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Abstract. This paper considers a Volterra’s population system of fractional order and
describes a bi-parametric homotopy analysis method for solving this system. The homotopy
method offers a possibility to increase the convergence region of the series solution. Two
examples are presented to illustrate the convergence and accuracy of the method to the
solution. Further, we define the averaged residual error to show that the obtained results
have reasonable accuracy.
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1. Introduction

Recently, the fractional derivative has drawn much attention due to its wide ap-

plication in engineering: for instance, the nonlinear oscillation of an earthquake can

be modeled with fractional derivatives [5], and the fluid-dynamic traffic model with

fractional derivatives [6] can eliminate the deficiency arising from the assumption

of continuum traffic flow. A review of some applications of fractional derivatives in

continuum and statistical mechanics is given in [3], [5], [6].

This paper outlines reliable numerical strategies for solving the fractional popu-

lation growth model of a species within a closed system. The model which we con-
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sider, first introduced in [11], is defined by the nonlinear fractional Volterra integro-

differential equation

(1.1) Dαp(t) = ap(t)− bp2(t)− cp(t)

∫ t

0

p(x) dx, p(0) = p0, 0 < α 6 1,

where p = p(t) is the population of identical individuals at time t which exhibits

crowding and sensitivity to the amount of toxins produced, see [12], α is a param-

eter describing the order of the time-fractional derivative, a > 0 is the birth rate

coefficient, b > 0 is the crowding coefficient, and c > 0 is the toxicity coefficient.

The coefficient c indicates the essential behavior of the population evolution before

its level falls to zero in the long run. If c = 0 the system reduces to the well-known

logistic equation [12], [11]. The last term of equation (1.1) contains the integral that

indicates the “total metabolism” or total amount of toxins produced since time zero.

The individual death rate is proportional to this integral, and so the population

death rate due to toxicity must include a factor u. Since the system is closed, the

presence of the toxic term always causes the population level to fall to zero in the

long run, which will be seen later. The relative size of the sensitivity to toxins c

determines the manner in which the population evolves before its extinction. The

time-fractional derivative is considered in the Caputo sense. The general response ex-

pression contains a parameter describing the order of the fractional derivative which

can be varied to obtain various responses.

We employ the time and population scales by introducing the non-dimensional

variables

t =
ct

b
, u =

bp

a

which produce the non-dimensional problem

(1.2) κDαu(t) = u(t)− u2(t)− u(t)

∫ t

0

u(x) dx, u(0) = β, 0 < α 6 1,

where κ = c/ab is a prescribed non-dimensional parameter. It is evident that the

only equilibrium solution to equation (1.2) is the trivial solution u(t) = 0.

In the case of α = 1, the fractional equation reduces to a classical logistic growth

model. Several analytical and numerical methods have been proposed to solve the

classical population growth model (1.1) when α = 1, see [14], [1], [13]. In [11], the

successive approximations were suggested to handle the population system (1.1), but

the method was not implemented. In [12], singular perturbation methods were used

to find a closed form approximations to the solutions of equation (1.1). In [12] it has

been indicated that if κ is large, where the populations are strongly sensitive to toxins,

the solution is proportional to sech2(t). In this case the solution u(t) has a smaller
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amplitude. For k ≪ 1, where populations are weakly sensitive to toxins, it was

shown by [12] that a rapid rise occurs along the logistic curve that will reach a peak

and then follow a slow exponential decay. The results were obtained by considering

a boundary layer near time t = 0 where the population grows rapidly inside the

boundary layer. However, because of the toxin accumulation, the population decays

steadily [4], [7] to zero outside the boundary layer.

This paper is organized as follows. In Section 2, we mention some necessary

definitions and mathematical preliminaries of the fractional calculus theory which

are required for establishing our results. In Section 3, we extend the application

of the homotopy analysis method (HAM) to construct our numerical solutions for

fractional population growth model. Applications and numerical results are given in

Section 4.

2. Basic definitions

We give some basic definitions and properties of the fractional calculus theory [8],

which are used in the following sections.

Definition 1. A real function f(t), t > 0, is said to be in the space Cµ, µ ∈ R, if

there exists a real number p (> µ) such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞),

and it is said to be in the space Cn
µ if and only if f

(n)(t) ∈ Cµ, n ∈ N.

Definition 2. The Riemann-Liouville fractional integral operator Jα of order

α > 0 of a function f ∈ Cµ, µ > −1, is defined as

Jαf(t) =
1

Γ(α)

∫ t

0

(t− τ)(α−1)f(τ) dτ (α, t > 0),(2.1)

J0f(t) = f(t),

where Γ is the well-known Gamma function.

The properties of the operator Jα can be found in [8] and we mention only the

following cases:

(1) JαJβf(t) = Jα+βf(t),

(2) JαJβf(t) = JβJαf(t),

(3) Jαtγ = (Γ(γ + 1)/Γ(α+ γ + 1))tα+γ ,

where f ∈ Cµ, µ > −1, α, β > 0.

The Riemann-Liouville derivative has certain disadvantages when trying to model

real-world phenomena by fractional differential equations. Therefore, we shall intro-

duce a modified fractional differential operator Dα which is proposed by Caputo [2].
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Definition 3. The fractional derivative Dα of f(t) ∈ Cn
−1 in Caputo’s sense is

defined as

(2.2) Dαf(t) = 1/Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ) dτ (n− 1 < α 6 n, t > 0).

Now we give two basic properties of Caputo’s fractional derivative:

(1) Let f ∈ Cn
−1. Then Dαf , 0 6 α 6 n, is well defined and Dαf ∈ C−1.

(2) Let n− 1 < α 6 n, and f ∈ Cn
µ , µ > −1.

Then

JαDαf(t) = f(t)−
n−1
∑

k=0

f (k)(0+)
tk

k!
,(2.3)

DαJαf(t) = f(t).

In this study, we consider the fractional derivatives are considered in the Caputo

sense. The reason for adopting the Caputo definition is that to solve differential

equations (both classical and fractional), we need to specify same additional condi-

tions in order to produce a unique solution [3]. For the case of Caputo fractional

differential equations, these additional conditions are just the traditional conditions,

which are akin to those of classical differential equations, and are therefore familiar

to us. In contrast, for Riemann-Liouville fractional differential equations, these ad-

ditional conditions constitute certain fractional derivatives (and/or integrals) of the

unknown solution at the initial point t = 0, which are functions of t. These initial

conditions are not physical. Furthermore, it is not clear how such quantities are to

be measured from experiment. For more details on the geometric and physical inter-

pretations for fractional derivatives of both the Riemann-Liouville and the Caputo

types we refer to [10].

3. Description of the method

In this section, we extend the application of a generalized HAM [9], [10], [11],

[12], [13], [14] to the Volterra population model of fractional order as defined in

equation (1.2). We assume that the solution of equation (1.2) can be expressed by

the set of base functions

(3.1) {tiα+k ; i > 0, k > 0}.
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By means of generalizing the HAM, we construct the zero order deformation equation

(1−A(q))L[ϕ(t; q)− u0(t)](3.2)

= − h̄A(q)

[

Dαϕ(t; q)− ϕ(t; q) + ϕ2(t; q) + ϕ(t; q)

∫ t

0

ϕ(x; q) dx

]

,

subject to the initial condition

(3.3) ϕ(0; q) = β,

where A(q) is a deformation function. We note that A(0) = 0 and A(1) = 1.

Differentiating equation (3.2) n times with respect to the embedding parameter q,

then setting q = 0 and dividing by n!, we obtain the so-called mth-order deformation

equations

L

[

un(t)−

n−1
∑

m=1

1

m!

∂mA(q)

∂qm

∣

∣

∣

q=0
un−m

]

(3.4)

= −h̄

n
∑

m=1

1

m!

∂mA(q)

∂qm

∣

∣

∣

q=0
Rn−m(u0, u1, . . . , un−m),

where

Rk(u0, u1, . . . , uk) = Dαuk(t)− uk(t)(3.5)

+

k
∑

l=1

ul(t)uk−l(t) +

k
∑

l=1

ul(t)

∫ t

0

uk−l(x) dx,

um(t) =
∂mϕ(t; q)

m!∂qm

∣

∣

∣

q=0
,(3.6)

subject to the initial condition

(3.7) un(t) = 0.

By defining L = Dα and applying the operator Jα to both sides of equation (3.4),

we obtain

un(t) =

n−1
∑

m=1

1

m!

∂mA(q)

∂qm

∣

∣

∣

q=0
un−m(3.8)

− h̄

n
∑

m=1

1

m!

∂mA(q)

∂qm

∣

∣

∣

q=0
JαRn−m(u0, u1, . . . , un−m).
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There is an infinite number of deformation functions that satisfy the conditions

A(0) = 0 and A(1) = 1, and we use here only the deformation function

(3.9) A(q) =

∞
∑

k=1

(1−̟)̟k−1qk, |̟| < 1,

where ̟ is an auxiliary parameter satisfying the inequality |̟| < 1.

For simplicity of numerical computation, let the expression

(3.10) S(t) =

N
∑

k=1

uk(t)

be the N -term approximation to u(t), which contains the auxiliary parameters h̄

and ̟.

3.1. Convergence theorem.

Theorem. If the series

(3.11)

∞
∑

k=0

uk(t)

is convergent, then it defines a solution to the fractional Volterra integral equa-

tion (1.2).

P r o o f. If the solution series

(3.12) u0(t) +

∞
∑

k=1

uk(t)

is convergent, then

(3.13) lim
k→∞

uk(t) = 0.

Using equation (3.4) and equation (3.13), we obtain

∞
∑

n=1

L

[

un(t)−

n−1
∑

m=1

1

m!

∂mA(q)

∂qm

∣

∣

∣

q=0
un−m

]

(3.14)

= L[(1− (1−̟)− (1 −̟)̟ − . . .)(u1(t) + u2(t) + u3(t) + . . .)] = 0.
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Since h̄ 6= 0, we deduce

(3.15)

∞
∑

n=1

n
∑

m=1

1

m!

∂mA(q)

∂qm

∣

∣

∣

q=0
Rn−m(u0, u1, . . . , un−m) = 0.

From equation (3.5) we get

∞
∑

n=1

n
∑

m=1

1

m!

∂mA(q)

∂qm

∣

∣

∣

q=0

[

Dαun−m(t)− un−m(t)(3.16)

+

n−m
∑

l=1

ul(t)un−m−l(t) +

n−m
∑

l=1

ul(t)

∫ t

0

un−m−l(x) dx

]

=

∞
∑

j=0

̟j

∞
∑

j=0

[

Dαuj(t)− uj(t) +

j
∑

l=1

ul(t)uj−l(t) +

j
∑

l=1

ul(t)

∫ t

0

uj−l(x) dx

]

=

∞
∑

j=0

̟j

[

Dα

∞
∑

j=0

uj(t)−

∞
∑

j=0

uj(t) +

∞
∑

j=0

j
∑

l=1

ul(t)uj−l(t)

+
∞
∑

j=0

j
∑

l=1

ul(t)

∫ t

0

uj−l(x) dx

]

=

∞
∑

j=0

̟j

[

Dαu(t)− u(t) + u2(t) + u(t)

∫ t

0

u(x) dx

]

= 0.

Finally, by using equation (3.16) we obtain

(3.17) κDαu(t)− u(t) + u2(t) + u(t)

∫ t

0

u(x) dx = 0.

This completes the proof. �

4. Experimental data and results

According to the convergence theorem we show the convergence of the solution

series. We note that the series solutions contain the auxiliary parameters h̄ and

̟ which influence the convergence region of the series solutions. We need only to

concentrate on the convergence of the results obtained by properly choosing h̄ and ̟.

E x am p l e 1. We investigate the influence of h̄ and ̟ on the convergence of

S(25), when α = 0.5 and β = 0.1. Clearly, S(25) is dependent on both h̄ and ̟.

For a given ̟, we can study the influence of h̄ on the convergence region of S(25)

by means of the h̄-curve as shown in Figure 1.
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0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2

10−4

10−3

10−2

10−1

100

101

S(25)

Convergence parameter h̄

̟ = 0.2

̟ = −0.4
̟ = −0.2

̟ = 0

Figure 1. The h̄-curve of S(25) when α = 0.1 and β = 0.1 (Example 1).

The residual errors (RE) by the 9th-order approximation, i.e.

(4.1) D0.5
M
∑

k=0

uk(t)−

M
∑

k=0

uk(t) +

( M
∑

k=0

uk(t)

)2

+

M
∑

k=0

uk(t)

∫ t

0

M
∑

k=0

uk(x), M = 9,

are listed in Table 1. The residual errors obtained by the present method are less

than those obtained by the HAM method, as shown in Table 1.

t ̟ = −0.4, h̄ = −0.2 ̟ = −0.2, h̄ = −0.25 ̟ = 0, h̄ = −0.2
0 4.6E−3 3.6E−3 1.2E−2

5 3.3E−3 1.0E−2 5.1E−2

10 4.5E−3 1.0E−2 3.4E−2

15 1.2E−2 1.6E−3 5.9E−3

20 4.0E−3 5.2E−4 3.6E−3

25 1.9E−4 1.2E−4 8.3E−5
t ̟ = 0, h̄ = −0.25 ̟ = 0, h̄ = −0.3 ̟ = 0.2, h̄ = −0.35
0 6.7E−3 3.6E−3 4.6E−3

5 2.4E−2 1.0E−2 3.3E−3

10 2.3E−2 1.0E−2 4.5E−3

15 1.8E−2 1.6E−3 1.2E−2

20 3.9E−3 5.2E−4 3.9E−3

25 2.1E−4 8.0E−6 1.0E−4

Table 1. The residual error by 9th-order approximation in Example 1.
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E x am p l e 2. We study the influence of h̄ and ̟ on the convergence of S(50),

when α = 0.3 and β = 0.1. For a given ̟, we can investigate the influence of h̄

on the convergence region of S(50) by means of the h̄-curve as shown in Figure 2.

Clearly, the corresponding valid region of h̄ increases for increasing ranges of ̟, as

depicted in Figure 2.

0.3− 0.2− 0.1− 0 0.1

10−2

10−1

100

101

102

103

S(50)

Convergence parameter h̄

̟ = 0
̟ = 0.2

̟ = 0.4

̟ = 0.6

Figure 2. The h̄-curve of S(50) when α = 0.3 and β = 0.1 (Example 2).

Residual errors (RE) by the 9th-order approximation, i.e.

(4.2) D0.3
M
∑

k=0

uk(t)−

M
∑

k=0

uk(t) +

( M
∑

k=0

uk(t)

)2

+

M
∑

k=0

uk(t)

∫ t

0

M
∑

k=0

uk(x), M = 9,

are listed in Table 2. The residual errors obtained by the present method are less

than those obtained by the HAM method, as shown in Table 2.

5. Increasing the convergence rate of the approximation

In this section, we apply the homotopy-pade method to accelerate the convergence

rate of the series solution.

The homotopy-pade approximant

(5.1) R[M,M ](t, h̄, ̟)

to

(5.2) S2M (t, h̄, ̟) =

2M
∑

j=0

uj(t)q
j ,
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t ̟ = 0, h̄ = −0.07 ̟ = 0, h̄ = −0.08 ̟ = 0, h̄ = −0.09
0 4.6E−2 4.2E−2 3.8E−2

5 5.3E−4 5.6E−3 1.0E−2

10 2.9E−2 2.8E−2 2.5E−2

15 2.0E−2 1.5E−2 1.0E−2

20 1.0E−2 5.8E−3 2.8E−3

25 5.4E−3 3.1E−3 1.8E−3

30 4.6E−3 3.2E−3 2.4E−3

35 4.7E−3 3.7E−3 2.8E−3

40 4.8E−3 3.7E−3 2.8E−3

45 4.7E−3 3.7E−3 2.8E−3

50 4.7E−3 3.6E−3 2.8E−3
t ̟ = 0.2, h̄ = −0.13 ̟ = 0.4, h̄ = −0.17 ̟ = 0.6, h̄ = −0.29
0 3.3E−2 3.4E−2 2.9E−2

5 1.6E−2 1.5E−2 2.0E−2

10 2.2E−2 2.2E−2 1.8E−2

15 5.4E−3 6.1E−3 1.7E−3

20 3.2E−3 5.9E−4 7.8E−4

25 9.5E−4 1.0E−3 6.2E−4

30 1.7E−3 1.8E−3 1.2E−3

35 2.0E−3 2.1E−3 1.9E−3

40 2.0E−3 2.1E−3 2.2E−3

45 2.0E−3 2.1E−3 9.2E−5

50 1.7E−3 2.0E−3 1.7E−3

Table 2. The residual errors by 9th-order approximation in Example 2.

is defined as the the rational function

(5.3) R[M,M ](t, h̄, ̟) =

∑M

j=0 Pj(t, h̄, ̟)qj

1 +
∑M

j=1 Qj(t, h̄, ̟)qj
,

satisfying

2M
∑

j=0

uj(t) +

M
∑

j=1

Qj(t, h̄, ̟)qj
2M
∑

j=0

uj(t)−

M
∑

j=0

Pj(t, h̄, ̟)qj = O(q2M+1),(5.4)

as q → 0.

The coefficients Pj and Qj can be determined in terms of

(5.5) u0(t), u1(t), . . . , u2M (t).
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By setting q = 1, we have the [M,M ] homotopy-Pade approximation

(5.6) R[M,M ](t, h̄, ̟) =

∑M

j=0 Pj(t, h̄, ̟)

1 +
∑M

j=1 Qj(t, h̄, ̟)
.

In particular, for M = 1 we have

R[1, 1](t, h̄, ̟) =
P0(t, h̄, ̟) + P1(t, h̄, ̟)

1 +Q1(t, h̄, ̟)
,(5.7)

P0(t, h̄, ̟) = u0(t, h̄, ̟),(5.8)

P1(t, h̄, ̟) = −
u0(t, h̄, ̟)u2(t, h̄, ̟)− u2

1(t, h̄, ̟)

u1(t, h̄, ̟)
,(5.9)

Q1(t, h̄, ̟) = −
u2(t, h̄, ̟)

u1(t, h̄, ̟)
.(5.10)

We employ the homotopy-pade technique to gain more accurate approximations of

S(10) and S(25) in Example 1, as shown in Table 3.

S(25) h̄ = −0.2, ̟ = −0.4 h̄ = −0.35, ̟ = 0.2
R[2,2] 0.01803 0.01803

R[3,3] 0.01508 0.01508

R[4,4] 0.01626 0.01625

R[5,5] 0.01626 0.01626

R[6,6] 0.01626 0.01626
S(10) h̄ = −0.2, ̟ = −0.4 h̄ = −0.35, ̟ = 0.2
R[2,2] 0.05647 0.05647

R[3,3] 0.05656 0.05656

R[4,4] 0.05517 0.05517

R[5,5] 0.05540 0.05540

R[6,6] 0.05530 0.05534

Table 3. The homotopy-pade approximations (Example 1).

6. Conclusions

In this paper, a biparametric homotopy technique is proposed for solving a

Volterra’s population system of fractional order, which turns out to be successful.

The bi-parametric homotopy method provides two auxiliary parameters h̄ and ̟

which can control the convergence region of the series solution. Numerical examples

reveal that the proposed zero-order deformation equation increases the convergence

region of the series solution and the efficiency of this technique.
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