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Abstract. In this paper the control system with limited control resources is studied,
where the behavior of the system is described by a nonlinear Volterra integral equation.
The admissible control functions are chosen from the closed ball centered at the origin
with radius µ in Lp (p > 1). It is proved that the set of trajectories generated by all
admissible control functions is Lipschitz continuous with respect to µ for each fixed p, and
is continuous with respect to p for each fixed µ. An upper estimate for the diameter of the
set of trajectories is given.
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1. Introduction

Nowadays, the theory of control systems is one of the well developed fields of

applied mathematics. Depending on the constraints which are satisfied by the ad-

missible control functions, control systems can be classified as control systems with

geometric constraint on the controls and control systems with integral constraint on

the controls. The control systems with integral constraint on controls are generally

needed in modelling the systems having limited energy resources which are exhausted

by consumption, such as fuel or finance (see, e.g. [2], [3], [4], [5], [7], [9]). For exam-

ple, the motion of a flying apparatus with variable mass is described in the form of

a control system, where the control functions have integral constraint (see e.g. [2],

[9]).

It is known that nonlinear integral equations arise in many problems of theory

and applications (see e.g. [1], [6], [7], [8], [10], [11], [12], [13], [14], [15]), and many
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problems of nonlinear mechanics lead to nonlinear integral equations (see, e.g. [8],

[12], [15]). In this paper the control system with integral constraint on the controls

whose behavior is described by a nonlinear Volterra integral equation is considered.

It is assumed that the integral equation is nonlinear with respect to the state and

the control vectors. The closed ball of the space Lp (p > 1) with radius µ and

centered at the origin is chosen as the set of admissible control functions. The set of

trajectories of the system generated by all admissible control functions is studied. It

is proved that for fixed µ the set of trajectories is continuous with respect to p, and

for fixed p it is Lipschitz continuous with respect to µ, where p is the parameter of the

space Lp from which the admissible control functions are chosen, µ is the parameter

which characterizes the recourse of the control effort. This fact allows one to assert

that the set of trajectories has a minor perturbation if in the modeling process the

measurements of the parameters p and µ tolerate small errors.

Dependence of the set of trajectories and attainable sets on p and µ is studied

in [4], where the behavior of the control system is described by an ordinary differential

equation. The background of the continuity of the set of trajectories with respect to p

is a theorem proved in [5] which asserts that the closed balls of the space Lp (p > 1)

with radius µ and centered at the origin are continuous with respect to p in Hausdorff

metric. In [3], an approximation method for the construction of attainable sets of a

control system with integral constraint on the controls is given, where it is assumed

that the dynamics of the system is described by a nonlinear ordinary differential

equation. Precompactness of the set of trajectories is discussed in [7], where the

behavior of the system is described by a nonlinear Volterra integral equation. The

results obtained in this paper extend the ones presented in [4].

The paper is organized as follows. In Section 2 the basic conditions are formulated

which are satisfied by the system (Conditions 2.A, 2.B and 2.C). In Section 3 it is

proved that for each fixed p the set of trajectories is Lipschitz continuous with respect

to µ (Theorem 1). In Section 4 it is shown that for each fixed µ the set of trajectories

is continuous with respect to p (Theorem 3). In Section 5 an upper estimate for the

diameter of the set of trajectories is given (Theorem 4).

2. Preliminaries

Consider a control system the behavior of which is described by a nonlinear

Volterra integral equation

(2.1) x(t) = a(t, x(t)) + λ

∫ t

t0

K(t, s, x(s), u(s)) ds,
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where x(s) ∈ R
n is the state vector, u(s) ∈ R

m is the control vector, t ∈ [t0, θ],

λ ∈ R
1.

Let p > 1 and µ > 0 be given numbers. A function u(·) ∈ Lp([t0, θ];R
m) such that

(2.2) ‖u(·)‖p 6 µ

is said to be an admissible control function, where ‖u(·)‖p =
( ∫ θ

t0
‖u(t)‖p dt

)1/p
. The

set of all admissible control functions is denoted by Up,µ. Thus

(2.3) Up,µ = {u(·) ∈ Lp([t0, θ];R
m) : ‖u(·)‖p 6 µ}.

It is obvious that the set of admissible control functions is the closed ball with

radius µ and centered at the origin in the space Lp([t0, θ];R
m). Let us choose an

arbitrary u(·) ∈ Up,µ. Then Hölder’s inequality yields

(2.4)

∫ θ

t0

‖u(t)‖ dt 6 (θ − t0)
(p−1)/p

(
∫ θ

t0

‖u(t)‖p dt

)1/p

6 (θ − t0)
(p−1)/pµ.

It is assumed that the following conditions are satisfied:

2.A The functions a(·) : [t0, θ]×R
n → R

n and K(·) : [t0, θ]× [t0, θ]×R
n×R

m → R
n

are continuous.

2.B There exist L0 ∈ [0, 1), L1 > 0, H1 > 0, L2 > 0, H2 > 0, L3 > 0, and H3 > 0

such that

‖a(t, x1)− a(t, x2)‖ 6 L0‖x1 − x2‖,

‖K(t1, s, x1, u1)−K(t2, s, x2, u2)‖ 6 [L1 +H1(‖u1‖+ ‖u2‖)]|t1 − t2|

+ [L2 +H2(‖u1‖+ ‖u2‖)]‖x1 − x2‖

+ [L3 +H3(‖x1‖+ ‖x2‖)]‖u1 − u2‖

for every (t1, s, x1, u1) ∈ [t0, θ]×[t0, θ]×R
n×R

m, (t2, s, x2, u2) ∈ [t0, θ]×[t0, θ]×

R
n × R

m.

2.C There exist p0 > 1 and µ0 > 0 such that the inequality

0 6 λ(L2(θ − t0) + 2H2(θ − t0)
(p0−1)/p0µ0) < 1− L0

holds.

If K(t, s, x, u) = ϕ(t, s, x) +B(t, s, x)u, where the functions (t, s, x) → ϕ(t, s, x) and

(t, s, x) → B(t, s, x) are continuous with respect to (t, s, x) and Lipschitz continuous

with respect to (t, x), then the function K(·) : [t0, θ]× [t0, θ]×R
n×R

m → R
n satisfies

the conditions 2.A and 2.B.
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R em a r k 1. Let us denote

(2.5) L(λ; p, µ) = L0 + λ[L2(θ − t0) + 2H2(θ − t0)
(p−1)/pµ].

According to the condition 2.C we obtain that 0 6 L(λ; p0, µ0) < 1. Then there

exists α > 0 such that

0 6 L(λ; p, µ) < 1

for every p ∈ [p0−α, p0+α] and µ ∈ [µ0−α, µ0+α], where p0−α > 1 and µ0−α > 0.

We set

(2.6) L∗(λ) = max{L(λ; p, µ) : p ∈ [p0 − α, p0 + α], µ ∈ [µ0 − α, µ0 + α]}.

From now on, it will be assumed that p ∈ [p0−α, p0+α] and µ ∈ [µ0−α, µ0+α].

Now, let us define the trajectory of the system (2.1) generated by an admissible

control function. Let p and µ be fixed and u∗(·) ∈ Up,µ. A continuous function

x∗(·) : [t0, θ] → R
n satisfying the integral equation

x∗(t) = a(t, x∗(t)) + λ

∫ t

t0

K(t, s, x∗(s), u∗(s)) ds

for every t ∈ [t0, θ] is said to be the trajectory of the system (2.1) generated by

the admissible control function u∗(·) ∈ Up,µ. The trajectory of the system (2.1)

generated by the control function u(·) ∈ Up,µ is denoted by x(·;u(·)).

Proposition 1 ([7]). Let the conditions 2.A, 2.B, and 2.C be satisfied. Then

every admissible control function u(·) ∈ Up,µ generates a unique trajectory x(·;u(·))

of the system (2.1), where p ∈ [p0 − α, p0 + α], µ ∈ [µ0 − α, µ0 + α], and α > 0 is

defined in Remark 1.

We set

Xp,µ = {x(·;u(·)) : u(·) ∈ Up,µ},

where Xp,µ is called the set of trajectories of the system (2.1) with integral con-

straint (2.2). It is obvious that Xp,µ ⊂ C([t0, θ];R
n) where C([t0, θ];R

n) is the space

of continuous functions x(·) : [t0, θ] → R
n with the norm

‖x(·)‖C = max{‖x(t)‖ : t ∈ [t0, θ]}.

For t ∈ [t0, θ] we denote

Xp,µ(t) = {x(t) ∈ R
n : x(·) ∈ Xp,µ}.
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The set Xp,µ(t) consists of points to which the trajectories of the system arrive at

the instant t.

Let (Y, dY ) be a metric space. The Hausdorff distance between the sets F ⊂ Y

and E ⊂ Y is denoted by h(F,E) and defined by

h(F,E) = max
{

sup
x∈F

dY (x,E), sup
y∈E

dY (y, F )
}

,

where dY (x,E) = inf{dY (x, y) : y ∈ E}.

Definition 1. Let (W,dW ) and (Y, dY ) be metric spaces, w → F (w) a set valued

map, where w ∈ W , F (w) ⊂ Y , and w∗ ∈ W .

If h(F (w), F (w∗)) → 0 as w → w∗, then the set valued map F (·) is called continu-

ous at w∗.

If there exists R > 0 such that h(F (w1), F (w2)) 6 R · dW (w1, w2) for every

w1 ∈ W and w2 ∈ W , then the set valued map F (·) is called Lipschitz continuous

with Lipschitz constant R.

Now, let us give propositions which characterize boundedness and precompactness

of the set of trajectories Xp,µ, and continuity of the set valued map t 7→ Xp,µ(t),

t ∈ [t0, θ].

Proposition 2 ([7]). Let the conditions 2.A, 2.B, and 2.C be satisfied. Then

the set of trajectories Xp,µ is a precompact subset of the space C([t0, θ];R
n) and

h(Xp,µ(t),Xp,µ(t∗)) → 0 as t → t∗, where t∗ ∈ [t0, θ], p ∈ [p0 − α, p0 + α], µ ∈

[µ0 − α, µ0 + α], and α > 0 is defined in Remark 1.

Proposition 3 ([7]). Let the conditions 2.A, 2.B and 2.C be satisfied. Then there

exists r∗ > 0 such that

(2.7) ‖x(·)‖C 6 r∗

for every x(·) ∈ Xp,µ, p ∈ [p0 − α, p0 + α] and µ ∈ [µ0 − α, µ0 + α], where α > 0 is

defined in Remark 1.
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3. Dependence of the set of trajectories on µ

In this section we prove that for each fixed p ∈ (p0−α, p0+α) the map µ 7→ Xp,µ,

µ ∈ (µ0 − α, µ0 + α), is Lipschitz continuous, where α > 0 is defined in Remark 1.

Denote

γ∗ = max{(θ − t0)
(p−1)/p : p ∈ [p0 − α, p0 + α]},(3.1)

R∗ =
λ

1− L0
(L3 + 2r∗H3)γ∗ · exp

[L∗(λ) − L0

1− L0

]

,(3.2)

where L∗(λ) is defined by (2.6), r∗ is given in (2.7).

Theorem 1. Let p ∈ (p0−α, p0 +α), µ ∈ (µ0 −α, µ0 +α), µ∗ ∈ (µ0 −α, µ0+α),

where α > 0 is defined in Remark 1. Then

h(Xp,µ,Xp,µ∗
) 6 R∗|µ− µ∗|

and hence,

h(Xp,µ(t),Xp,µ∗
(t)) 6 R∗|µ− µ∗|

for every t ∈ [t0, θ], where R∗ > 0 is defined by (3.2).

P r o o f. Let us choose an arbitrary x∗(·) ∈ Xp,µ∗
. Then there exists u∗(·) ∈

Up,µ∗
such that

(3.3) x∗(t) = a(t, x∗(t)) + λ

∫ t

t0

K(t, s, x∗(s), u∗(s)) ds

for every t ∈ [t0, θ]. Since u∗(·) ∈ Up,µ∗
, we have

(3.4)

(
∫ θ

t0

‖u∗(t)‖
p dt

)1/p

6 µ∗.

Given µ, define a function u(·) : [t0, θ] → R
m setting

(3.5) u(t) =
µ

µ∗

u∗(t), t ∈ [t0, θ].

Then (3.4) and (3.5) yield

(
∫ θ

t0

‖u(t)‖p dt

)1/p

=

(
∫ θ

t0

µp

µp
∗

‖u∗(t)‖
p dt

)1/p

=
µ

µ∗

(
∫ θ

t0

‖u∗(t)‖
p dt

)1/p

6
µ

µ∗

· µ∗ = µ
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and consequently u(·) ∈ Up,µ. Let x(·) : [t0, θ] → R
m be the trajectory of the sys-

tem (2.1) generated by the control function u(·) ∈ Up,µ. Then x(·) ∈ Xp,µ and

(3.6) x(t) = a(t, x(t)) + λ

∫ t

t0

K(t, s, x(s), u(s)) ds

for every t ∈ [t0, θ]. From condition 2.B, (3.3) and (3.6) we obtain

‖x(t)− x∗(t)‖ 6 ‖a(t, x(t))− a(t, x∗(t))‖(3.7)

+ λ

∫ t

t0

‖K(t, s, x(s), u(s))−K(t, s, x∗(s), u∗(s))‖ ds

6 L0‖x(t)− x∗(t)‖

+ λ

∫ t

t0

[L2 +H2(‖u(s)‖+ ‖u∗(s)‖)]‖x(s)− x∗(s)‖ ds

+ λ

∫ t

t0

[L3 +H3(‖x(s)‖+ ‖x∗(s)‖)]‖u(s)− u∗(s)‖ ds

for every t ∈ [t0, θ]. From Proposition 3, (2.4), (3.1), and (3.5) we have

∫ t

t0

[L3 +H3(‖x(s)‖ + ‖x∗(s)‖)]‖u(s)− u∗(s)‖ ds(3.8)

6

∫ t

t0

(L3 + 2r∗H3)‖
µ

µ∗

u∗(s)− u∗(s)‖ ds

= (L3 + 2r∗H3)
|µ− µ∗|

µ∗

∫ t

t0

‖u∗(s)‖ ds

6 (L3 + 2r∗H3)
|µ− µ∗|

µ∗

(t− t0)
(p−1)/pµ∗

6 (L3 + 2r∗H3)γ∗|µ− µ∗|

for every t ∈ [t0, θ]. Since L0 ∈ [0, 1), from (3.7) and (3.8) we conclude that

‖x(t)− x∗(t)‖ 6
λ

1− L0

∫ t

t0

[L2 +H2(‖u(s)‖+ ‖u∗(s)‖)]‖x(s)− x∗(s)‖ ds(3.9)

+
λ

1− L0
(L3 + 2r∗H3)γ∗|µ− µ∗|
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for every t ∈ [t0, θ]. Finally, since u∗(·) ∈ Up,µ∗
, u(·) ∈ Up,µ, Gronwall’s inequality,

(2.4), (3.2), and (3.9) imply that

‖x(t)− x∗(t)‖ 6
λ

1− L0
(L3 + 2r∗H3)γ∗|µ− µ∗|(3.10)

× exp

[

λ

1− L0

∫ t

t0

[L2 +H2(‖u(s)‖+ ‖u∗(s)‖)] ds

]

6
λ

1− L0
(L3 + 2r∗H3)γ∗|µ− µ∗|

× exp
[ λ

1− L0
[L2(θ − t0) +H2(µ+ µ∗)(θ − t0)

(p−1)/p]
]

6
λ

1− L0
(L3 + 2r∗H3)γ∗|µ− µ∗| · exp

[L∗(λ) − L0

1− L0

]

= R∗|µ− µ∗|

for every t ∈ [t0, θ]. So (3.10) yields that for each x∗(·) ∈ Xp,µ∗
and µ there exists

x(·) ∈ Xp,µ such that

‖x∗(·)− x(·)‖C 6 R∗|µ− µ∗|

and hence,

(3.11) sup
x∗(·)∈Xp,µ∗

d(x∗(·),Xp,µ) 6 R∗|µ− µ∗|.

Similarly, it is possible to verify that the inequality

(3.12) sup
x(·)∈Xp,µ

d(x(·),Xp,µ∗
) 6 R∗|µ− µ∗|

holds. By virtue of (3.11) and (3.12) we complete the proof. �

From Theorem 1 we obtain the validity of the following corollary.

Corollary 1. Let p ∈ (p0−α, p0+α) be fixed. Then the set valued map µ 7→ Xp,µ,

µ ∈ (µ0−α, µ0+α), is Lipschitz continuous with Lipschitz constant R∗, where R∗ > 0

is defined by (3.2).
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4. Dependence of the set of trajectories on p

In this section the dependence of the set of trajectories on p is studied. First,

let us define a distance between the subsets of the spaces Lp1
([t0, θ];R

m) and

Lp2
([t0, θ];R

m), where p1 ∈ [1,∞), p2 ∈ [1,∞). Let U ⊂ Lp1
([t0, θ];R

m) and

V ⊂ Lp2
([t0, θ];R

m), where 1 6 p1 < ∞, 1 6 p2 < ∞. The Hausdorff distance

between the sets U and V is denoted by ℏ1(U, V ) and defined as

ℏ1(U, V ) = max
{

sup
x(·)∈U

dL1
(x(·), V ), sup

y(·)∈V

dL1
(y(·), U))

}

,

where

dL1
(x(·), V ) = inf

y(·)∈V
‖x(·)− y(·)‖1, ‖x(·)− y(·)‖1 =

∫ θ

t0

‖x(t)− y(t)‖ dt.

The closed ball of the space Lp([t0, θ];R
m) (p ∈ [1,∞)) with radius µ and centered

at the origin is denoted by BLp
(0, µ), that is

BLp
(0, µ) = {u(·) ∈ Lp([t0, θ];R

m) : ‖u(·)‖p 6 µ}.

By virtue of (2.3) we have BLp
(0, µ) = Up,µ. Now let us give a theorem which

characterizes continuity of the balls BLp
(0, µ) with respect to p.

Theorem 2 ([5]). Let µ > 0, p∗ > 1, and ε > 0. Then there exists δ∗ =

δ∗(ε, p∗, µ) ∈ (0, p∗ − 1) such that for every p ∈ (p∗ − δ∗, p∗ + δ∗) the inequality

ℏ1(BLp
(0, µ), BLp∗

(0, µ)) < ε

is satisfied.

Theorem 2 implies that for each fixed µ ∈ (µ0 − α, µ0 + α) the set valued map

p → Xp,µ, p ∈ (p0 − α, p0 + α), is continuous, where α > 0 is defined in Remark 1.

We denote

(4.1) k∗ =
λ(L3 + 2r∗H3)

1− L0
exp

[L∗(λ)− L0

1− L0

]

,

where L∗(λ) is defined by (2.6), r∗ is defined by (2.7).
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Theorem 3. Let α > 0 be given in Remark 1, let µ ∈ (µ0 − α, µ0 + α) and

p∗ ∈ (p0 − α, p0 + α) be fixed. Then for every ε > 0 there exists δ = δ(ε, p∗, µ) > 0

such that for every p ∈ (p∗ − δ, p∗ + δ) the inequality

h(Xp,µ,Xp∗,µ) 6 ε

holds and consequently

h(Xp,µ(t),Xp∗,µ(t)) 6 ε

for every t ∈ [t0, θ].

P r o o f. We have from Theorem 2 that for given µ ∈ (µ0 − α, µ0 + α), p∗ ∈

(p0 − α, p0 + α) and ε/k∗ there exists δ = δ(ε, p∗, µ) ∈ (0, p∗ − 1) such that

(4.2) ℏ1(BLp
(0, µ), BLp∗

(0, µ)) <
ε

k∗

for every p ∈ (p∗− δ, p∗+ δ), where k∗ is defined by (4.1). Without loss of generality

let us assume that

δ = δ(ε, p∗, µ) < min{p∗ − p0 + α, p0 − p∗ + α}.

Since |p∗ − p0| < α, we obtain

(4.3) (p∗ − δ, p∗ + δ) ⊂ (p0 − α, p0 + α).

Now, let us choose arbitrary p ∈ (p∗−δ, p∗+δ) and x(·) ∈ Xp,µ. Then there exists

u(·) ∈ Up,µ = BLp
(0, µ) such that

(4.4) x(t) = a(t, x(t)) + λ

∫ t

t0

K(t, s, x(s), u(s)) ds

for every t ∈ [t0, θ]. It follows from (4.2) that there exists u∗(·) ∈ Up∗,µ = BLp∗
(0, µ)

such that

‖u(·)− u∗(·)‖1 6
ε

k∗
,

that is

(4.5)

∫ θ

t0

‖u(s)− u∗(s)‖ ds 6
ε

k∗
,

where k∗ > 0 is defined by (4.1). Let x∗(·) : [t0, θ] → R
n be the trajectory of the

system (2.1) generated by the admissible control function u∗(·) ∈ Up∗,µ = BLp∗
(0, µ).

Then x∗(·) ∈ Xp∗,µ and

(4.6) x∗(t) = a(t, x∗(t)) + λ

∫ t

t0

K(t, s, x∗(s), u∗(s)) ds
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for every t ∈ [t0, θ]. Now (4.4), (4.6), and condition 2.B imply that

‖x(t)− x∗(t)‖ 6 ‖a(t, x(t)) − a(t, x∗(t))‖(4.7)

+ λ

∫ t

t0

‖K(t, s, x(s), u(s))−K(t, s, x∗(s), u∗(s))‖ ds

6 L0‖x(t)− x∗(t)‖ + λ

∫ t

t0

[L2 +H2(‖u(s)‖+ ‖u∗(s)‖)]‖x(s)− x∗(s)‖ ds

+ λ

∫ t

t0

[L3 +H3(‖x(s)‖ + ‖x∗(s)‖)]‖u(s)− u∗(s)‖ ds

for every t ∈ [t0, θ]. From (4.5) and Proposition 3 it follows

∫ t

t0

[L3 +H3(‖x(s)‖ + ‖x∗(s)‖)]‖u(s)− u∗(s)‖ ds(4.8)

6

∫ θ

t0

(L3 + 2r∗H3)‖u(s)− u∗(s)‖ ds 6 (L3 + 2r∗H3)
ε

k∗

for every t ∈ [t0, θ]. Since L0 ∈ [0, 1), we have from (4.7) and (4.8)

‖x(t)− x∗(t)‖ 6
λ(L3 + 2r∗H3)

k∗(1 − L0)
ε(4.9)

+
λ

1− L0

∫ t

t0

[L2 +H2(‖u(s)‖+ ‖u∗(s)‖)]‖x(s)− x∗(s)‖ ds

for every t ∈ [t0, θ]. Further, (2.4)–(2.6), (4.1), (4.3), (4.9), and Gronwall’s inequality

yield

(4.10)

‖x(t)− x∗(t)‖

6
λ(L3 + 2r∗H3)

k∗(1− L0)
ε exp

(

λ

1− L0

∫ t

t0

[L2 +H2(‖u(s)‖+ ‖u∗(s)‖)] ds

)

6
λ(L3 + 2r∗H3)

k∗(1− L0)
ε

× exp
[ λ

1− L0
(L2(θ − t0) +H2((θ − t0)

(p−1)/p + (θ − t0)
(p∗−1)/p∗)µ)

]

6
λ(L3 + 2r∗H3)

k∗(1− L0)
ε

× exp
[ λ

1− L0
(L2(θ − t0) + 2H2 max{(θ − t0)

(p−1)/p, (θ − t0)
(p∗−1)/p∗}µ)

]

6
λ(L3 + 2r∗H3)

k∗(1− L0)
ε · exp

[L∗(λ)− L0

1− L0

]

= ε
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for every t ∈ [t0, θ]. Thus, from (4.10) we get that for each p ∈ (p∗ − δ, p∗ + δ) and

x(·) ∈ Xp,µ there exists x∗(·) ∈ Xp∗,µ such that

‖x(·)− x∗(·)‖C 6 ε

and hence,

(4.11) sup
x(·)∈Xp,µ

d(x(·),Xp∗,µ) 6 ε.

Analogously, one can prove that for each p ∈ (p∗ − δ, p∗ + δ) the inequality

(4.12) sup
x∗(·)∈Xp∗,µ

d(x∗(·),Xp,µ) 6 ε

holds.

Inequalities (4.11) and (4.12) complete the proof. �

From Theorem 3 we find that the following corollary holds.

Corollary 2. For each fixed µ ∈ (µ0 − α, µ0 + α) the set valued map p → Xp,µ

is continuous in the interval (p0 − α, p0 + α).

For each fixed µ ∈ (µ0 − α, µ0 + α) the set valued map p 7→ Xp,µ(t) is continuous

in the interval (p0 −α, p0 +α). This continuity is uniform with respect to t ∈ [t0, θ].

5. Upper estimate of the diameter of the set of trajectories

In this section we present an upper estimate for the diameter of the set of trajec-

tories Xp,µ. For a given metric space (Y, dY ) and a set E ⊂ Y the diameter of E is

denoted by diamE and defined as

diamE = sup{dY (x, y) : x ∈ E, y ∈ E}.

For µ ∈ (µ0 − α, µ0 + α), p ∈ (p0 − α, p0 + α) and t ∈ [t0, θ] we set

g(t; p, µ) =
2λ

1− L0
(L3 + 2H3r∗)µ(t− t0)

(p−1)/p(5.1)

× exp
[ λ

1− L0
(L2(t− t0) + 2H2µ(t− t0)

(p−1)/p)
]

,

where α > 0 is given in Remark 1.

314



Theorem 4. For each µ ∈ (µ0 − α, µ0 + α), p ∈ (p0 − α, p0 + α) the inequalities

diamXp,µ(t) 6 g(t; p, µ), t ∈ [t0, θ],(5.2)

diamXp,µ 6 g(θ; p, µ)(5.3)

are satisfied.

P r o o f. Let us choose arbitrary µ ∈ (µ0 − α, µ0 + α), p ∈ (p0 − α, p0 + α),

x1(·) ∈ Xp,µ and x2(·) ∈ Xp,µ. Then there exist u1(·) ∈ Up,µ and u2(·) ∈ Up,µ such

that

x1(t) = a(t, x1(t)) + λ

∫ t

t0

K(t, s, x1(s), u1(s)) ds,(5.4)

x2(t) = a(t, x2(t)) + λ

∫ t

t0

K(t, s, x2(s), u2(s)) ds(5.5)

for every t ∈ [t0, θ]. From (5.4), (5.5), and condition 2.B it follows that

‖x1(t)− x2(t)‖ 6 L0‖x1(t)− x2(t)‖(5.6)

+ λ

∫ t

t0

[L2 +H2(‖u1(s)‖ + ‖u2(s)‖)]‖x1(s)− x2(s)‖ ds

+ λ

∫ t

t0

[L3 +H3(‖x1(s)‖ + ‖x2(s)‖)]‖u1(s)− u2(s)‖ ds

for every t ∈ [t0, θ]. Since u1(·) ∈ Up,µ, u2(·) ∈ Up,µ, by (2.4) we have

(5.7)

∫ t

t0

‖u1(s)‖+ ‖u2(s)‖ ds 6 2(t− t0)
(p−1)/pµ.

From x1(·) ∈ Xp,µ, x2(·) ∈ Xp,µ and Proposition 3 we obtain

(5.8) ‖x1(·)‖C 6 r∗, ‖x2(·)‖C 6 r∗.

Then inequalities (5.7) and (5.8) yield

∫ t

t0

[L3 +H3(‖x1(s)‖+ ‖x2(s)‖)]‖u1(s)− u2(s)‖ ds(5.9)

6

∫ t

t0

(L3 + 2H3r∗)(‖u1(s)‖+ ‖u2(s)‖) ds

6 2(L3 + 2H3r∗)µ(t− t0)
(p−1)/p
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for every t ∈ [t0, θ]. Since L0 ∈ [0, 1), inequalities (5.6) and (5.9) imply

‖x1(t)− x2(t)‖ 6
λ

1− L0

∫ t

t0

[L2 +H2(‖u1(s)‖+ ‖u2(s)‖)]‖x1(s)− x2(s)‖ ds(5.10)

+
2λ

1− L0
(L3 + 2H3r∗)µ(t− t0)

(p−1)/p

for every t ∈ [t0, θ]. Thus, from (5.1), (5.7), (5.10) and Gronwall’s inequality we

obtain

‖x1(t)− x2(t)‖ 6
2λ

1− L0
(L3 + 2H3r∗)µ(t− t0)

(p−1)/p(5.11)

× exp

[

λ

1− L0

∫ t

t0

(L2 +H2(‖u1(s)‖+ ‖u2(s)‖)) ds

]

6
2λ

1− L0
(L3 + 2H3r∗)µ(t− t0)

(p−1)/p

× exp
[ λ

1− L0
(L2(t− t0) + 2H2µ(t− t0)

(p−1)/p)
]

= g(t; p, µ)

for every t ∈ [t0, θ]. Since x1(·) ∈ Xp,µ and x2(·) ∈ Xp,µ are arbitrarily chosen, (5.11)

yields the validity of estimate (5.2).

Since the function g(·, p, µ) : [t0, θ] → [0,∞) is monotone increasing, we have from

(5.11) that

‖x(t)− y(t)‖ 6 g(θ; p, µ)

for every t ∈ [t0, θ] and consequently,

‖x(·)− y(·)‖C = max{‖x(t)− y(t)‖ : t ∈ [t0, θ]} 6 g(θ; p, µ),

which implies the validity of inequality (5.3). �
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