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Abstract. In this work we study the generalized Boussinesq equation with a dissipation
term. We show that, under suitable conditions, a global solution for the initial value
problem exists. In addition, we derive sufficient conditions for the blow-up of the solution
to the problem. Furthermore, the instability of the stationary solutions of this equation is
established.
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1. Introduction

One of the equations describing the propagation of long waves on the surface of

shallow water is the Boussinesq one which was first derived in 1872 by Boussinesq [6]

(see also [5]). In his work he derived a nonlinear dissipative wave system which is

now known as the Boussinesq equations. By using multiple scaling analysis, the

Boussinesq equation, see for instance Boussinesq [4] and Craig [7], can be derived as

the evolution equation

(1.1) utt = uxx − uxxxx − (f(u))xx,

where u = u(x, t) is the vertical velocity component on the free surface of an irro-

tational fluid and f(u) = u2. It also arises in a large range of physical phenom-

ena including the propagation of ion-sound waves in a plasma and nonlinear lattice

waves. Equation (1.1) in a cylindrical domain describes small nonlinear transverse
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oscillations of an elastic beam and is known in the literature as the “good” Boussi-

nesq equation. A nice survey on the history of the derivation of model (1.1) can be

found in Miles [16]. The Boussinesq equation (1.1) on the action of an internal strong

damping, which means containing a structural damping uxxt, models nonlinear beam

oscillations in the presence of viscosity; thus (1.1) becomes

(1.2) utt = uxx + uxxt − uxxxx − (|u|u)xx.

Considered in this paper is the generalized dissipative Boussinesq equation

(1.3) utt = uxx + uxxt − uxxxx − (|u|p−2u)xx,

where u = u(x, t) is a complex-valued function of (x, t) ∈ R×R+ and p > 2 (see [3],

[6], [20], [21], [23], [22]).

In [3], [6] an abstract Cauchy problem for the generalization of (1.3) has been

studied. In [19], [24] equation (1.3) has been considered from the point of view of

the theory of global attractors and inertial manifolds.

Under various assumptions of initial/boundary data in [20], [21], [23], [22], Var-

lamov constructed the classical solution of the problem and obtained the long-time

asymptotics in explicit form. Using the eigenfunction expansion method, he also

studied the long-time asymptotics of a damped Boussinesq equation which is similar

to (1.3).

In the present paper, we aim at giving sharp criteria for the global existence of

solution for the Cauchy problem associated to (1.3). In order to do this, we employ

the variational methods and the existence of the invariant (stable and unstable) sets

of solutions [10], [15], [13], [12], [14], [11].

The main difficulty is to prove the blowing up properties of the associated Cauchy

problem. We borrow the method presented in [17] to overcome this difficulty. Also,

we show the instability of the ground state for (1.3). This property is the same as

in the case of the classical generalized Boussinesq equation, which can help us to

comprehend the effect of the damping term to the Boussinesq system.

Throughout this paper we denote by ϕ̂ the Fourier transform of ϕ, defined as

ϕ̂(ζ) =

∫

R

ϕ(ω)e−iωζ dω.

For s ∈ R, we denote by Hs(R) the nonhomogeneous Sobolev space defined by

Hs(R) = {ϕ ∈ S
′(R) : ‖ϕ‖Hs(R) <∞},
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where

‖ϕ‖Hs(R) = ‖(1 + ζ2)s/2ϕ̂(ζ)‖L2(R),

and S ′(R) is the space of tempered distributions.

2. Main result

Note that the Cauchy problem (1.3) with initial data

(2.1) u(x, 0) = u0(x) and ut(x, 0) = (v0)x(x)

is equivalent to the system

(2.2)

{
ut = vx,

vt = (u+ vx − uxx − |u|p−2u)x,

with initial data

(2.3) u(x, 0) = u0(x) and v(x, 0) = v0(x).

A local well-posedness result of the initial value problem (1.3) and (2.1), or equiva-

lently problem (2.2)–(2.3), reads as follows.

Theorem 2.1. Let p > 2. Then for initial data (u0, v0) ∈ H1(R) × L2(R)

there exist T > 0 and a unique solution (u, v) ∈ C([0, T ) ; H1(R) × L2(R)) of (2.2)

such that (u(0), v(0)) = (u0, v0). In addition, if we assume ξ
−1û0 ∈ L2(R), then

ξ−1û ∈ C1([0, T ) ; L2(R)). Moreover, T = ∞, or T <∞ and

lim
t→T−

‖(u(t), v(t))‖H1(R)×L2(R) = ∞.

Furthermore, if we define the energy

E(t) =
1

2

(
‖u(t)‖

2
H1(R) + ‖v(t)‖

2
L2(R)

)
−

1

p
‖u(t)‖

p
Lp(R), t ∈ [0, T ),

then

E(t) +

∫ t

0

‖us‖
2
L2(R) ds = E(0), t ∈ [0, T ).

The local well-posedness of the initial value problem (1.3) and (2.1), and also the

proof of Theorem 2.1, can be obtained from the results of Varlamov in [20], [21],
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[23], [22], or by using the ideas of Liu in [9]. Indeed, it is straightforward to see that

the initial value problem (1.3) and (2.1) is equivalent to the integral form

u(t) = U1(t)u0 + U2(t)(v0)x +

∫ t

0

U2(t− τ)F (u(τ)) dτ,

where F (u) = (|u|p−2u)xx and U1(t) and U2(t) are the C0-semigroups

U1(t)u0 =

([
cos

(√
4ξ2 + 3ξ4t/2

)
+
ξ2 sin

(√
4ξ2 + 3ξ4t/2

)
√
4ξ2 + 3ξ4

]
exp(−ξ2t/2)û0(ξ)

)∨

and

U2(t)(v0)x =

(
2 sin

(√
4ξ2 + 3ξ4t/2

)
√
4ξ2 + 3ξ4

exp(−ξ2t/2)(̂v0)x(ξ)

)∨
.

Similarly, an integral form of the initial problem (2.2)–(2.3) is

~u(t) = U(t)~u0 +

∫ t

0

U(t− τ)~f (~u(τ)) dτ,

where ~u =
(
u
v

)
, ~u0 =

(
u0

v0

)
, ~f(~u) =

(
0

F (u)

)
and U(t) is the C0-semigroup generated

by the operator

(
0 ∂x
∂x −∂3x ∂x

)
in H1(R)×L2(R). Now the proof follows directly

from the above integral forms, the semigroup theory [18], the Sobolev embedding

and the fixed-point argument.

It is obvious that if ϕ(x) satisfies the semilinear elliptic equation

(2.4) −ϕ′′ + ϕ = |ϕ|p−2ϕ, ϕ ∈ H1(R) \ {0},

then u(x, t) = ϕ(x), t > 0, x ∈ R satisfies (1.3), which is the stationary solution of

(1.3).

When p > 2, existence of a unique ground state solution, i.e. a solution of (2.4)

with the minimal action, is well known. It follows, for example, from the results of

Berestycki and Lions [1], [2].

Furthermore, for ϕ ∈ H1(R), we define the functionals

S(ϕ) =
1

2
‖ϕ‖

2
H1(R) −

1

p
‖ϕ‖

p
Lp(R),(2.5)

R(ϕ) = ‖ϕ‖
2
H1(R) − ‖ϕ‖

p
Lp(R),(2.6)

and define the manifold

(2.7) M = {ψ ∈ H1(R) \ {0} ; R(ψ) = 0}.
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We consider the constrained variational problem

(2.8) dM = inf{S(ϕ) ; ϕ ∈ M }.

From [9], we have

Lemma 2.1. There exists ϕ ∈ M such that S(ϕ) = dM , and ϕ is a ground state

solution of (2.4). Moreover, if ϕ is a ground state of (2.4), then

S(ϕ) = min{S(ϕ) ; ϕ ∈ M }.

Proposition 2.1. The functional S is bounded below onM and dM > 0.

P r o o f. The proof follows easily from the definition of S and R. Indeed, for

ϕ ∈ M we have

S(ϕ) =
p− 2

p
‖ϕ‖2H1(R).

It follows that S(ϕ) > 0 on M . So S is bounded below on M . From (2.7) we have

dM > 0. �

The main result of this paper is the following theorem

Theorem 2.2. Let ϕ be a ground state solution of (2.4). Then for any ε > 0,

there exists u0 ∈ H1(R) such that ‖u0 −ϕ‖H1(R) < ε. Moreover, the solution u(x, t)

of (2.2) corresponding to the initial data u(x, 0) = u0 and v(x, 0) = 0 is defined for

0 < T <∞, such that (u, v) ∈ C([0, T ) ; H1(R)× L2(R)) and

(2.2) lim
t→T

‖(u(t), v(t))‖H1(R)×L2(R) = ∞.

3. Global existence and blow-up

In this section, we define some invariant sets under the flow of the Cauchy problem

associated to (1.3). Under suitable conditions, we show that a global solution for

the initial value problem exists. Furthermore, we derive sufficient conditions for the

blow-up of the solution to the problem.

Let us define the following sets:

(3.1) K1 = {ϕ ∈ H1(R) ; R(ϕ) < 0, S(ϕ) < dM}

and

(3.2) K2 = {ϕ ∈ H1(R) ; R(ϕ) > 0, S(ϕ) < dM} ∪ {0}.
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Lemma 3.1. Let E(0) < dM , then K1 and K2 are invariant under the flow

generated by the Cauchy problem associated with (1.3).

P r o o f. Suppose that u0 ∈ K1 and u(t) is the solution of problem (2.2) with

u(0) = u0 and v(0) = v0. From the definition of E and S we have

(3.3) S(u(t)) 6 E(t) = E(0)−

∫ t

0

‖us‖
2
L2(R) ds < dM , t ∈ [0, T ).

To see that u(t) ∈ K1, we need to prove that

(3.4) R(u(t)) < 0, t ∈ [0, T ).

If (3.4) were not true, by continuity there would exist a τ > 0 such that R(u(τ)) = 0,

because R(u0) < 0. It follows that u(τ) ∈ M . This is impossible for S(u(τ)) <

dM = S(ϕ) and S(ϕ) = min
ϕ∈M

S(ϕ). Thus (3.4) is true. So K1 is invariant under the

flow generated by the Cauchy problem associated with (1.3).

Similarly, we can show that K2 is also invariant under the flow generated by the

Cauchy problem associated with (1.3). This completes the proof of Lemma 3.1. �

Lemma 3.2. Let ϕλ(x) = λϕ(x) for ϕ ∈ H1(R) \ {0} and λ > 0. Then there

exists a unique µ > 0, depending on ϕ, such that R(ϕµ) = 0. Moreover, R(ϕλ) > 0

for λ ∈ (0, µ), R(ϕλ) < 0 for λ ∈ (µ,∞), and S(ϕµ) > S(ϕλ) for all λ > 0.

P r o o f. By using (2.5) and (2.6), we arrive at

S(ϕλ) =
λ2

2
‖ϕ‖

2
H1(R) −

λp

p
‖ϕ‖

p
Lp(R)

and

R(ϕλ) = λ2‖ϕ‖
2
H1(R) − λp‖ϕ‖

p
Lp(R).

From the definition of M , there exists a unique µ > 0 such that R(ϕµ) = 0 and

R(ϕλ) > 0 for λ ∈ (0, µ), R(ϕλ) < 0 for λ ∈ (µ,∞).

On the other hand, ( d/ dλ)S(ϕλ) = λ−1R(ϕλ) andR(ϕµ) = 0 reveal that S(ϕµ) >

S(ϕλ) for all λ > 0. �
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Lemma 3.3. Let the initial data fulfil (u0, v0) ∈ H1(R) × L2(R), and let

(u(t), v(t)) be a local solution of (2.2) corresponding to the initial data (u0, v0) on

[0, T ). If u0 ∈ K1 and E(0) < dM , then

dM <
p− 2

2p
‖u(t)‖

2
H1(R)

for any t ∈ [0, T ).

P r o o f. First we note that since u0 ∈ K1, by Lemma 3.1 we have R(u(t)) < 0

and S(u(t)) < dM for t ∈ [0, T ). By continuity of R, we have that there exists

η∗ ∈ (0, 1) such that R(η∗u(t)) = 0. Therefore, it follows for t ∈ [0, T ) that

dM 6 S(η∗u(t)) =
η2∗
2
‖u(t)‖

2
H1(R) −

ηp∗
p
‖u(t)‖

p
LP (R)

<
p− 2

2p
η2∗‖u(t)‖

2
H1(R) <

p− 2

2p
‖u(t)‖

2
H1(R).

This completes the proof. �

The following theorem gives sufficient conditions for the existence of a global

solution. It also establishes the local solution of (1.3) will blow up if the initial data

belongs to K1.

Theorem 3.1. Let p > 2, (u0, v0) ∈ H1(R)× L2(R) and E(0) < S(ϕ).

(i) If there exists t0 ∈ [0, T ) such that u(t0) ∈ K1, then the solution (u(t), v(t)) of

(2.2) with initial data (u0, v0) blows up in a finite time.

(ii) If there exists t0 ∈ [0, T ) such that u(t0) ∈ K2, then the solution of (2.2) with

initial data (u0, v0) exists globally on [0,∞). Moreover, for t ∈ [0,∞), u(t)

satisfies

(3.5) ‖v(t)‖2L2(R) +
p− 2

p
‖u(t)‖2H1(R) <

p− 2

p
‖ϕ‖2H1(R).

P r o o f. First we note that S(u0) 6 E(0) < S(ϕ), by E(0) < S(ϕ) = dM . Now

we prove (i).

If u0 ∈ K1, then Lemma 3.1 implies that R(u(t)) < 0 for t ∈ [0, T ). Since u(t) is

a solution of (1.3) on [0, T ), denoting

I(t) = ‖ξ−1û(t)‖
2

L2(R) +

∫ t

0

‖u(s)‖
2
L2(R) ds+ (T − t)‖u0‖

2
L2(R),
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we obtain that

I ′(t) = 2Re 〈ξ−1û, v̂〉L2(R) + 2

∫ t

0

∫

R

uus dxds

and

I ′′(t) = 2‖v(t)‖
2
L2(R) − 2R(u(t)) = (p+ 2)‖v(t)‖

2
L2(R) + (p− 2)‖u(t)‖

2
H1(R) − 2pE(t).

Since R(u(t)) < 0, we have I ′′(t) > 0 for all t ∈ [0, T ). On the other hand, a

straightforward calculation reveals that

I(t)I ′′(t)−
p+ 2

4
(I ′(t))2 = I(t)I ′′(t)(3.6)

+ (p+ 2)

[
N (t)− (I(t)− (T − t)‖u0‖

2
L2(R))

×

(
‖v(t)‖

2
L2(R) +

∫ t

0

‖us‖
2
L2(R) ds

)]
,

where

N (t) =

(
‖ξ−1û‖

2

L2(R) +

∫ t

0

‖u(s)‖2L2(R) ds

)(
‖v(t)‖2L2(R) +

∫ t

0

‖us(s)‖
2
L2(R) ds

)

−

(
Re 〈ξ−1û, v̂〉L2(R) +

∫ t

0

∫

R

uus dxds

)2

.

The Cauchy-Schwarz inequality implies that
∫

R

ξ−1ûξ−1v̂ dx 6 ‖v(t)‖L2(R)‖ξ
−1û‖L2(R),

∫ t

0

∫

R

uus dxds 6

(∫ t

0

‖u(s)‖
2
L2(R)

)1/2(∫ t

0

‖us(s)‖
2
L2(R)

)1/2

,

and
∫

R

ξ−1ûv̂ dx

∫ t

0

∫

R

uus dxds

6 ‖ξ−1û‖L2(R)

(∫ t

0

‖us(s)‖
2
L2(R) ds

)1/2

‖v(t)‖L2(R)

(∫ t

0

‖u(s)‖
2
L2(R) ds

)1/2

.

From the above three inequalities, we obtain that N (t) > 0 for all t ∈ [0, T ). Hence,

(3.6) gives

I(t)I ′′(t)−
p+ 2

4
(I ′(t))2 > I(t)I ′′(t)− (p+ 2)(I(t)− (T − t)‖u0‖

2
L2(R))(3.7)

×

(
‖v(t)‖

2
L2(R) +

∫ t

0

‖us‖
2
L2(R) ds

)

> I(t)Q(t),
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where

Q(t) = I ′′(t)− (p+ 2)

(
‖v(t)‖2L2(R) +

∫ t

0

‖us‖
2
L2(R) ds

)

= −2pE(t) + (p+ 2)

∫ t

0

‖us(s)‖
2
L2(R) ds+ (p− 2)‖u(t)‖

2
H1(R)

= −2pE(0) + (p− 2)

∫ t

0

‖us(s)‖
2
L2(R) ds+ (p− 2)‖u(t)‖

2
H1(R).

Now since E(0) < dM , Lemma 3.3 leads to the formula

Q(t) > 2p(dM − E(0)) + (p− 2)

∫ t

0

‖us(s)‖
2
L2(R) ds(3.8)

> (p− 2)

∫ t

0

‖us(s)‖
2
L2(R) ds > 0

for t ∈ [0, T ). Combining (3.7) and (3.8), one has

(3.9) I(t)I ′′(t)−
p+ 2

4
(I ′(t))2 > 0.

Since
d2

dt2
I−(p−2)/4(t) = −

p− 2

4
I−(p+6)/4

(
I(t)I ′′(t)−

p+ 2

4
(I ′(t))2

)
,

from (3.9) one obtains that (d2/dt2)I−(p−2)/4(t) 6 0. Therefore I−(p−2)/4(t) is

concave for sufficiently large t, and there exists a finite time T ∗ such that

lim
t→T∗

I−(p−2)/4(t) = 0, lim
t→T∗

I(t) = ∞.

Thus one has T < ∞ and lim
t→T

‖(u(t), v(t))‖H1(R)×L2(R) = ∞. The proof of (i) will

be complete once we have shown that I ′(t) > 0 for some t1. We will argue by

contradiction and suppose I ′(t) 6 0 for all t > 0. Since I(t) > 0 and I(t) is convex,

I(t) must tend to a finite nonnegative limit ̺ as t → ∞. By Lemma 3.1, we assert

that ̺ > 0. Therefore one has, as t → ∞, I(t) → ̺, I ′(t) → 0 and I ′′(t) → 0. From

(3.6) one obtains that

(3.10) lim
t→∞

(
‖v(t)‖

2
L2(R) +

∫ t

0

‖us(s)‖
2
L2(R) ds+ (T − t)‖v0‖

2
L2(R)

)
= 0.

This means that R(u(t)) → 0 as t→ ∞. Now for any fixed t > 0, because R(u(t)) <

0, there exists 0 < l < 1 such that R(lu) = 0. Furthermore, one can check that

S(u)− S(lu) =
1

2
‖u(t)‖2H1(R) −

1

p
‖u(t)‖pLp(R) −

l2

2
‖u(t)‖2H1(R)(3.11)

+
lp

p
‖u(t)‖pLp(R) >

1

2
R(u).
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By (3.10) and (3.11) we may conclude that

(3.12) S(u) > S(lu) > S(ϕ)

as t → ∞. From Lemma 3.1 we conclude that (3.12) is false, i.e. I ′(t) 6 0 is not

true. So there exists some t1 > 0 such that I ′(t1) > 0. Thus we completed the proof

of (i).

To prove (ii), we note that since u0 ∈ K2 and E(0) < dM , by Lemma 3.1 we

obtain R(u(t)) > 0 for all t ∈ [0, T ). Hence, we get

(3.13)
1

2
‖v(t)‖

2
L2(R) +

p− 2

2p
‖u(t)‖

2
H1(R) 6 E(0)

for t ∈ [0, T ). Thus we establish the boundedness of v(t) in L2(R) and the bounded-

ness of u(t) in H1(R) for t ∈ [0, T ). Hence we must have T = ∞. Then the solution

u(t) of (1.3) exists globally on t ∈ [0,∞). Furthermore, it follows from (3.13) that

E(0) < S(ϕ) and (3.5) hold. This completes the proof of Theorem 3.1. �

Lemma 3.4. Let p > 2 and (u0, v0) ∈ H1(R) × L2(R). Moreover, suppose that

the following inequality holds:

(3.14) ‖(u0, v0)‖
2
H1(R)×L2(R) 6

1

p
‖u0‖

p
Lp(R).

Then the solution (u(t), v(t)) of (2.2) with initial data (u0, v0) blows up in a finite

time.

P r o o f. From (3.14) we have E(0) < 0. Since p > 2, it follows that

(3.15) E(0) < 0 <
p− 2

2p
‖ϕ‖

2
H1(R),

and

(3.16) ‖(u0, v0)‖
2
H1(R)×L2(R) 6

2

p
‖u0‖

p
Lp(R).

Consequently, we obtain that

(3.17) ‖u0‖
2
H1(R) − ‖u0‖

p
Lp(R) 6

2− p

p
‖u0‖

p
Lp(R) < 0.

Finally, (3.15) and (3.17) complete the proof. �
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Theorem 3.2. Let p > 2 and let (u0, v0) be in H
1(R)× L2(R) and satisfy

(3.18) ‖(u0, v0)‖
2
H1(R)×L2(R) <

p− 2

p
‖ϕ‖

2
H1(R).

Then the solution (u(t), v(t)) of (2.2) with initial data (u(0), v(0)) = (u0, v0) globally

exists. Moreover, for t ∈ [0,∞) one has

(3.19) ‖(u(t), v(t))‖
2
H1(R)×L2(R) <

p− 2

p
‖ϕ‖

2
H1(R).

P r o o f. From (3.18) one has

E(0) <
p− 2

2p
‖ϕ‖

2
H1(R).

Now we show that u0 satisfies R(u0) > 0. We get this fact by contradiction; so

suppose that

(3.20) ‖u0‖
2
H1(R) 6 ‖u0‖

p
Lp(R).

Thus there exists l ∈ (0, 1] such that

l2‖u0‖
2
H1(R) = lp‖u0‖

p
Lp(R),

from which we have R(lu0) = 0 and lu0 ∈ M . On the other hand, for l ∈ (0, 1],

lu0 still satisfies (3.18). It follows that

S(lu0) 6
(p− 2)

2p
l2‖ϕ‖

2
H1(R) = S(ϕ),

which contradicts Lemma 2.1. Therefore, R(u0) > 0 is true. From the proof of (ii)

of Theorem 3.1, we get the conclusion of Theorem 3.2. �

The following lemma is essential in the proof of the instability result. For the sake

of completeness, we give the proof (see [8, Lemma 4.4]).
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Lemma 3.5. The set A = {w ∈ H1(R) ; ξ−1ŵ(ξ) ∈ L2(R)} is dense in H1(R).

P r o o f. For any u ∈ H1(R) and ε > 0, define, for δ > 0, the function wδ such

that

ŵδ(ξ) =

{
û(ξ), |ξ| > δ,

0, |ξ| 6 δ.

Then we have

‖ξ−1ŵδ‖
2
L2(R) =

∫

|ξ|>δ

ξ−2|û(ξ)|2 dξ < δ−2‖u‖2L2(R) <∞,

and

‖wδ‖H1(R) = ‖(1 + ξ2)1/2ŵδ‖L2(R) 6 ‖(1 + ξ2)1/2û‖L2(R) = ‖u‖H1(R) <∞.

This implies that wδ ∈ A . On the other hand, we have

‖wδ − u‖2H1(R) = ‖(1 + ξ2)1/2(ŵδ − û)‖2L2(R)(3.21)

=

∫

|ξ|6δ

(1 + ξ2)|û(ξ)|2 dξ 6 ‖u‖2H1(R) <∞.

Therefore, we choose δ to be sufficiently small so that
∫

|ξ|6δ

(1 + ξ2)|û(ξ)|2 dξ < ε,

and the proof of Lemma 3.5 is complete. �

A proof of Theorem 2.2 is now in sight.

P r o o f of Theorem 2.2. For any ε > 0, let ε0 ∈ (0,min{ε/2, ‖ϕ‖H1(R)}) and

ε1 < ε/4‖ϕ‖H1(R). By Lemma 3.5, there exists w0 ∈ A such that ‖w0 − ϕ‖H1(R) <

ε0.

Let u0(x) = λw0 with λ = (1 + ε1) > 1, so that u0 ∈ A . Then by using the proof

of Lemma 3.5 and (3.21), we deduce that

(3.22) ‖u0 − ϕ‖H1(R) 6 (λ − 1)‖w0‖H1(R) + ε0 < 2‖ϕ‖H1(R)ε1 + ε0 < ε.

Lemma 3.2 yields that

(3.23) E(0) = S(u0), R(u0) < R(ϕ) = 0, and S(u0) < S(ϕ).

It follows from (3.23) that

(3.24) E(0) < S(ϕ) =
p− 2

2p
‖ϕ‖2H1(R).

Therefore, from (3.23) and (3.24) and (i) of Theorem 3.1, we get the result of Theo-

rem 2.2. �
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