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Abstract. We consider the existence of positive solutions of the singular nonlinear semi-
positone problem of the form







−div(|x|−αp|∇u|p−2∇u) = |x|−(α+1)p+β
(

aup−1 − f(u)−
c

uγ

)

, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain of RN with 0 ∈ Ω, 1 < p < N , 0 6 α < (N − p)/p,
γ ∈ (0, 1), and a, β, c and λ are positive parameters. Here f : [0,∞) → R is a continuous
function. This model arises in the studies of population biology of one species with u
representing the concentration of the species. We discuss the existence of a positive solution
when f satisfies certain additional conditions. We use the method of sub-supersolutions to
establish our results.
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1. Introduction

We study the existence of positive solutions to the singular infinite semipositone

problem

(1)







−div(|x|−αp|∇u|p−2∇u) = |x|−(α+1)p+β
(

aup−1 − f(u)−
c

uγ

)

, x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω is a bounded smooth domain of RN with 0 ∈ Ω, 1 < p < N , 0 6 α <

(N − p)/p, γ ∈ (0, 1), a, β, c and λ are positive constants and f : [0,∞) → R is a

continuous function.
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We make the following assumptions:

(A1) There exist L > 0 and b > 0 such that f(u) < Lub for all u > 0.

(A2) There exists a constant S > 0 such that aup−1 < f(u) + S for all u > 0.

Elliptic problems involving a more general operator, such as the degenerate quasi-

linear elliptic operator given by −div(|x|−ap|∇u|p−2∇u), were motivated by the Caf-

farelli, Kohn and Nirenberg’s inequality (see [3], [17]). The study of this type of

problem is motivated by its various applications, for example, in fluid mechanics, in

Newtonian fluids, in flow through porous media and in glaciology (see [1], [6]).

More recently, reaction-diffusion models have been used to describe spatiotemporal

phenomena in disciplines other than ecology, such as physics, chemistry, and biology

(see [5], [13], [15]). In addition, most ecological systems have some form of predation

or harvesting of the population, for example, hunting or fishing is often used as an

effective means of wildlife management. This model describes the dynamics of the

fish population with predation. In such cases, u denotes the population density and

the term c/uγ corresponds to predation. So, the study of positive solutions of (1)

has more practical meanings. We refer to [14], [9], [2], [10] for additional results on

elliptic problems.

Let f̃(u) = aup−1 − f(u) − c/uγ. Then lim
u→0

f̃(u) = −∞, and hence we refer to

(1) as an infinite semipositone problem. See [11] where the authors discussed the

problem (1) when α = 0, β = p = 2. Here we focus on extending the study in [11].

In fact this paper is motivated, in part, by the mathematical difficulty posed by the

degenerate quasilinear elliptic operator compared to the Laplacian operator (α = 0,

β = p = 2). This extension is nontrivial and requires more careful analysis of the

nonlinearity. Our approach is based on the method of sub-supersolutions, see [4], [7].

2. Preliminaries and existence result

In this paper, we denote W 1,p
0 (Ω, |x|−ap) the completion of C∞

0 (Ω), with respect

to the norm ‖u‖ =
( ∫

Ω |x|−ap|∇u|p dx
)1/p
. To precisely state our existence result we

consider the eigenvalue problem

(2)

{

−div(|x|−αp|∇ϕ|p−2∇ϕ) = λ|x|−(α+1)p+β |ϕ|p−2ϕ, x ∈ Ω,

ϕ = 0, x ∈ ∂Ω.

Let ϕ1,p be the eigenfunction corresponding to the first eigenvalue λ1,p of (2) such

that ϕ1,p(x) > 0 in Ω, and ‖ϕ1,p‖∞ = 1 (see [12], [16]). It can be shown that

∂ϕ1,p/∂n < 0 on ∂Ω. Here n is the outward normal. We will also consider the
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unique solution ζp(x) ∈W 1,p
0 (Ω, |x|−ap) for the problem

{

−div(|x|−αp|∇u|p−2∇u) = |x|−(α+1)p+β , x ∈ Ω,

u = 0, x ∈ ∂Ω,

to discuss our existence result. It is known that ζp(x) > 0 in Ω and ∂ζp(x)/∂n < 0

on ∂Ω (see [12]).

Now, we give the definition of weak solution and sub-supersolution of (1). A non-

negative function ψ is called a subsolution of (1) if it satisfies ψ 6 0 on ∂Ω and

∫

Ω

|x|−αp|∇ψ|p−2∇ψ · ∇w dx 6

∫

Ω

|x|−(α+1)p+β
(

aψp−1 − f(ψ)−
c

ψγ

)

w dx,

and a nonnegative function Ψ is called a supersolution of (1) if it satisfies Ψ > 0 on

∂Ω and
∫

Ω

|x|−αp|∇Ψ|p−2∇Ψ · ∇w dx >

∫

Ω

|x|−(α+1)p+β
(

aΨp−1 − f(Ψ)−
c

Ψγ

)

w dx,

for all w ∈ W = {w ∈ C∞

0 (Ω); w > 0, x ∈ Ω}. Then the following result holds:

Lemma 2.1 (See [12]). Suppose there exist sub- and supersolutions ψ and Ψ,

respectively, of (1) such that ψ 6 Ψ. Then (1) has a solution u such that ψ 6 u 6 Ψ.

We are now ready to give our existence result.

Theorem 2.2. Assume (A1) and (A2) hold. If a > pλ1,p/p− 1 + γ, then there

exists c0 > 0 such that if 0 < c < c0, then the problem (1) admits a positive solution.

P r o o f. We start with the construction of a positive subsolution for (1). To

get a positive subsolution, we can apply an anti-maximum principle (see [8]), from

which we know that there exist a δ1 > 0 and a solution zλ of

(3)

{

−div(|x|−αp|∇z|p−2∇z) = |x|−(α+1)p+β(λzp−1 − 1), x ∈ Ω,

z = 0, x ∈ ∂Ω,

for λ ∈ (λ1,p, λ1,p + δ1). Fix λ̂ ∈ (λ1,p,min{a(p− 1 + γ)/p, λ1,p + δ1}). Let θ =

‖zλ̂‖∞, and zλ̂ be the solution of (5) when λ = λ̂. It is well known that zλ̂ > 0 in Ω

and ∂zλ̂/∂n < 0 on ∂Ω, where n is the outer unit normal to Ω. Hence, there exist

positive constants ε, δ, σ such that

|x|−αp|∇zλ̂|
p > ε, x ∈ Ωδ,(4)

zλ̂ > σ, x ∈ Ω0 = Ω \ Ωδ,(5)

where Ωδ = {x ∈ Ω; d(x, ∂Ω) 6 δ}.
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Choose η1, η2 > 0 such that η1 6 min |x|−(α+1)p+β and η2 > max |x|−(α+1)p+β in

Ωδ. We construct a subsolution ψ of (1) using zλ̂. Define ψ = M((p− 1 + γ)/p)

z
p/(p−1+γ)

λ̂
, where

M = min

{(

(p/(p− 1 + γ))b

Lθ(pb−(1−γ)(p−1))/(p−1+γ)

)1/(b−p+1)

,

(

((p− 1)/Lp)[((p− 1 + γ)/p)a− λ̂]

((p− 1 + γ)/p)bθ(pb−p(p−1))/(p−1+γ)

)1/(b−p+1)}

.

Let w ∈ W . Then a calculation shows that for ∇ψ =Mz
(1−γ)/(p−1+γ)

λ̂
∇zλ̂,

∫

Ω

|x|−αp|∇ψ|p−2∇ψ∇w dx(6)

=Mp−1

∫

Ω

|x|−αpz
((1−γ)(p−1))/(p−1+γ)

λ̂
|∇zλ̂|

p−2∇zλ̂∇w dx

=Mp−1

∫

Ω

|x|−αp|∇zλ̂|
p−2∇zλ̂[∇(z

((1−γ)(p−1))/(p−1+γ)

λ̂
w)

− |∇zλ̂|
((1−γ)(p−1))/(p−1+γ)w] dx

=Mp−1

∫

Ω

[

|x|−(α+1)p+βz
((1−γ)(p−1))/(p−1+γ)

λ̂
(λ̂zp−1

λ̂
− 1)

− |x|−αp((1 − γ)(p− 1))/(p− 1 + γ)
|∇zλ̂|

p

z
γp/(p−1+γ)

λ̂

]

w dx

=

∫

Ω

[

|x|−(α+1)p+βMp−1λ̂z
p(p−1)/(p−1+γ)

λ̂

− |x|−(α+1)p+βMp−1z
((1−γ)(p−1))/(p−1+γ)

λ̂

− |x|−αpMp−1 (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp/(p−1+γ)

λ̂

]

w dx

and

∫

Ω

|x|−(α+1)p+β
[

aψp−1 − f(ψ)−
c

ψγ

]

w dx(7)

=

∫

Ω

[

|x|−(α+1)p+βaMp−1
(p− 1 + γ

p

)p−1

z
p(p−1)/(p−1+γ)

λ̂

− |x|−(α+1)p+βf
(

M
(p− 1 + γ

p

)

z
p/(p−1+γ)

λ̂

)

− |x|−(α+1)p+β c

Mγ((p− 1 + γ)/p)γz
γp/(p−1+γ)

λ̂

]

w dx.
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Let c0 = Mp−1+γ min
{ (1−γ)(p−1)

p−1+γ

(

p−1+γ
p

)γ ε
η2

, 1p
(

p−1+γ
p

)γ
σp

(

p−1+γ
p a − λ̂

)}

. First,

we consider the case when x ∈ Ωδ. We have |x|−ap|∇ϕ1,p|
p > ε on Ωδ. Since

(p/(p− 1 + α))p−1λ̂ 6 a, we have

|x|−(α+1)p+βMp−1λ̂z
p(p−1)/(p−1+α)

λ̂
(8)

6 |x|−(α+1)p+βaMp−1
(p− 1 + α

p

)p−1

z
p(p−1)/(p−1+α)

λ̂
,

and from the choice of M , we know that

(9) LM b−p+1θ(pb−(1−γ)(p−1))/(p−1+γ)
6

( p

p− 1 + γ

)b

.

By (9) and (A1) we come to

−|x|−(α+1)p+βMp−1z
(1−γ)(p−1)/(p−1+γ)

λ̂
(10)

6 − |x|−(α+1)p+βLM b
(p− 1 + γ

p

)b

z
pb/(p−1+γ)

λ̂

6 − |x|−(α+1)p+βf
(

M
(p− 1 + γ

p

)

z
p/(p−1+γ)

λ̂

)

.

Next, from (4) and the definition of c0, we arrive at

|x|−αpMp−1 (1 − γ)(p− 1)

p− 1 + γ
|∇zλ̂|

p
> |x|−(α+1)p+β c

Mγ((p− 1 + γ)/p)γ
,

and

−|x|−αpMp−1 (1 − γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp/(p−1+γ)

λ̂

(11)

6 − |x|−(α+1)p+β c

Mγ((p− 1 + γ)/p)γz
γp/(p−1+γ)

λ̂

.

Hence, by using (8), (10) and (11) for c 6 c0, we find that
∫

Ωδ

|x|−αp|∇ψ|p−2∇ψ∇w dx(12)

6

∫

Ωδ

[

|x|−(α+1)p+βaMp−1
(p− 1 + γ

p

)p−1

z
p(p−1)/(p−1+γ)

λ̂

− |x|−(α+1)p+βf
(

M
(p− 1 + γ

p

)

z
p/(p−1+γ)

λ̂

)

− |x|−(α+1)p+β c

Mγ((p− 1 + γ)/p)γz
γp/(p−1+γ)

λ̂

]

w dx

=

∫

Ωδ

|x|−(α+1)p+β
[

aψp−1 − f(ψ)−
c

ψγ

]

w dx.

261



On the other hand, on Ω0 = Ω \ Ωδ, we have zλ̂ > σ, for some 0 < σ < 1, and from

the definition of c0, for c 6 c0 we get

c

Mα((p− 1 + γ)/p)γ
6

1

p
Mp−1σp

[p− 1 + γ

p
a− λ̂

]

(13)

6
1

p
Mp−1zp

λ̂

[p− 1 + γ

p
a− λ̂

]

.

Also from the choice of M , we have

(14) LM b−p+1
(p− 1 + γ

p

)b

z
(pb−p(p−1))/(p−1+γ)

λ̂
6
p− 1

p

[p− 1 + γ

p
a− λ̂

]

.

Hence, from (12) and (13) we have

∫

Ω0

|x|−αp|∇ψ|p−2∇ψ∇w dx(15)

=

∫

Ω0

[

|x|−(α+1)p+βMp−1λ̂z
p(p−1)/(p−1+γ)

λ̂

− |x|−(α+1)p+βMp−1z
((1−γ)(p−1))/(p−1+γ)

λ̂

− |x|−αpMp−1 (1− γ)(p− 1)

p− 1 + γ

|∇zλ̂|
p

z
γp/(p−1+γ)

λ̂

]

w dx

6

∫

Ω0

|x|−(α+1)p+βMp−1λ̂z
p(p−1)/(p−1+γ)

λ̂
w dx

=

∫

Ω0

|x|−(α+1)p+β 1

z
γp/(p−1+γ)

λ̂

[1

p
λ̂Mp−1zp

λ̂
+
p− 1

p
λ̂Mp−1zp

λ̂

]

w dx

6

∫

Ω0

|x|−(α+1)p+β 1

z
γp/(p−1+γ)

λ̂

[(1

p
Mp−1

(p− 1 + γ

p

)p−1

azp
λ̂

−
c

Mγ((p− 1 + γ)/p)γ

)

+Mp−1zp
λ̂

(p− 1 + γ

p

)p−1

×
( (p− 1)a

p
− LM b−p+1

(p− 1 + γ

p

)b−p+1

z
(pb−p(p−1))/(p−1+γ)

λ̂

)]

w dx

=

∫

Ω0

|x|−(α+1)p+β

[

aMp−1
(p− 1 + γ

p

)p−1

z
p(p−1)/(p−1+γ)

λ̂

− LM b
(p− 1 + γ

p

)b

z
pb/(p−1+γ)

λ̂
−

cz
−γp/(p−1+γ)

λ̂

Mγ((p− 1 + γ)/p)γ

]

w dx
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6

∫

Ω0

|x|−(α+1)p+β

[

aMp−1
(p− 1 + γ

p

)p−1

z
p(p−1)/(p−1+γ)

λ̂

− f
(

M
p− 1 + γ

p
z
p/(p−1+γ)

λ̂

)

−
c

Mγ((p− 1 + γ)/p)γz
γp/(p−1+γ)

λ̂

]

w dx

=

∫

Ω0

|x|−(α+1)p+β
[

aψp−1 − f(ψ)−
c

ψγ

]

w dx.

By using (12) and (15) we see that ψ is a subsolution of (1).

Next, we construct a supersolution Ψ of (1) such that Ψ > ψ. By (A2) we can

choose a large constant S∗ such that aup−1 − f(u) − c/uγ 6 S∗ for all u > 0. Let

Ψ = (S∗)1/(p−1)ζ(x). We shall verify that Ψ is a supersolution of (1). To this end,

let w ∈W . Then we find that

∫

Ω

|x|−αp|∇Ψ|p−2∇Ψ∇w dx = S∗

∫

Ω

|x|−(α+1)p+βw dx(16)

>

∫

Ω

|x|−(α+1)p+β
[

aΨp−1 − f(Ψ)−
c

Ψγ

]

w dx.

Thus Ψ is a supersolution of (1). Finally, we can choose S∗ ≫ 1 such that ψ 6 Ψ

in Ω. Hence, for c 6 c0 by Lemma 2.1 there exists a positive solution u of (1) such

that ψ 6 u 6 Ψ. This completes the proof of Theorem 2.2. �
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