(t);
Rule 3: if z1(¢) is ]T/I? and zo(t) is ]TJ/Ql, then &(t) = Asz(t) + Bsu(t);
Rule 4: if z1(t) is Mf and x5 (t) is M;, then &(t) = Agx(t) + Bau(t);

0 1 0 sin(b) 0 1 0 sin(b)
WhereAlz[l az}’AQZ[l ;2 ,A3=10,A4=1 8 , By =

2 2
1+a ] , By = {1 ta ] , Bs = F] , By = {1} The firing strengths for each rule are

0 0 0 0
defined as:
5 712 . bsin(xs) — a9 sin(b) 23 £ 0
— — 2
WY (z(t)) = ° 22(b — sin(b))
2 x ;; Ty = O,
2 . .
X1 bsin(xzg) — xo sin(b)
— X — ) 7é 0
wi(@(t) =14 % 2(b —sin(b))
;; To = 0,
2 2 . .
x x1 bsin(xg) — a9 sin(b)
ox L1t =
Lawy=12" @ T ) ) 270
0 T2 7& 0,
2 2 . .
x1 x1 bsin(zg) — xo sin(b)
— 1 —_— —_— =
W) = @ T T X T L ) )
0 To = 0,
x1 bsin(xzg) — xo sin(b)
1—— - T 0
U(a(t) = U= =) 27

B x1%, _ bsin(za) — 22 sin(b) .
wh(z(t) = (1-2x az ) z2(b — sin(b)) 270
(1-2x %) T2 =0,

Cx? _ bsin(az) — xgsin(b) .
W) =@ 220 —sm@) ) 270

0 1‘2:0,
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sty = { (172X ) bsjiifi)_sﬁii?(b)) 72 #0
LEQZO.

To stabilize the original system, the interval type-2 fuzzy controller is designed as follows:

Rule 1: if zq(¢) is Mll and zo(t) is Mé, then u(t) = Gx(t);
Rule 2: if z1(t) is Mll and x5 (t) is MS, then u(t) = Gaz(t)
t) is M2, then u(t) = Gs(t)
t) (t

Rule 3: if z1(t) is Mf and o ( ;
Rule 4: if z1(t) is Mf and x5 (t) is MS, then u(t) = Gaz(t).

It is noted that Pi1 = 031 = 2,p1'2 = 09 = 001,"}/11 = —0.01 and Yi2 = 70.1, 1 =
1,2, 3, 4 satisfy the assumptions in Theorem [3.1] Based on the Theorem the control-

gain matrices are computed as follows:
Gy = [-74.663 —151.35],Go = [-72.835 —147.58];
G = [-97.029 —197.08],Gy = [-99.495 —202.07].

The system-state responses of the closed-loop system with M, = 1 under the initial
states of 25(0) = —0.5 and z2(0) = —0.5 are shown in Figure 2. Figure 3 shows the

system-state responses of the closed-loop system with M, = 2 under initial states of
22(0) = —0.5 and z3(0) = —0.5. It can be seen from Figures 2 and 3 that the proposed

conditions are effective for different parameter values.

0.5 0.5
- - -x1(t) - - -x1(t)
—x2(t) —x2(t)
0
1%} " (%]
Q . Q
g : g 0 %
n H n K
-05) ‘
d ‘
'
'
-1 -0.5 !
0 5 10 15 20 o 5 10 15 20
Time(Sec) Time(Sec)

Fig. 2: State responses with M, = 1. Fig. 3: State responses with M, = 2.

Example 4.3. Consider the inverted pendulum subject to parameter uncertainties.
The dynamic equation is described as:

Gi(t) = gsin(0(t)) — am, LO(t)* sin(20(t)) /2 — a cos(0(t))u(t)
4L/3 — am, Leos?(0(t))

where g = 9.8, m,, € [2,3] and m, € [8,106] are regarded as the parameter uncertainties,
a=1/(m¢+my),2L = 1,0(t) is the angular displacement of the pendulum, and p(t) is

the force applied to the cart.



62 T. ZHAO, J. XIAO, J. DING, X. DENG AND S. WANG

Rule i: if 1 (t) is M and 25(t) is M, then &(¢) = A;z(t) + Biu(t),i = 1,2,3, 4.

' . 0 1 0 1

where z(t) = [G(t) G(t)] AL = Ag = [flmm 0} VA = Ay = |:f1max 0] By =

B; = {fo ] By =B, = {f y ] s [l = 10.0078, f1,,.. = 18.4800, f3,,,, = —0.1765,
2min 21nax

fop, = —0.0261.

It is assumed that the inverted pendulum works in the operating domain z(t) =

0(t) € [—&m, 27 and a5(t) = 0(t) € [~5,5] in this example. The lower and upper

membership functions are defined as follows:

—aq(t)? —aq ()2 —a ()2
g]fwvll(:cl(t)) =1—e 12 ;ng?(Jcl(t)) =1—e 12 ;Qm(ﬂh(t)) = 0.23¢ 025

—z1 (02 —= (02 —aq ()2
yﬂg(m(t)) = (.23¢ 025 ;gﬁg(xl(t)) = 0.5¢ 02 ;y@(xl(t)) —1—¢ 15 ;
—zy(1)? —xy ()2 —z1(1)?2
Q%(Il(t)) = 0.5¢70.2 ;Hﬁéz(l’l(t)) =l—-e"15 éuj\]ll(xl(t)) =1-023e 03
—w1()? —w1(1)? —wy (1)
G (e1(t) =1 - 0.23e 705 s (a1(t) = e 12 () =e 12
1 1 1
_ —zy ()2 —zy ()2 —z1(t)?
ujfwv%(xl(t)) =e 15 ;UX/[E(Il(t)) =1-—0.5e 025 ;U@(Il(t)) =e 15 ;
_ —oy (0)?
uﬁg(xl(t)) =1-0.5e7 02

To stabilize the inverted pendulum subject to parameter uncertainties, the interval
type-2 fuzzy controller is proposed with the following four rules:

Rule j: if 1 (t) is M{ and z1(t) is M2, then u(t) = Gz(t), j=1,2,3,4.

It is noted that Pik = 17Uik = 0.017’711 = 0.456,’)/21 = 0.27,’)/31 = 0.565,’}/41 =
0.195,v;2 = 0.001, 7 =1,2,3,4;k = 1,2, satisfy the assumptions in Theorem [3.1} Using
the stability conditions in Theorem [3.I] the feedback-gain matrices are computed as
follows:

Gy = [950.71 244.57] ,Gy = [954.17 245.57];
Gi1 = [950.61 244.48] , G, = [955.36 245.77] .

Figure 4 shows the states responses of the closed-loop systems with different initial
states and different values of system parameters. It can be seen from Figure 4 that the
proposed conditions are efficient for the inverted pendulum subject to different values
of system parameters.

5. CONCLUSIONS

New LMI-based stability conditions for interval type-2 FMB control systems have been
proposed in this paper. These proposed conditions have relaxed the existing results by
using right-hand-side slack variables technique. The theoretical proof have illustrated
that the obtained results have less conservativeness. Several simulation examples have
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x(0)=[5112 0]

x(0)=[16 0]

X, (0
o

=[-116
-0.5
x(0)=[-5112 0]
1 L 3 x(0)=[5m12 0]
-1.5 -4
0 1 2 3 0 0.5 1 15 2 2.5 3
Time(Sec) Time(Sec)

(a)  2i(t) (b) z2(t)

Fig. 4: State responses. Solid lines: m, = my_ ., M. = Mg, ; Dotted lines: m, =

mpmin ’

Me = Mepin -

also demonstrated the effectiveness of the proposed conditions. However, it should be
noted that too many slack variables may increase computation burden. Thus, it is very
important to develop fast algorithm to reduce the computation time and further work
will focus on this issue.
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