
Kybernetika

A. Asgharzadeh; Hassan S. Bakouch; Saralees Nadarajah; L. Esmaeili
A new family of compound lifetime distributions

Kybernetika, Vol. 50 (2014), No. 1, 142–169

Persistent URL: http://dml.cz/dmlcz/143768

Terms of use:
© Institute of Information Theory and Automation AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/143768
http://dml.cz


KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 1 , PAGES 1 4 2 – 1 6 9

A NEW FAMILY OF COMPOUND LIFETIME
DISTRIBUTIONS

A. Asgharzadeh, Hassan S. Bakouch, Saralees Nadarajah
and L. Esmaeili

In this paper, we introduce a general family of continuous lifetime distributions by com-
pounding any continuous distribution and the Poisson–Lindley distribution. It is more flexible
than several recently introduced lifetime distributions. The failure rate functions of our fam-
ily can be increasing, decreasing, bathtub shaped and unimodal shaped. Several properties of
this family are investigated including shape characteristics of the probability density, moments,
order statistics, (reversed) residual lifetime moments, conditional moments and Rényi entropy.
The parameters are estimated by the maximum likelihood method and the Fisher’s informa-
tion matrix is determined. Several special cases of this family are studied in some detail. An
application to a real data set illustrates the performance of the family of distributions.

Keywords: estimation, failure rate shapes, moments, Poisson–Lindley distribution

Classification: 62E15, 62E20

1. INTRODUCTION

Modeling and analyzing lifetime data are important aspects of statistical research in
many applied sciences such as engineering, medicine, economics and so on. Various
recent probability distributions discussed modeling of such data by compounding well-
known continuous distributions such as the exponential, Weibull, and exponentiated
exponential distributions with the power series distribution that includes the Poisson,
logarithmic, geometric and binomial distributions as particular cases. The compounding
approach gives new distributions that extend well-known families of distributions. At
the same time they offer more flexibility for modeling lifetime data. The extensions,
sometimes, provide reasonable parametric fits to practical applications as in lifetime
and reliability studies. The flexibility of such compound distributions comes in terms of
one or more failure rate shapes that may be decreasing or increasing or bathtub shaped
or unimodal shaped.

Two prominent compound distributions introduced recently are the Weibull power
series distribution due to Morais and Barreto-Souza [12] and the exponentiated expo-
nential binomial distribution due to Bakouch et al. [2]. The former contains as particular
cases the exponential power series distribution (Chahkandi and Ganjali [5]), the expo-
nential geometric distribution (Adamidis and Loukas [1]), the exponential Poisson dis-
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tribution (Kus [9]), the exponential logarithmic distribution (Tahmasbi and Rezaei [15]),
the Weibull geometric distribution (Barreto-Souza et al. [4]) and the Weibull Poisson
distribution (Lu and Shi [10]).

Let Xi, i = 1, 2, . . . , N be independent and identical failure times of a system and let
N be a discrete random variable independent of the X’s. Let X = min (X1, X2, . . . , XN )
denote the time of first failure. If a system is made of N components in series and if
X1, X2, . . . , XN denote the lifetimes of the components then X denotes the lifetime of
the system. For example, if a fiber can be thought of as a series system of N units
and if X1, X2, . . . , XN denote the strength of the units then the breaking strength of
the fiber can be expressed as X = min (X1, X2, . . . , XN ). Here, N can be a random
variable since the number of units in a fiber may depend on its length, width and other
characteristics. Another example is a factory having N machines functioning in series
at any time. Here, N may depend on such factors as manpower and economy, so can be
considered a random variable.

Several of the known compound distributions (including some of those stated above)
do not have the ability to model first failures well. For example, if N has mode greater
than one then the exponential geometric and exponential logarithmic distributions are
not appropriate for modeling first failures. This is because geometric and logarithmic
distributions have mode equal to one. If N is over-dispersed, the exponential Poisson
distribution is not appropriate for modeling first failures. This is because the zero-
truncated Poisson distribution is always under-dispersed. Hence, there is a need for
flexible compound distributions that can model first failures well. A first attempt in
this direction was the exponential Poisson–Lindley distribution due to Barreto-Souza
and Bakouch [3]. The zero-truncated Poisson–Lindley distribution used here for com-
pounding can have mode greater than or equal to one and can be under-dispersed,
equi-dispersed and over-dispersed (Ghitany et al. [6]).

In this paper, we introduce a general family of continuous lifetime distributions by
compounding any continuous distribution and the Poisson–Lindley distribution. As we
shall see later, this family encompasses various shapes (including monotonically decreas-
ing, monotonically increasing, bathtub shapes and unimodal shapes) for the failure rate
function.

The proposed family of distributions applies not just to reliability data. The notion
of the “minimum of a random number of random events” occurs in a wide variety of
areas not just in reliability. For example, suppose Xi, i = 1, 2, . . . , N are claims made
to an insurance company over a reference period (say a year, a six-month period, a
two-year period, etc). Clearly, N denoting the number of claims is a random variable.
Then X = min (X1, X2, . . . , XN ) shall denote the minimum of the insurance claims over
a reference period. This variable will be of interest to insurers.

The contents of this paper are organized as follows. In Section 2, we construct the
new family of distributions. Shape characteristics of the probability density and failure
rate functions of the family are investigated in Section 3. Various statistical properties
of the proposed family are explored in Section 4. The properties include moments,
order statistics, (reversed) residual lifetime moments, conditional moments and Rényi
entropy. Estimation of the parameters by maximum likelihood method is discussed
in Section 5. An expression for the associated Fisher information matrix is given. In
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Section 6, several special cases of the family are studied in some detail. These include the
Weibull Poisson–Lindley, Burr Poisson–Lindley, exponentiated Weibull Poisson–Lindley
and Dagum Poisson–Lindley distributions. An application to a real data set is presented
in Section 7 to show flexibility of the family of distributions.

2. CONSTRUCTION OF THE FAMILY

Let X1, X2, . . . , XN be a random sample from a continuous distribution function G(·) on
(0,∞) with some continuous unknown parameters. Let N be a zero-truncated Poisson–
Lindley random variable independent of the X’s with probability mass function

P (N = n) =
θ2

1 + 3θ + θ2

2 + θ + n

(1 + θ)n

for n = 1, 2, . . . and θ > 0. Let g(x) = dG(x)/dx denote the density function, G(x) =
1−G(x) the survival function, and G−1(·) the quantile function.

We define X = min (X1, X2, . . . , XN ) as the Poisson–Lindley-G random variable.
The distribution function of X can be obtained as

F (x) = 1− θ2

1 + 3θ + θ2

G(x)[
1 + θ −G(x)

]2 {1 + θ + (2 + θ)
[
1 + θ −G(x)

]}
(1)

for θ > 0. Hereafter, a random variable X with distribution function (1) shall be denoted
by X ∼ GPL (α, θ), where α is an unknown vector of parameters of G(·). Note that
F (x) → G(x) as θ →∞. So, G is a limiting case of (1).

To generate a random variable X ∼ GPL (α, θ), we compute X = F−1(U), with
U ∼ U(0, 1), where

F−1(U) = G−1

[
1−

(1 + θ)(1− U)a + b−
√

∆U

2

(1− U)a + (2 + θ)

]
(2)

with ∆U = [b− 2a(1 + θ)(U − 1)]2 + 4a(1 + θ)2(U − 1) [2 + θ + a(1− U)], a = θ−2(
1 + 3θ + θ2

)
and b = 3 + 4θ + θ2.

3. SHAPE CHARACTERISTICS OF THE DENSITY AND FAILURE RATE
FUNCTIONS

In this section, we obtain the shape characteristics of the density and the failure rate
functions of X ∼ GPL (α, θ).

The density, survival and failure rate functions of X ∼ GPL (α, θ) are

f(x) =
θ2(1 + θ)2g(x)

1 + 3θ + θ2

3 + θ −G(x)[
1 + θ −G(x)

]3 , (3)

S(x) =
θ2

1 + 3θ + θ2

G(x)[
1 + θ −G(x)

]2 {1 + θ + (2 + θ)
[
1 + θ −G(x)

]}
, (4)
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and

hf (x) = K1(x) + K2(x), (5)

respectively, where

K1(x) =
2hg(x)(θ + 1)2

1 + θ + (2 + θ)
[
1 + θ −G(x)

]2
and

K2(x) =
hg(x)(θ + 1)2

1 + θ + (2 + θ)
[
1 + θ −G(x)

] ,
where hg(x) = g(x)/ [1−G(x)]. We observe that (3) can be expressed as

f(x) =
θ2(1 + θ)2

1 + 3θ + θ2 [g1(x) + g2(x)] ,

where gi(x) = ig(x)
[
1 + θ −G(x)

]−(i+1)
, i = 1, 2. Clearly, f(·) is a linear combination

of the gi(x)s.
If g(·) is a monotonic decreasing function then f(·) is a decreasing function too. If g(·)

is a decreasing function then limx→a+ f(x) =
(
θ3 + 4θ2 + 5θ + 2

)
g (a+) /

(
θ3 + 3θ2 + θ

)
and limx→∞ f(x) = 0, where a+ = min (Dg) and Dg is the domain of the density function
g. We also have that f(x)/g(x) → 1 as θ →∞.

Remark 3.1. If g(x) is a decreasing continuous density function then f(x) in (3) is also
a decreasing density function.

P r o o f . We have

g′i(x) = ig′(x)
[
1 + θ −G(x)

]−(i+1) − i(i + 1)g2(x)
[
1 + θ −G(x)

]−(i+2)

for i = 1, 2. From the assumption and the fact that 1 + θ − G(x) = θ + G(x) ≥ 0, we
have g′i(x) ≤ 0 for all x. Hence,

f ′(x) =
θ2(1 + θ)2

1 + 3θ + θ2 [g′1(x) + g′2(x)] ≤ 0.

This completes the proof. �

Note: If g(x) is a unimodal density function then f(x) is a decreasing function for x
greater than or equal to the mode of g.

Remark 3.2. If the failure rate function hg(x) is decreasing, then hf (x) is also decreas-
ing.

P r o o f . Note that h′g(x) ≤ 0 implies K ′
1(x) ≤ 0 and K ′

2(x) ≤ 0, so the result follows
from (5). �

Analytical study of the behavior of probability density and failure rate functions
for other shapes (including increasing shapes, bathtub shapes and unimodal shapes) is
complicated. We shall discuss them later in Section 6 graphically.



146 A. ASGHARZADEH, H. S. BAKOUCH, S. NADARAJAH AND L. ESMAEILI

4. STATISTICAL AND RELIABILITY MEASURES

Several statistical and reliability measures of X ∼ GPL (α, θ) are explored in this sec-
tion. Expressions are derived for moments, order statistics, (reversed) residual lifetime
moments, conditional moments and Rényi entropy. Throughout, we suppose X1, . . . , Xn

is a random sample from the GPL (α, θ) distribution and let X1:n, . . . , Xn:n denote the
corresponding order statistics in ascending order.

4.1. Moments, mgf and order statistics

Standard calculations show that the moment generating function (mgf) of X defined by
MX(t) = E

(
etX
)
, the rth moment of X defined by µ′r = E (Xr), the density function

of the ith order statistic Xi:n and the rth moment of the ith order statistic can be
expressed as

MX(t) =
θ2(1 + θ)−1

1 + 3θ + θ2

∞∑
j=0

(
2 + j

2

)
(1 + θ)−j [(3 + θ)I(j)− I(j + 1)] ,

µ′r =
θ2(1 + θ)−1

1 + 3θ + θ2 K (α, θ, r) ,

fi:n(x) =
n!θ2(n−i+1)(1 + θ)2g(x)G

n−i
(x)

(i− 1)!(n− i)!
(
1 + 3θ + θ2

)n−i+1

3 + θ −G(x)[
1 + θ −G(x)

]2(n−i)+3

·
{
1 + θ + (2 + θ)

[
1 + θ −G(x)

]}n−i

·

{
1− θ2G(x)

1 + 3θ + θ2

1 + θ + (2 + θ)
[
1 + θ −G(x)

][
1 + θ −G(x)

]2
}i−1

and

E (Xr
i:n) = r

n∑
k=n−i+1

k∑
l=0

∞∑
j=0

(−1)k−n+i+l−1

(
k

l

)(
k − 1
n− i

)(
n

k

)(
j + 2k − 1

2k − 1

)

· θ2k(3 + θ)k−l(2 + θ)l

(1 + θ)l+k+j
(
1 + 3θ + θ2

)k ∫ ∞

0

xr−1G
k+l+j

(x) dx,

where

I(a) =
∞∑

j=0

tj

j!
M(j, 0, a),

where M(p, r, s) = E
[
XpGr(X)G

s
(X)

]
is the probability weighted moment (Hosk-

ing [8]) with expectation taken with respect to g. Note that we have used Lemma 1 in
the appendix to calculate the rth moment of X.
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4.2. Moments of (reversed) residual life and conditional moments

The residual life and the reversed residual life random variables play an important
role in reliability theory (Gupta and Gupta [7]) and the moments of such variables are
extensively used in actuarial sciences in the analysis of risks. For lifetime distributions,
it is also of interest to know the conditional moments E (Xn|X > t) n = 1, 2, . . . which
are important in prediction. Standard calculations show that these moments for the
GPL(α, θ) distribution can be expressed as

µr(t) = E [(X − t)r|X > t]

=
1

S(t)
θ2

(1 + θ)
(
1 + 3θ + θ2

) r∑
i=0

(
r

i

)
(−1)r−itr−iL (α, θ, i, t) ,

mr(t) = E [(t−X)r|X ≤ t]

=
1

F (t)

r∑
i=0

(
r

i

)
tr−i(−1)i

[
µ′i −

θ2

(1 + θ)
(
1 + 3θ + θ2

)L (α, θ, i, t)

]

and

E (Xn|X > t) =
θ2

S(t)
(1 + θ)−1

1 + 3θ + θ2 L (α, θ, n, t) ,

where F (·) is given by (1) and S(·) is given by (4). We have used Lemma 2 in the
appendix for these calculations.

4.3. Rényi entropy

Entropy is regarded as a measure of the randomness of a system and it is widely used
in physical sciences. A popular entropy is the Rényi entropy (Rényi [14]) defined by
IR(γ) = (1− γ)−1 log

(∫∞
0

fγ(x) dx
)

for γ > 0 and γ 6= 1. If f(·) is the density function
of the GPL (α, θ) distribution then standard calculations show that the Rényi entropy
can be expressed as

IR(γ) = γ(1− γ)−1
[
2 log θ − log

(
1 + 3θ + θ2

)
− log(1 + θ)

]
+(1 + γ)(1− γ)−1 log(3 + θ) + (1− γ)−1 [log cγ − log Γ(3γ)] ,

where

cγ ≡ cγ,α,θ

=
∞∑

j=0

Γ(3γ + j)
j!

(
3 + θ

1 + θ

)j ∫ (3+θ)−1

0

gγ−1
(
G−1 (1− u(3 + θ))

)
uj(1− u)γ du

and Γ(·) denotes the gamma function.
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5. PARAMETER ESTIMATION

Suppose X1, X2, . . . , Xn is a random sample from the GPL(α, θ) distribution with ob-
served values x1, x2, . . . , xn. Section 5.1 considers maximum likelihood estimation for
the parameters (α, θ) and gives an expression for the associated Fisher’s information
matrix. Section 5.2 considers maximum likelihood estimation when some data values
are censored. Throughout, we let p denote the length of α.

5.1. Maximum likelihood estimation

Given the observed values x1, x2, . . . , xn, the loglikelihood function of the parameters
(α, θ) is

`n ≡ `n (α, θ) = 2n log θ(1 + θ) +
n∑

i=1

log g (xi)− n log
(
1 + 3θ + θ2

)
+

n∑
i=1

log
[
3 + θ −G (xi)

]
− 3

n∑
i=1

log
[
1 + θ −G (xi)

]
. (6)

The score function associated with the loglikelihood function is

Un ≡ Un (α, θ) =
(

∂`n

∂α
,
∂`n

∂θ

)>
,

where

∂`n

∂α
=

n∑
i=1

1
g (xi)

∂g (xi)
∂α

+
n∑

i=1

∂G (xi)
∂α

[
1

3 + θ −G (xi)
− 3

1 + θ −G (xi)

]

and

∂`n

∂θ
=

2n(1 + 2θ)
θ(1 + θ)

− n(3 + 2θ)
1 + 3θ + θ2 +

n∑
i=1

[
1

3 + θ −G (xi)
− 3

1 + θ −G (xi)

]
.

The maximum likelihood estimates of α and θ say α̂ and θ̂ can be obtained by solving
numerically the nonlinear system of equations Un = 0. In practice, the maximum
likelihood estimates can be obtained more easily by maximizing (6) with respect to the
parameters. The (p + 1)× (p + 1) Fisher’s information matrix is given by

Kn ≡ Kn (α, θ) = n

[
kα,α kα,θ

kα,θ kθ,θ

]
,
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where

kθ,θ =
2
(
1 + 2θ + 2θ2

)
θ2(1 + θ)2

− 7 + 6θ + 2θ2(
1 + 3θ + θ2

)2
−3E

(
1[

1 + θ −G(X)
]2
)

+ E

(
1[

3 + θ −G(X)
]2
)

,

kα,α = E

(
1

g2(X)

[
∂g(X)

∂α

]2)
− E

(
1

g(X)
∂2g(X)

∂α2

)
−E

(
∂2G(X)

∂α2

[
1

3 + θ −G(X)
− 3

1 + θ −G(X)

])
−E

([
∂G(X)

∂α

]2{ 3[
1 + θ −G(X)

]2 − 1[
3 + θ −G(X)

]2
})

,

kα,θ = E

(
∂G(X)

∂α

{
3[

1 + θ −G(X)
]2 − 1[

3 + θ −G(X)
]2
})

.

Tests of hypothesis and confidence intervals for the parameters can be based on the
Fisher’s information matrix. Namely, they can be based on the fact that the distribution
of
√

n
(
α̂−α, θ̂ − θ

)
for large n is approximately (p+1)-variate normal with zero means

and covariance matrix K−1
n =

(
Ki,j

)
say. So, for example, an approximate 100(1 − β)

percent confidence interval for θ is(
θ̂ − zβ/2

√
Kp+1,p+1

n
, θ̂ + zβ/2

√
Kp+1,p+1

n

)
,

where za denotes the 100(1− a) percentile of a standard normal random variable. Also,
an approximate test of H0 : θ = θ0 versus H1 : θ 6= θ0 with significance level a is to
reject the null hypothesis if

√
n
∣∣∣θ̂ − θ0

∣∣∣ /√Kp+1,p+1 > za/2.

5.2. Censored maximum likelihood estimation

Often with lifetime data, we encounter censored data. There are different forms of
censoring: type I censoring, type II censoring, etc. Here, we consider the general case of
multi-censored data: there are n subjects of which

• n0 are known to have failed at the times x1, . . . , xn0 ;

• n1 are known to have failed in the interval [sj−1, sj ], j = 1, . . . , n1;

• n2 survived to a time rj , j = 1, . . . , n2 but not observed any longer.

Note that n = n0+n1+n2 and that type I censoring and type II censoring are contained
as particular cases of multi-censoring. The loglikelihood function of the parameters (α, θ)
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for this multi-censoring data is:

`n ≡ 2n log θ + 2n0 log(1 + θ)− n log
(
1 + 3θ + θ2

)
+

n0∑
i=1

log g (xi)

+
n0∑
i=1

log
[
3 + θ −G (xi)

]
− 3

n0∑
i=1

log
[
1 + θ −G (xi)

]
+

n1∑
i=1

log

[
G (si−1)[

1 + θ −G (si−1)
]2 {1 + θ + (2 + θ)

[
1 + θ −G (si−1)

]}
− G (si)[

1 + θ −G (si)
]2 {1 + θ + (2 + θ)

[
1 + θ −G (si)

]} ]

+
n2∑
i=1

log G (ri) +
n2∑
i=1

log
{
1 + θ + (2 + θ)

[
1 + θ −G (ri)

]}
−2

n2∑
i=1

log
[
1 + θ −G (ri)

]
. (7)

The score function associated with the loglikelihood function is

Un ≡
(

∂`n

∂α
,
∂`n

∂θ

)>
,

where

∂`n

∂α
=

n0∑
i=1

1
g (xi)

∂g (xi)
∂α

+
n0∑
i=1

∂G (xi)
∂α

[
1

3 + θ −G (xi)
− 3

1 + θ −G (xi)

]

−
n1∑
i=1

∂G (ri)
∂α

[
G (si−1)[

1 + θ −G (si−1)
]2 {1 + θ + (2 + θ)

[
1 + θ −G (si−1)

]}
− G (si)[

1 + θ −G (si)
]2 {1 + θ + (2 + θ)

[
1 + θ −G (si)

]} ]−1

·

{
(1 + θ)(3 + θ)− 2(2 + θ)G (si−1)[

1 + θ −G (si−1)
]2

+
2G (si−1)

[
(1 + θ)(3 + θ)− (2 + θ)G (si−1)

][
1 + θ −G (si−1)

]3
− (1 + θ)(3 + θ)− 2(2 + θ)G (si)[

1 + θ −G (si)
]2

−
2G (si)

[
(1 + θ)(3 + θ)− (2 + θ)G (si)

][
1 + θ −G (si)

]3
}
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−
n2∑
i=1

∂G (ri)
∂α

{
1

G (ri)
− 2 + θ

1 + θ + (2 + θ)
[
1 + θ −G (ri)

]}

−2
n2∑
i=1

∂G (ri)
∂α

1
1 + θ −G (ri)

and

∂`n

∂θ
=

2n

θ
+

2n0

1 + θ
− n(3 + 2θ)

1 + 3θ + θ2 +
n0∑
i=1

[
1

3 + θ −G (xi)
− 3

1 + θ −G (xi)

]

+
n1∑
i=1

[
G (si−1)[

1 + θ −G (si−1)
]2 {1 + θ + (2 + θ)

[
1 + θ −G (si−1)

]}
− G (si)[

1 + θ −G (si)
]2 {1 + θ + (2 + θ)

[
1 + θ −G (si)

]} ]−1

·

{
G (si−1)

[
4 + 2θ −G (si−1)

][
1 + θ −G (si−1)

]2
−

2
[
(1 + θ)(3 + θ)− (2 + θ)G (si−1)

][
1 + θ −G (si−1)

]3
−

G (si)
[
4 + 2θ −G (si)

][
1 + θ −G (si)

]2
+

2
[
(1 + θ)(3 + θ)− (2 + θ)G (si)

][
1 + θ −G (si)

]3
}

+
n2∑
i=1

4 + 2θ −G (ri)
(1 + θ)(3 + θ)− (2 + θ)G (ri)

−
n2∑
i=1

1
1 + θ −G (ri)

.

The maximum likelihood estimates of α and θ can be obtained by solving numerically
the nonlinear system of equations Un = 0 or alternatively by maximizing (7) with
respect to the parameters. The Fisher’s information matrix corresponding to (7) is too
complicated to be presented here.

6. SPECIAL CASES

In this section, we investigate in detail some special cases of the GPL(α, θ) distribution,
including the Weibull Poisson–Lindley (WPL) distribution, the Burr Poisson–Lindley
(BPL) distribution, the exponentiated Weibull Poisson–Lindley (EWPL) distribution
and the Dagum Poisson–Lindley (DPL) distribution. Some mathematical properties as
well as plots of the density and failure rate functions are presented for each special case.



152 A. ASGHARZADEH, H. S. BAKOUCH, S. NADARAJAH AND L. ESMAEILI

6.1. The Weibull Poisson–Lindley distribution

Weibull distribution is the most popular model in reliability and related areas. Its
survival function is

G(x) = e−λxβ

(8)

for x > 0, where λ > 0 is the scale parameter and β > 0 is the shape parameter.
The shape parameter can be interpreted as follows: β < 1 corresponds to the “infant
mortality” period of systems when the failure rate decreases; β = 1 corresponds to
the “constant failure” period of systems; β > 1 corresponds to the “aging process” of
systems when the failure rate increases.

Substituting the density, failure rate and quantile functions corresponding to (8) into
(3), (5) and (2), we obtain the density, failure rate and quantile functions of the WPL
distribution. The exponential Poisson–Lindley distribution due to Baretto-Souza and
Bakouch [3] is the particular case of this distribution for β = 1.

Since the density function g(x) and failure rate function hg(x) of the Weibull distri-
bution are decreasing functions for β ≤ 1, f(x) and hf (x) of the WPL distribution are
decreasing functions too for β ≤ 1 (by Remarks 1 and 2). Figures 1 and 2 illustrate the
shapes of the density and failure rate functions of the WPL distribution for different
values of β, λ, θ. They show that the failure rate function of the WPL distribution can
be decreasing, increasing, unimodal shaped and unimodal shaped followed by a bathtub
shape. Also, we note that limx→0+ f(x) = ∞ for β ≤ 1 and limx→0+ f(x) = 0 for β > 1.
Moreover, the density function of the WPL distribution is decreasing for β > 1 and

x ≥
(

β−1
λβ

) 1
β

.
Standard calculations show that the mgf, the rth moment, the density function of the

i order statistic and the rth moment of the ith order statistic of the WPL distribution
are

MX(t) =
θ2(1 + θ)−1

1 + 3θ + θ2

∞∑
j=0

∞∑
n=0

tnλ−
n
β Γ(n/β + 1)

2n!(1 + θ)j

·

{
(3 + θ)(j + 2)n/β+1 − (j + 1)n/β+1

[(j + 1)(j + 2)]n/β

}
,

µ′r = E (Xr) =
θ2(1 + θ)−1

1 + 3θ + θ2 K(β, λ, θ, r),

fi:n(x) =
βλn!θ2(n−i+1)(1 + θ)2xβ−1e−λ(n−i+1)xβ

(i− 1)!(n− i)!
(
1 + 3θ + θ2

)n−i+1

3 + θ − e−λxβ(
1 + θ − e−λxβ

)2(n−i)+3

·
[
1 + θ + (2 + θ)

(
1 + θ − e−λxβ

)]n−i

·

1− θ2e−λxβ

1 + 3θ + θ2

1 + θ + (2 + θ)
(
1 + θ − e−λxβ

)
(
1 + θ − e−λxβ

)2
i−1

,
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Fig. 1. Plots of the density function of the WPL distribution for

β = 0.5, λ = 1 (top left), β = 1, λ = 1 (top right), β = 2, λ = 1

(bottom left), and β = 5, λ = 1 (bottom right). The four curves in

each plot correspond to θ = 0.5 (solid curve), θ = 1 (curve of dashes),

θ = 2 (curve of dots) and θ = 5 (curve of dots and dashes). The y

axes are in log scale.

and

E (Xr
i:n) =

rΓ
(

r
β

)
βλ

r
β

n∑
k=n−i+1

k∑
l=0

∞∑
j=0

(−1)k−n+i+l−1

(
k

l

)(
k − 1
n− i

)

·
(

n

k

)(
j + 2k − 1

2k − 1

)
θ2k(3 + θ)k−l(2 + θ)l

(1 + θ)l+k+j
(
1 + 3θ + θ2

)k
(k + l + j)

r
β

,
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Fig. 2. Plots of the failure rate function of the WPL distribution for

β = 0.1, λ = 1 (top left), β = 1, λ = 1 (top right), β = 2, λ = 1

(bottom left), and β = 5, λ = 1 (bottom right). The four curves in

each plot correspond to θ = 0.001 (solid curve), θ = 0.01 (curve of

dashes), θ = 0.1 (curve of dots) and θ = 5 (curve of dots and dashes).

The y axes are in log scale.

where

K(β, λ, θ, c) = λ−
c
β Γ
(

c

β
+ 1
) ∞∑

j=0

(1 + θ)−j

2

{
(3 + θ)(j + 2)

c
β +1 − (j + 1)

c
β +1

[(j + 1)(j + 2)]
c
β

}
.

Moments of residual life, moments of reversed residual life and conditional moments
of the WPL distribution are

µr(t) =
1

S(t)
θ2

(1 + θ)
(
1 + 3θ + θ2

) r∑
i=0

(
r

i

)
(−1)r−itr−iL(β, λ, θ, i, t),
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mr(t) =
1

F (t)

r∑
i=0

(
r

i

)
tr−i(−1)i

[
µ′i −

θ2

(1 + θ)
(
1 + 3θ + θ2

)L(β, λ, θ, i, t)

]
,

and

E (Xn|X > t) =
θ2

S(t)
(1 + θ)−1

1 + 3θ + θ2 L(β, λ, θ, n, t),

where

L(β, λ, θ, c, t) = λ−
c
β

∞∑
j=0

(
j + 2

2

)
(1 + θ)−j

·

[
(3 + θ)(j + 1)−( c

β +1)Γ
(

c

β
+ 1, λ(j + 1)tβ

)

−(j + 2)−( c
β +1)Γ

(
c

β
+ 1, λ(j + 2)tβ

)]

and Γ(·, ·) denotes the complementary incomplete gamma function.
Finally, the Rényi entropy of the WPL distribution is

IR(γ) = γ(1− γ)−1
[
2 log θ − log

(
1 + 3θ + θ2

)
− log(1 + θ)

]
+(1 + γ)(1− γ)−1 log(3 + θ) + (1− γ)−1 [log cγ − log Γ(3γ)] ,

where

cγ ≡ cγ,β,λ,θ =
∞∑

j=0

∞∑
k=0

(
γ

k

)
(−1)kΓ(3γ + j)

j!

(3 + θ)−(γ+k)Γ
(
γ − γ−1

β

)
(1 + θ)j(k + γ + j)γ− γ−1

β

.

6.2. The Burr Poisson–Lindley distribution

The Burr distribution is specified by the survival function

G(x) =
(
1 + xλ

)−β
(9)

for x > 0, where both β > 0 and λ > 0 are shape parameters. This is a heavy tailed
distribution. The upper tails of the distribution become heavier with decreasing values
of both parameters. The failure rate function is a monotonic decreasing function for
λ ≤ 1 and is unimodal for λ > 1.

Substituting the density, failure rate and quantile functions corresponding to (9) into
(3), (5) and (2), we obtain the density, failure rate and quantile functions of the BPL
distribution.

Since the density function of the Burr distribution is decreasing for λ ≤ 1, the density
function of the BPL distribution is decreasing too for λ ≤ 1. Since the density function of
the Burr distribution is unimodal for λ > 1, the density function of the BPL distribution
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is decreasing for λ > 1 and x >
(

λ−1
βλ+1

) 1
λ

. Also, since the failure rate function of the
Burr distribution is decreasing for λ ≤ 1, that of the BPL distribution is decreasing too
for λ ≤ 1 (by Remark 2). Figures 3 and 4 illustrate the shapes of the density and failure
rate functions of the BPL distribution for different values of β, λ, and θ. The figures
show that the failure rate function can be decreasing, increasing, unimodal shaped and
unimodal shaped followed by a bathtub shape and then followed by a decreasing shape.
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Fig. 3. Plots of the density function of the BPL distribution for

β = 0.5, λ = 0.5 (top left), β = 1, λ = 0.5 (top right), β = 1, λ = 2

(bottom left), and β = 2, λ = 5 (bottom right). The four curves in

each plot correspond to θ = 0.5 (solid curve), θ = 1 (curve of dashes),

θ = 2 (curve of dots) and θ = 5 (curve of dots and dashes). The y

axes are in log scale.
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Fig. 4. Plots of the failure rate function of the BPL distribution for

β = 0.1, λ = 1 (top left), β = 1, λ = 0.5 (top right), β = 1, λ = 2

(bottom left), and β = 5, λ = 5 (bottom right). The four curves in

each plot correspond to θ = 0.001 (solid curve), θ = 0.01 (curve of

dashes), θ = 0.1 (curve of dots) and θ = 5 (curve of dots and dashes).

The y axes are in log scale.

Standard calculations show that the mgf, the rth moment, the density function of the
i order statistic and the rth moment of the ith order statistic of the BPL distribution
are

MX(t) =
θ2(1 + θ)−1

1 + 3θ + θ2

∞∑
j=0

(
2 + j

2

)
(1 + θ)−j [(3 + θ)I(j)− I(j + 1)] ,

µ′r =
θ2(1 + θ)−1

1 + 3θ + θ2 K(β, λ, θ, r),
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fi:n(x) =
βλn!θ2(n−i+1)(1 + θ)2xλ−1(1 + xλ)−[β(n−i+1)+1]

(i− 1)!(n− i)!
(
1 + 3θ + θ2

)n−i+1

· 3 + θ − (1 + xλ)−β

[1 + θ − (1 + xλ)−β ]2(n−i)+3

·
{
1 + θ + (2 + θ)

[
1 + θ − (1 + xλ)−β

]}n−i

·

{
1− θ2(1 + xλ)−β

1 + 3θ + θ2

1 + θ + (2 + θ)
[
1 + θ − (1 + xλ)−β

]
[1 + θ − (1 + xλ)−β ]2

}i−1

,

and

E (Xr
i:n) =

r

λ

n∑
k=n−i+1

∞∑
l=0

∞∑
j=0

(−1)k−n+i+l−1

(
k

l

)(
k − 1
n− i

)(
n

k

)(
j + 2k − 1

2k − 1

)

· θ2k(3 + θ)k−l(2 + θ)l

(1 + θ)l+k+j
(
1 + 3θ + θ2

)k B
(
(k + l + j)β − r

λ
,
r

λ

)
,

where

I(a) = βλ

∫ ∞

0

xλ−1(1 + xλ)−(β+βa+1)etx dx,

K(β, λ, θ, c) = β

∞∑
j=0

(
j + 2

2

)
(1 + θ)−j [(3 + θ)I(β, λ, c, j)− I(β, λ, c, j + 1)] ,

I(β, λ, c, b) = βB
(
β(1 + b)− c

λ
,
c

λ
+ 1
)

=
βΓ
(
β(1 + b)− c

λ

)
Γ
(

c
λ + 1

)
Γ (β(1 + b) + 1)

and B(·, ·) denotes the beta function. Note that the expression for E (Xr
i:n) holds only

for those i such that r < (n− i + 1)λβ.
Finally, the Rényi entropy of the BPL distribution is

IR(γ) = γ(1− γ)−1
[
2 log θ − log

(
1 + 3θ + θ2

)
− log(1 + θ)

]
+(1 + γ)(1− γ)−1 log(3 + θ) + (1− γ)−1 [log cγ − log Γ(3γ)] ,

where

cγ ≡
∞∑

j=0

Γ(3γ + j)
j!

(
3 + θ

1 + θ

)j

(λβ)γ−1(3 + θ)
(γ−1)(β+1)

β

·
∫ (3+θ)−1

0

u
(γ−1)(β+1)

β +j(1− u)γ
{

[u(3 + θ)]−
1
β − 1

} (λ−1)(γ−1)
λ

du.

6.3. Other special cases

Here, we discuss briefly two more special cases of the GPL(α, θ) distribution.
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6.3.1. Exponentiated Weibull Poisson–Lindley distribution

The survival function of the exponentiated Weibull (EW) distribution (Mudholkar and
Srivastava [13]) is

G(x) = 1−
(
1− e−xλ

)β

(10)

for x > 0, where both λ > 0 and β > 0 are shape parameters. These parameters control
the failure rates in different ways: c < 1 and cα > 1 correspond to bathtub shaped
failure rates with a unique change point; c > 1 and cα < 1 correspond to unimodal
failure rates with a unique change point; c ≤ 1 and cα ≤ 1 correspond to monotonically
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Fig. 5. Plots of the density function of the EWPL distribution for

β = 0.5, λ = 0.5 (top left), β = 1, λ = 0.5 (top right), β = 1, λ = 2

(bottom left), and β = 2, λ = 5 (bottom right). The four curves in

each plot correspond to θ = 0.5 (solid curve), θ = 1 (curve of dashes),

θ = 2 (curve of dots) and θ = 5 (curve of dots and dashes). The y

axes are in log scale.
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increasing failure rates; c ≥ 1 and cα ≥ 1 correspond to monotonically decreasing failure
rates; c = α = 1 corresponds to constant failure rates.

Substituting the density, failure rate and quantile functions corresponding to (10)
into (3), (5) and (2), we obtain the density, failure rate and quantile functions of the
EWPL distribution.

Figures 5 and 6 illustrate the shapes of the density and failure rate functions of the
EWPL distribution for different values of β, λ and θ. The failure rate function can
be decreasing, increasing, unimodal shaped followed by an increasing shape, unimodal
shaped followed by a bathtub shape, and bathtub shaped.
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6.3.2. Dagum Poisson–Lindley distribution

The survival function of the Dagum (inverse Burr type XII) distribution is

G(x) = 1−
(
1 + x−λ

)−β
(11)

for x > 0, where both λ > 0 and β > 0 are shape parameters. This too is a heavy
tailed distribution. The upper tails of the distribution become heavier with decreasing
values of both parameters. The failure rate function is a monotonic decreasing function
for λ ≤ 1 and is unimodal for λ > 1.

Substituting the density, failure rate and quantile functions corresponding to (11)
into (3), (5) and (2), we obtain the density, failure rate and quantile functions of the
DPL distribution.
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Fig. 7. Plots of the density function of the DPL distribution for

β = 0.5, λ = 0.5 (top left), β = 1, λ = 0.5 (top right), β = 1, λ = 2

(bottom left), and β = 2, λ = 5 (bottom right). The four curves in

each plot correspond to θ = 0.5 (solid curve), θ = 1 (curve of dashes),

θ = 2 (curve of dots) and θ = 5 (curve of dots and dashes). The y

axes are in log scale.
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Figures 7 and 8 illustrate the shapes of the density and failure rate functions of the
DPL distribution for different values of β, λ, and θ. We see that the failure rate function
can be decreasing, increasing and unimodal shaped. Since the density function of the
Dagum distribution is a decreasing function for βλ ≤ 1, the density function of the DPL
distribution is also a decreasing function for βλ ≤ 1 by Remark 1. Since the density
function of the Dagum distribution is unimodal for βλ > 1, the density function of the

DPL distribution is decreasing for βλ > 1 and x >
(

1+λ
βλ−1

)− 1
λ

.
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Fig. 8. Plots of the failure rate function of the DPL distribution for

β = 0.5, λ = 0.5 (top left), β = 1, λ = 0.5 (top right), β = 1, λ = 2

(bottom left), and β = 1, λ = 20 (bottom right). The four curves in

each plot correspond to θ = 0.001 (solid curve), θ = 0.01 (curve of

dashes), θ = 0.1 (curve of dots) and θ = 5 (curve of dots and dashes).
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7. APPLICATION TO REAL DATA

In this section, we illustrate the flexibility of the GPL distributions. We use the Danish
fire insurance claims data downloaded from

http://www.macs.hw.ac.uk/∼mcneil/ftp/DanishData.txt

This data set gives insurance claims (exceeding one million DKK) due to fire from the
3rd of January 1980 to the 31 of December of 1990. This data must be considered
censored because of the following explanation: “The full Danish data comprise 2492
losses and can be considered as being essentially all Danish fire losses over one million
Danish Krone (DKK) from 1980 to 1990 plus a number of smaller losses below one
million DKK. We restrict our attention to the 2156 losses exceeding one million . . .”
(page 121, McNeil [11]).

Following the motivation described in Section 1, we computed the minimum insurance
claim for every six month period from the 3rd of January 1980 to the 31 of December
of 1990. This resulted in the values 1.464129, 1.449488, 1.314548, 1.310616, 1.189061,
1.189061, 1.112347, 1.112347, 1.046911, 1.047120, 1.000000, 1.000000, 1.000000, 1.002893,
1.011132, 1.004638, 1.027507, 1.020408, 1.003387, 1.003387, 1.006601, 1.005776, 1.005776.
The sample size is n = 23. According to the motivation described in Section 1, GPL
distributions can be considered as possible models for these data values.

We fitted the Weibull and WPL distributions mentioned in Section 6.1, the Burr and
BPL distributions mentioned in Section 6.2, the EW and EWPL distributions mentioned
in Section 6.3.1, and the Dagum and DPL distributions mentioned in Section 6.3.2. In
addition, we fitted the following distributions: the Weibull Poisson (WP) distribution
(Lu and Shi [10]) with the density function

f(x) =
λβαxβ−1e−α−λxβ+α exp(−λxβ)

1− e−α

for x > 0, α > 0, β > 0 and λ > 0; the lognormal distribution with the density function

f(x) =
1√

2πσx
exp

[
− (log x− µ)2

2σ2

]
for x > 0, −∞ < µ < ∞ and σ > 0; the loglogistic distribution with the density function

f(x) =
βαβxβ−1

(xβ + αβ)2

for x > 0, α > 0 and β > 0.
Each distribution was fitted by the method of maximum likelihood. Censoring was

accounted for in the maximum likelihood estimation, see Section 5.2. The maximum
likelihood estimates, the standard errors computed by inverting observed information
matrices, loglikelihood values, values of Akaike information criterion (AIC), values of
Bayesian information criterion (BIC) and p-values based on the one-sample Kolmogorov
Smirnov statistics are reported in Table 1.

http://www.macs.hw.ac.uk/~mcneil/ftp/DanishData.txt
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Distribution Estimates (se) − log L AIC BIC p-value
Weibull β̂ = 6.969(1.016), -8.833 -13.666 -11.395 0.009

λ̂ = 0.337(0.106)
WP β̂ = 8.875(1.291), -10.765 -15.530 -12.123 0.010

λ̂ = 0.101(0.056),
α̂ = 3.329(1.715)

WPL β̂ = 11.520(1.856), -12.613 -19.226 -15.819 0.020
λ̂ = 0.022(0.023),
θ̂ = 0.116(0.117)

Burr β̂ = 0.006(0.005), -28.596 -53.193 -50.922 0.051
λ̂ = 1861.673(294.152)

BPL β̂ = 0.006(0.007), -31.769 -57.538 -54.132 0.062
λ̂ = 1861.673(542.945),
θ̂ = 0.760(0.165)

EW β̂ = 3.233(0.679), -11.599 -19.199 -16.928 0.014
λ̂ = 4.695(0.528)

EWPL β̂ = 7.588(1.707), -15.821 -25.642 -22.236 0.036
λ̂ = 3.850(0.788),
θ̂ = 0.200(0.152)

Dagum β̂ = 2.356(0.500), -16.707 -29.414 -27.143 0.044
λ̂ = 14.809(2.669)

DPL β̂ = 4.293(1.089), -18.593 -31.187 -27.780 0.045
λ̂ = 11.791(3.096),
θ̂ = 0.409(0.340)

Lognormal µ̂ = 0.089(0.025), -13.832 -23.665 -21.394 0.024
σ̂ = 0.121(0.018)

Loglogistic α̂ = 1.068(0.025), -14.309 -24.618 -22.347 0.024
β̂ = 15.395(2.789)

Tab. 1. Estimates of the parameters, standard errors, loglikelihood

values, AIC values, BIC values and p-values based on Kolmogorov

Smirnov statistics.
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For computing the Kolmogorov Smirnov statistics we do not know the true value of
the parameters. We replace them by the maximum likelihood estimates, so the standard
asymptotes of the Kolmogorov Smirnov statistics may not apply. For this reason, we
used the following scheme for computing the p-values:

1. simulate ten thousand samples of size n = 23 from the fitted distribution (one of
Weibull, WPL, Burr, BPL, EW, EWPL, Dagum, DPL, WP, lognormal, loglogistic
distributions);

2. refit the fitted distribution to each of the ten thousand samples;

3. use the fitted estimates to compute the Kolmogorov Smirnov statistic for each of
the ten thousand samples;

4. compute the empirical distribution function of the Kolmogorov Smirnov statistic;

5. use the empirical distribution function to read off the p-value of the observed
Kolmogorov Smirnov statistic.
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We see that the BPL distribution has the largest loglikelihood value, the smallest AIC
value, the smallest BIC value and the largest p-value. The Burr distribution has the
second largest loglikelihood value, the second smallest AIC value, the second smallest
BIC value and the second largest p-value.

The remaining distributions do not appear to provide acceptable p-values. The
Weibull distribution has the smallest loglikelihood value, the largest AIC value, the
largest BIC value and the smallest p-value. The WP distribution has the second small-
est loglikelihood value, the second largest AIC value, the second largest BIC value and
the second smallest p-value.

The flexibility of GPL distributions over the corresponding G distributions can be
verified by means of likelihood ratio tests. Comparing the loglikelihood values of the
Weibull distribution (log L = 8.833) and the WPL distribution (log L = 12.613), we see
that the latter provides a significantly better fit. Comparing the loglikelihood values of
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the Burr distribution (log L = 28.596) and the BPL distribution (log L = 31.769), we see
that the latter provides a significantly better fit. Comparing the loglikelihood values of
the EW distribution (log L = 11.599) and the EWPL distribution (log L = 15.821), we
see that the latter provides a significantly better fit. Comparing the loglikelihood values
of the Dagum distribution (log L = 16.707) and the DPL distribution (log L = 18.593),
we see that the fits are not significantly different but only marginally.

Based on the loglikelihood values, the AIC values, the BIC values and the p-values,
we can say that the BPL distribution provides the best fit. This is confirmed by the
density plots and probability plots shown in Figures 9 and 10. We see from these figures
that only the Burr and BPL distributions capture the lower tail of the data well.

APPENDIX

This appendix introduces two lemmas.

Lemma 1. Let

K (α, θ, c) =
∫ ∞

0

xcg(x)
[
3 + θ −G(x)

][
1− (1 + θ)−1G(x)

]3 dx.

Then, we have

K (α, θ, c) =
∞∑

j=0

(
j + 2

2

)
(1 + θ)−j [(3 + θ)I (α, c, j)− I (α, c, j + 1)] ,

where

I (α, c, b) =
∫ ∞

0

xcg(x)G(x)b dx = M(c, 0, b).

P r o o f . The result follows by writing

K (α, θ, c) = (3 + θ)
∞∑

j=0

(
j + 2

2

)
(1 + θ)−j

∫ ∞

0

xcg(x)G
j
(x) dx

−
∞∑

j=0

(
j + 2

2

)
(1 + θ)−j

∫ ∞

0

xcg(x)G
j+1

(x) dx.

The proof is complete. �

Lemma 2. Let

L (α, θ, c, t) =
∫ ∞

t

xcg(x)
[
3 + θ −G(x)

][
1− (1 + θ)−1G(x)

]3 dx.
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Then, we have

L (α, θ, c, t) =
∞∑

j=0

(
j + 2

2

)
(1 + θ)−j [(3 + θ)J (α, c, j, t)− J (α, c, j + 1, t)] ,

where

J (α, c, b, t) =
∫ ∞

t

xcg(x)G
b
(x) dx =

∫ 1

G(t)

[
G−1(u)

]c
(1− u)b du.

P r o o f . The result follows by writing

L (α, θ, c, t) = (3 + θ)
∞∑

j=0

(
j + 2

2

)
(1 + θ)−j

∫ ∞

t

xcg(x)G
j
(x) dx

−
∞∑

j=0

(
j + 2

2

)
(1 + θ)−j

∫ ∞

t

xcg(x)G
j+1

(x) dx.

The proof is complete. �
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