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An overview of free nilpotent Lie algebras

Pilar Benito, Daniel de-la-Concepción

Abstract. Any nilpotent Lie algebra is a quotient of a free nilpotent Lie algebra
of the same nilindex and type. In this paper we review some nice features of the
class of free nilpotent Lie algebras. We will focus on the survey of Lie algebras of
derivations and groups of automorphisms of this class of algebras. Three research
projects on nilpotent Lie algebras will be mentioned.

Keywords: Lie algebra; Levi subalgebra; nilpotent; free nilpotent; derivation;
automorphism; representation

Classification: Primary 17B10; Secondary 17B30

1. Introduction

According to Levi’s theorem, any finite-dimensional Lie algebra of character-
istic zero decomposes as a direct sum of a semisimple Lie algebra and its unique
maximal solvable ideal. The classification of semisimple Lie algebras over the
complex field was settled at the beginning of the last century. Around 1945,
A.I. Malcev [22] reduced the classification of complex solvable Lie algebras to the
classification of nilpotent Lie algebras, their derivation algebras, groups of auto-
morphisms and several invariants. But the classification of nilpotent algebras is a
wild problem. Most of the results achieved in this direction are partial classifica-
tions of algebras satisfying particular properties (2-step nilpotent, maximal rank)
or classifications in low (modest) dimension (see [12] for a historical survey).

In 1971, T. Sato [30] (see also [11]) showed that any nilpotent Lie algebra is
isomorphic to a quotient, by a suitable ideal, of a free nilpotent Lie algebra of
the same nilindex and type. Among the results in [30] we point out the study
of the derivations and automorphisms of free nilpotent Lie algebras. It is proved
that the Levi subalgebra of the Lie algebra of derivations of any free nilpotent Lie
algebra of type d is the special linear algebra sld(k) of d×d traceless matrices [30,
Proposition 2]. Basic facts on nilpotent Lie algebras are encoded in this simple
Lie algebra. On the other hand, the general linear group GLd(k) of d × d ma-
trices plays an important role in the construction of the group of automorphisms
[30, Proposition 3]. Some general problems on nilpotent Lie algebras can be il-
luminated by their previous solutions on free nilpotent Lie algebras (see [4], [5],
[28]).

The authors would like to thank Spanish Government project MTM 2010-18370-C04-03.
Daniel de-la-Concepción also thanks support from Spanish FPU grant 12/03224.
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In this paper we will survey the main features of free nilpotent Lie algebras
and some recent research on nilpotent Lie algebras. The paper splits into the
introductory section, and two main sections. In Section 2, we present the basic
terminology on general Lie algebras and some well-known results on the structure
of a free nilpotent Lie algebra nd,t of type d and nilindex t. The results on structure
are collected from different papers. The original results in the paper are included
in subsections 2.3 and 2.4. By using irreducible representations of the simple split
3-dimensional Lie algebra sl2(k) we will obtain nested bases of free nilpotent Lie
algebras in subsection 2.3. These bases let us give explicit matrix representations
of derivations and automorphisms of n2,4 and n3,3 in subsection 2.4. Section 3
is devoted to explaining and reviewing some results on three different research
projects: quasiclassical nilpotent Lie algebras, Lie algebras with a given nilradi-
cal, and Anosov Lie algebras. Apart from theoretical considerations, the interest
in these projects comes from their physical applications (see [4], [21], [32] and
references therein). We also include a series of tables with information on dif-
ferent bases and matrix representations of derivations and automorphisms of free
nilpotent Lie algebras in low dimension.

Throughout the paper, vector spaces are considered to be finite-dimensional
over a field k of characteristic 0.

2. Free nilpotent Lie algebras

We introduce the basic terminology on Lie algebras, and the usual definition
of a free nilpotent Lie algebra. We also present some nice features of derivations
and automorphisms of this class of Lie algebras.

2.1 Notation and terminology on Lie algebras. A Lie algebra g is a vector
space endowed with a skewsymmetric binary product, [a, b] (we shall refer to this
product as the Lie bracket) that satisfies the Jacobi identity J(a, b, c) = 0, where
J(a, b, c) = [[a, b], c] + [[c, a], b] + [[b, c], a].

Any associative algebra a with product ab becomes a Lie algebra a− by defining
the Lie bracket [a, b] := ab− ba. In this way, we get the general linear Lie algebra
gl(V ) as the Lie algebra End (V )− of endomorphisms of a vector space V .

For a given Lie algebra g, the Lie bracket of two subspaces U and V is the
linear span [U, V ] = span 〈[u, v] : u ∈ U, v ∈ V 〉.

Definition 1. The derived series of g is defined recursively as g = g(1) and
g(n) = [g(n−1), g(n−1)]. The lower central series (l.c.s. for short) is also defined
recursively as: g = g1 and gn = [g, gn−1]. The Lie algebra g is called solvable if
the derived series vanishes, i.e. there exists t ∈ N such that g(t) = 0. If the lower
central series terminates, then g is called nilpotent . The smallest value of t for
which gt+1 = 0 is called the degree of nilpotency or nilindex of g.
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Definition 2. The solvable radical of g, denoted r, is the maximal solvable ideal
of g. We also denote by n the nilpotent radical or nilradical of g, which is the
biggest nilpotent ideal.

Definition 3. In case g has no proper ideals and g2 6= 0, g is a simple Lie algebra.
The Lie algebras which are direct sums of ideals that are simple as Lie algebras
are called semisimple.

Levi’s Theorem asserts that any Lie algebra can be built from solvable and
semisimple Lie algebras:

Theorem 2.1 (Eugenio E. Levi, 1905). For a given finite-dimensional Lie algebra

g of characteristic 0 with solvable radical r, there exists a semisimple subalgebra

s of g such that g = s⊕ r. �

The subalgebra s in the previous theorem is called the Levi subalgebra of the Lie
algebra g. In 1942, A.I. Malcev proved that any two Levi subalgebras of a fixed
Lie algebra g are conjugate by an (inner) automorphism of the form exp (ad z) for
some element z in the nilradical of g.

Definition 4. A derivation of g is a linear map satisfying the Leibniz rule
d([x, y]) = [d(x), y] + [x, d(y)]. For x ∈ g, the map adx(a) = [x, a] is a derivation
which is called an inner derivation. An automorphism Φ of g is a bijective map
such that Φ([x, y]) = [Φ(x),Φ(y)].

The Lie bracket [d1, d2] = d1d2 − d2d1 of two given derivations is a derivation;
so, the whole set Der g of derivations of g is a Lie subalgebra of gl(g). The group
of automorphisms of g will be denoted as Aut g. The set of inner derivations
Inner g is an ideal of Der g.

From inner derivations, we can define the (restricted) adjoint map ads : s →
gl(r) given by x → adx. This map is a homomorphism of Lie algebras, so the
radical of a Lie algebra g is an s-module. In general:

Definition 5. A representation of g is a homomorphism of Lie algebras ρ : g →
gl(V ) where V is a vector space. The vector space V is called a g-module and
x·v = ρ(x)(v) is used to denote the way the algebra g acts on V via ρ. The module
V is irreducible if it is non-trivial and does not contain proper submodules.

2.2 Free nilpotent Lie algebras: examples and features. From now on, n
will be an arbitrary nilpotent Lie algebra. The type of n is the codimension of n2

in n. Following [30] and [11], any t-nilpotent Lie algebra of type d can be viewed
as a quotient of a certain “universal” nilpotent Lie algebra which can be defined
through the free Lie algebra (see [16, Section 4, Chapter V]) on d generators in
the following way:
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Definition 6. Let FL(m) be the free Lie algebra on the set of generators m =
{x1, . . . , xd}, d ≥ 2. For any t ≥ 1, the quotient

nd,t =
FL(m)

FL(m)t+1

is called the free t-nilpotent Lie algebra on d generators .

The free Lie algebra FL(m) is spanned as a vector space by the linear combina-
tions of monomials [xi1 , . . . , xis ] = [. . . [[xi1 , xi2 ]xi3 ] . . . xis ], s ≥ 1, where xij ∈ m.

The ideal FL(m)t+1 is the (t + 1)-st term of the l.c.s. of FL(m), so it is spanned
as a vector space by monomials of length s ≥ t + 1. In low nilindex, we can get
simple models of free nilpotent Lie algebras by using multilinear algebra, as the
next example shows:

Example 1. The abelian Lie algebra nd,1 is just a d-dimensional vector space.
From [11] and [5] we have:

• Any free 2-nilpotent algebra of type d is given by the direct sum nd,2 =
kn ⊕ Λ2kn and the natural Lie bracket: [u, v] = u ∧ v, for u, v ∈ kn and
[kn,Λ2kn] = 0. The smaller case n2,2 = kx ⊕ ky ⊕ kz, with nonzero
product [x, y] = z is the Heisenberg 3-dimensional Lie algebra.

• Any free 3-nilpotent algebra of type d can be built as nd,3 = kn⊕Λ2kn⊕ t,
where t = span〈2u ⊗ (v ∧ w) + v ⊗ (u ∧ w) + w ⊗ (v ∧ u) : u, v, w ∈ kn〉.
In this case, the Lie bracket is given by declaring [u, v] = u ∧ v and

[u, v ∧w] =
2

3
u⊗ (v ∧ w) +

1

3
v ⊗ (u ∧ w) +

1

3
w ⊗ (v ∧ u),

for u, v, w ∈ kn (other bracket products are trivial). �

The next features of the structure of free nilpotent Lie algebras, their deriva-
tions and automorphisms have been collected from [4], [11] and [30]:

Proposition 2.2. The free nilpotent Lie algebra nd,t satisfies:

a) nd,t is t-nilpotent and of type d.

b) nd,t = m ⊕ m2 ⊕ · · · ⊕ mt is a quasi-cyclic Lie algebra and dimms =
1
s

∑

a|s µ(a)d
s/a where µ is the Möbius function.

c) The terms in the l.c.s. of nd,t are n
j
d,t = ⊕t

s=jm
s, for 1 ≤ j ≤ t.

d) The center of nd,t is Z(nd,t) = mt.

e) Any t-nilpotent Lie algebra of type d is a quotient of nd,t.

f) Given an ideal J and the corresponding nilpotent Lie algebra quotient

n =
nd,t

J , the Lie algebra of derivations of n is Der n = DJ

D0
, where DJ is

the subalgebra of derivations of nd,t that satisfy d(J) ⊆ J and D0 is the

set of derivations of nd,t such that d(nd,t) ⊆ J .

g) Up to isomorphism, the Levi subalgebra of Der nd,t is sld(k). Then,

Der nd,t = sld(k)⊕ r, where r is the solvable radical of Der nd,t.
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h) The group of automorphisms is a semidirect product of the general linear

group GLd(k).

Proof: Assertions a), b), c) and e) follows from the definitions and the results in
[11] and [30]. For d) see [4]. The final statements are consequence of the results
and proofs in [30, Section 2]. �

Starting with the (ordered) set of generators m of nd,t, and following the re-
cursive procedure given in [14], we get the so called Hall basis of nd,t, the most
natural basis for a free nilpotent Lie algebra. In [13], the authors present an algo-
rithm that, using polynomial functions, determines a set of d generators for the
free nilpotent Lie algebra nd,t. The Hall basis associated to this set of generators
of polynomial functions has nice properties that, according to [13, Section 3], can
be used to derive some results in control theory, and to compute the coefficients
in the Baker-Campbell-Hausdorff formula and the universal enveloping algebra of
a free Lie algebra.

From the structural properties of nd,t given in Proposition 2.2, and using the
representation theory of Lie algebras, we will present an alternative method to
get different bases of a free nilpotent Lie algebra with rational structure constants
(rescaling we can assume that the constants are integers). These bases will be
used to get matrix representations of derivations and automorphisms of nd,t.

2.3 Derivations and bases. The following proposition puts together two state-
ments in [30, Section 2, Propositions 2 and 3] that are essential to get the whole
set of derivations and automorphisms of a free nilpotent Lie algebra:

Proposition 2.3. Any linear map from m to nd,t can be extended to a derivation

of nd,t in a unique way, as well as to an endomorphism of nd,t as Lie algebra. In

particular, the set of derivations of nd,t is completely determined by the set of

linear maps Hom(m, nd,t), and the set of automorphisms of nd,t is given by the

set of linear maps {ϕ : m → nd,t : projm ◦ ϕ ∈ GL(m,m)}, where proj
m

denotes

the projection map on m. �

The procedure to extend any linear map ϕ : m → nd,t to a derivation is given
by applying the Leibniz rule to m2, dϕ([xi, xj ]) = [ϕ(xi), xj ] + [xi, ϕ(xj)], and
extending to the monomials [xi1 , . . . xij ] by induction. To obtain an automorphism
we start with any linear map ϕ : m → nd,t such that πm ◦ ϕ ∈ GL(m,m) where
πm : nd,t → m is the canonical projection. In this case, instead of the Leibniz
rule, we make use of Φϕ[xi, xj ] = [ϕ(xi), ϕ(xj)] and extend to all monomials by
induction. Following these two ideas, we found several patterns in the set of
derivations of free nilpotent Lie algebras (see [5, Section 2]):

Proposition 2.4. Let nd,t be the free nilpotent Lie algebra given by the set of

generators m. Then, the Lie algebra of derivations of nd,t decomposes as:

Der nd,t =

t
⊕

j=1

Derj nd,t,



330 P. Benito, D. de-la-Concepción

where Derj nd,t = {d ∈ Der nd,t : d(m) ⊆ mj}. Moreover, the map idd,t defined by

idd,t|ms = s · Id for s ≥ 1 is a derivation and:

a) Der1 nd,t = Der01 nd,t⊕k ·idd,t is a Lie subalgebra of Der nd,t isomorphic to

the general linear Lie algebra gld(k). The derived subalgebra of Der1 nd,t,

Der01 nd,t = [Der1 nd,t,Der1 nd,t], is isomorphic to the special linear algebra

sld(k), a simple Lie algebra of Cartan type Ad−1.

b) The solvable radical of Der nd,t is Rd,t = k · idd,t ⊕ Nd,t, where Nd,t =
⊕t

j≥2 Derj nd,t is the nilradical of Der nd,t.

In particular, Der01 nd,t is a Levi subalgebra of Der nd,t.

Proof: This follows from Proposition 2.3, and the comments in [30] and [5]. �

In [30], T. Sato described exactly Der01 nd,t as: the collection of extensions of

linear endomorphisms of m whose traces are zero.

This remark leads to the following result inspired by [32, Theorem 2]:

Lemma 2.5. Let s be a simple Lie algebra with a faithful representation on a

vector space of dimension d. Then, there exists at least one homomorphism of Lie

algebras ρ : s → Der01 nd,t ⊆ gl(nd,t) satisfying ρ(m) ⊆ m. Moreover, such a ρ is a

representation of s on nd,t and nd,t = ⊕t
i=1m

s is an s-module decomposition. In

particular, the irreducible components of ms for s ≥ 2 are among the irreducible

components of the tensor product representation m⊗ms−1 induced by ρ.

Proof: Without loss of generality, we can consider the d-dimensional representa-
tion on the setm of generators of nd,t. So, we have a homomorphism ρ1 : s → gl(m)
and, since s is simple, s ∼= ρ1(s) ⊆ sl(m). Now, from Proposition 2.3, ρ1(s) can be
embedded into Der01 nd,t; the embedding is in fact a homomorphism of Lie alge-

bras, so we have a representation ρ : s → Der01 nd,t ⊆ gl(nd,t) and m is a submod-
ule. Since ρ is a representation given by derivations, for every d ∈ ρ(s), we have
d(m) ⊆ m and d(m2) = d([m,m]) = [d(m),m] ⊆ m2. Hence m2 also is a submodule.
Applying this argument recursively, we get that the direct sum nd,t = ⊕t

i=1m
s is

an s-module decomposition. Note that the linear map [·, ·] : m⊗ ms−1 → ms is a
homomorphism of s-modules which is onto; this proves the last assertion. �

The 3-dimensional set sl2(k) of 2×2 matrices of trace 0 is a simple Lie algebra.
Any special linear Lie algebra sld(k) of d× d traceless matrices contains different
copies of sl2(k). One of the most interesting tools provided by sl2(k) is its rep-
resentation theory. For every n ≥ 1, there is a unique faithful sl2(k)-irreducible
representation V (n) of dimension n + 1 (see [15] for a complete description).
Moreover, applying the Clebsch-Gordan formula we get the tensor product de-
composition:

V (n)⊗k V (m) ∼= V (n+m)⊕ V (n+m− 2)⊕ . . .⊕ V (n−m),
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(here n ≥ m is assumed). From Lemma 2.5 and using the irreducible sl2(k)-
modules V (n) we can find bases for nd,t in a recursive way. Our next example
explains this technique (we follow the proof of [5, Proposition 2.3] and terminology
and results on representation theory of sl2(k) from [15]):

Example 2. Nested bases for n2,t. In this case, Der01 n2,t
∼= sl2(k) for which

m is the natural module V (1). Then using the formula in Proposition 2.2 for
computing the dimension of each component ms we have:

• m2 is 1-dimensional and m2 ⊆ m ⊗ m = V (1) ⊗ V (1) = V (2) ⊕ V (0).
So m2 = V (0), is a trivial module. Thus, considering the standard basis
v0, v1 of m = V (1) and m2 = span〈w0 = [v0, v1]〉 we get the basis of n2,2
{v0, v1, w0}.

• m3 is 2-dimensional and m3 ⊆ m ⊗ m2 = V (1) ⊗ V (0) = V (1). So
m3 = V (1), is a 2-irreducible module. Since m3 = [m,m2] = span〈z0 =
[v0, w0], z1 = [v1, w0]〉, by adding the set {z0, z1}, which forms a standard
basis of V (1), to the basis of n2,2 previously computed, we get the basis
of n2,3.

• m4 is 3-dimensional and m4 ⊆ m⊗m3 = V (1)⊗ V (1) = V (2)⊕ V (0). So
m4 = V (2), is a 3-irreducible module. From m4 = [m,m3] and [v1, z0] =
[v0, z1], we arrive at the set {x0 = [v0, z0], x1 = 2[v1, z0], x2 = [v1, z0]}, a
standard basis of V (2) inside m4. Now {x0, x1, x2} along with the previous
basis of n2,3, provides a basis of n2,4.

• m5 is 6-dimensional and m5 ⊆ m ⊗ m4 = V (1) ⊗ V (2) = V (3) ⊕ V (1),
so m5 = V (3) ⊕ V (1). In this case, the set {y0 = [v0, x0], y1 = [v0, x1] +
[v1, x0], y2 = [v1, x1] + [v0, x2], y3 = [v1, x2]} spans a module of type V (3)
(in fact it is a standard basis) and the set {u0 = [v0, x1]− 2[v1, x0], u1 =
−[v1, x1] + 2[v0, x2]} spans a V (1) module (standard basis). In this case,
[mi,mj ] = 0 for i, j ≥ 3 or i = 2 and j ≥ 4 and the product relation
[w0, zi] =

1
2ui follows easily using the Jacobi identity. Then, a basis of

n2,5 is given by that of n2,4 and {y0, y1, y2, y3, u0, u1}.

m m2 m3 m4 m5

V (1) V (0) V (1) V (2) V (3)⊕ V (1)

v0, v1 [v0, v1] = w0 [v0, w0] = z0 [v0, z0] = x0 . . .

[v1, w0] = z1 [v0, z1] = [v1, z0] =
1
2x1 . . .

[v1, z1] = x2

Table 1. Nested bases for n2,t

Example 3. Nested bases for n3,t. In this case, Der01 n2,t
∼= sl3(k). From the

3-dimensional representation m = V (2) of sl2(k) with standard basis {v0, v1, v2}
and using arguments analogous to that given in Example 2, we get the bases of
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m m
2

m
3

m
4

V (2) V (2) V (4) ⊕ V (2) V (6) ⊕ V (4) ⊕ 2V (2)

v0, v1, v2 [v0, v1] = w0 [v0, w0] = z0 [v1, w1] =
1
2
z2 . . .

[v0, v2] = w1 [v0, w1] =
1
2
(z1 + x0) [v1, w2] =

1
2
(z3 + x2) . . .

[v1, v2] = w2 [v1, w0] =
1
2
(z1 − x0) [v2, w1] =

1
2
(z3 − x2)

[v0, w2] =
1
4
(z2 + x1) [v2, w2] = z4

[v2, w0] =
1
4
(z2 − x1)

V (1) ⊕ V (0) V (1) ⊕ V (0) V (2) ⊕ 2V (1) ⊕ V (0) . . .

v0, v1, v [v0, v1] = w [v0, w0] = u0 [v0, w] = z0 . . .

[v0, v] = w0 [v0, w1] =
1
2
(u1 + y0) [v1, w] = z1 . . .

[v1, v] = w1 [v1, w0] =
1
2
(u1 − y0) [v,w0] = x0

[v1, w1] = u2 [v,w1] = x1

[v,w] = y0

Table 2. Nested bases for n3,t

n3,2 and n3,3 given in Table 2. In this case, we can also start from the reducible
module decomposition m = V (1)⊕ V (0) and then we get m2 = V (1)⊕ V (0) and
m3 = V (2)⊕2V (1)⊕V (0) as unique possibilities. The basis and the multiplication
table starting from this non irreducible decomposition are also included in Table 2.

Remark 1. The Hall bases of n2,3 and n3,2 given in [4] agree with the bases
obtained from representation theory in our Examples 2 and 3. For d ≥ 3, we can
use modules of other simple algebras of sld(k) to get many different bases.

2.4 Derivations and automorphisms of n2,4 and n3,3. From the basis of n2,4
given in Example 2 (see also Table 1) and canonical computations (D([x, y]) =
[D(x), y]+ [x,D(y)] and φ([x, y]) = [φ(x), φ(y)] for D a derivation and φ an auto-
morphism), we can describe Der n2,4 and Aut n2,4 using 8× 8 matrices. A general
derivation of n2,4 has a matrix of the form (β, αi ∈ k):

























α1 + β α2 0 0 0 0 0 0
α3 −α1 + β 0 0 0 0 0 0
α4 α5 2β 0 0 0 0 0
α6 α7 α5 α1 + 3β α2 0 0 0
α8 α9 −α4 α3 −α1 + 3β 0 0 0
α10 α11 α7 α5 0 2α1 + 4β 2α2 0
α12 α13

α9−α6

2
−

α4

2
α5

2
α3 4β α2

α14 α15 −α8 0 −α4 0 2α3 −2α1 + 4β
























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Any element in the subalgebra Der1 n2,4 = Der01 n2,4 ⊕ k · id2,t ∼= gl2(k) has the
matrix representation:

























α1 + β α2 0 0 0 0 0 0
α3 −α1 + β 0 0 0 0 0 0
0 0 2β 0 0 0 0 0
0 0 0 α1 + 3β α2 0 0 0
0 0 0 α3 −α1 + 3β 0 0 0
0 0 0 0 0 2α1 + 4β 2α2 0
0 0 0 0 0 α3 4β α2

0 0 0 0 0 0 2α3 −2α1 + 4β

























The Levi subalgebra Der01 n2,4
∼= sl2(k) is the set of traceless matrices of Der1 n2,4

(β = 0). The derivation id2,4 is given by taking β = 1 and αi = 0. A general
automorphism of n2,4 is represented by a matrix of the form (β, αi ∈ k):





































α1 α2 0 0 0 0 0 0

α3 α4 0 0 0 0 0 0

α5 α6 ∆23
14 0 0 0 0 0

α7 α8 ∆25
16 α1∆

23
14 α2∆

23
14 0 0 0

α9 α10 ∆45
36 α3∆

23
14 α4∆

23
14 0 0 0

α11 α12 ∆27
18 α1∆

25
16 α2∆

25
16 α2

1∆
23
14 2α1α2∆

23
14 α2

2∆
23
14

α13 α14

∆29
110

−∆47
38

2

α3∆25
16+α1∆45

36
2

α4∆25
16+α2∆45

36
2

α1α3∆
23
14 α1α4∆

23
14 2α2α4∆

23
14

α15 α16 ∆49

310
α3∆

45
36 α4∆

45
36 α2

3∆
23
14 2α3α4∆

23
14 α2

4∆
23
14





































where ∆kl
ij = αiαj − αkαl and ∆23

14 6= 0. The derivation algebra and the group
of automorphisms of the free nilpotent Lie algebras n2,t for t = 1, 2, 3 can be
represented by matrices (αij) relative to the bases given in Table 1. These matrices
are displayed in Table 3.

t Der n2,t Aut n2,t

1
(

α1+β α2

α3 −α1+β

) (

α1 α2

α3 α4

)

, ǫ = α1α4 − α2α3 6= 0

2





α1+β α2 0
α3 −α1+β 0
α4 α5 2β









α1 α2 0
α3 α4 0
α5 α6 ǫ





3











α1+β α2 0 0 0
α3 −α1+β 0 0 0
α4 α5 2β 0 0
α6 α7 α5 α1+3β α2

α8 α9 −α4 α3 −α1+3β





















α1 α2 0 0 0
α3 α4 0 0 0
α5 α6 ǫ 0 0
α7 α8 α1α6−α2α5 ǫα1 ǫα2

α9 α10 α3α6−α4α5 ǫα3 ǫα4











Table 3. Derivations and automorphisms of n2,t

In the cases n2,3 and n3,2, we get descriptions analogous to those given in [4].
Derivations of n3,t for t = 1, 2 are given in Table 5.
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t Der01 n2,t Inner n2,t

1

(

α1 α2

α3 −α1

)

0

2





α1 α2 0
α3 −α1 0
0 0 0









0 0 0
0 0 0
α4 α5 0





3













α1 α2 0 0 0
α3 −α1 0 0 0
0 0 0 0 0
0 0 0 α1 α2

0 0 0 α3 −α1

























0 0 0 0 0
0 0 0 0 0
α4 α5 0 0 0
α6 0 α5 0 0
0 α6 −α4 0 0













Table 4. Levi subalgebra and inner derivation algebra of Der n2,t.

t Der n3,t

1





α1+β α2 α3

α4 α5+β α6

α7 α8 −(α1+α5)+β





2

















α1+β α2 α6 0 0 0
α4 α5+β α7 0 0 0
α6 α7 −(α1+α5)+β 0 0 0
β1 β2 β3 α1 + α5 + 2β α6 −α3

β4 β5 β6 α8 −α5 + 2β α2

β7 β8 β9 −α7 α4 −α1 + 2β

















Table 5. Derivations of n3,t

t Aut n3,t

1 A =





α1 α2 α3

α4 α5 α6

α7 α8 α9



 det A 6= 0

2

























α1 α2 α3 0 0 0

α4 α5 α6 0 0 0

α7 α8 α9 0 0 0

β1 β2 β3 ∆24
15 ∆34

16 ∆35
26

β4 β5 β6 ∆27
18 ∆37

19 ∆38
29

β7 β8 β9 ∆57
48 ∆67

49 ∆68
59

























∆kl
ij = αiαj − αkαl

Table 6. Automorphisms of n3,t
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The general shape of a derivation of n3,3 is:













































α1 + β α2 α3 0 0 0 0 0 0 0 0 0 0 0
α4 α5 + β α6 0 0 0 0 0 0 0 0 0 0 0
α7 α8 −σ15 + β 0 0 0 0 0 0 0 0 0 0 0
β1 β2 β3 a11 a12 a13 0 0 0 0 0 0 0 0
β4 β5 β6 a21 a22 a23 0 0 0 0 0 0 0 0
β7 β8 β9 a31 a32 a33 0 0 0 0 0 0 0 0
µ1 µ2 µ3 b11 b12 b13 c11 c12 c13 c14 c15 c16 c17 c18
µ4 µ5 µ6 b21 b22 b23 c21 c22 c23 c24 c25 c26 c27 c28
µ7 µ8 µ9 b31 b32 b33 c31 c32 c33 c34 c35 c36 c37 c38
µ10 µ11 µ12 b41 b42 b43 c41 c42 c43 c44 c45 c46 c47 c48
µ13 µ14 µ15 b51 b52 b53 c51 c52 c53 c54 c55 c56 c57 c58
µ16 µ17 µ18 b61 b62 b63 c61 c62 c63 c64 c65 c66 c67 c68
µ19 µ20 µ21 b71 b72 b73 c71 c72 c73 c74 c75 c76 c77 c78
µ22 µ23 µ24 b81 b82 b83 c81 c82 c83 c84 c85 c86 c87 c88













































where (aij), (bij) and (cij) are given by:

(aij) =





α1 + α5 + 2β α6 −α3

α8 −α5 + 2β α2

−α7 α4 −α1 + 2β





(bij) =





































β2 β3 0

β5−β1

2
β6

2
β3

2

β8−2β4

4
β9−β1

4
2β6−β2

4

−β7

2 −β4

2
β9−β5

2

0 −β7 −β8

β1+β5

2
β6

2 −β3

2

β8

4
β1+β9

4
β2

4

−β7

2
β4

2
β5+β9

2





































(cij) =





































∆+ 3β σ26 0 0 0 −τ26 −4α3 0

σ48

2
∆+6β

2 σ26 0 0 − 3α5

2 τ26 −α3

0 3σ48

4 3β 3σ26

4 0 3τ48
4 0 3τ26

4

0 0 σ48
−∆+6β

2
σ26

2 α7 τ48
2α5−β

2

0 0 0 σ48 −∆+ 3β 0 4α7 −τ48

− τ48
2

−2α5+β
2 τ26 α3 0 ∆+6β

2 σ26 0

−α7

2
σ48

2 0 τ26
4

α3

2
τ48
2 3β σ26

4

0 −α7 τ48
2α5−β

2 − τ26
2 0 σ48

−∆+6β
2







































336 P. Benito, D. de-la-Concepción

with ∆ = 2α1 + α5, σij = αi + αj and τij = αi − αj . Similar computations can
be done to get the general matrix of any element in Aut n3,3.

3. Some research projects on nilpotent Lie algebras

The general knowledge of Lie algebras and their classification can be useful for
both theoretical considerations and practical purposes. The representations of
some simple Lie algebras as su(2,R) and sl(3,C), appear in problems of particle
physics; Heisenberg algebras play a fundamental role in quantum mechanics [29],
and Yang-Mills gauge theories are related to quasiclassical Lie algebras [24]. In
this section we discuss three theoretical research projects on nilpotent Lie algebras
with potential applications. We are currently working on project #2; the other
two projects will be considered for future work.

3.1 Research project #1: Regular quadratic nilpotent Lie algebras.

A Lie algebra endowed with a nondegenerate, symmetric, invariant bilinear form is
called regular quadratic Lie algebra or quasiclassical algebra; such Lie algebras are
also known as metric Lie algebras . Semisimple Lie algebras with the Killing form
are quasiclassical algebras. This class of algebras is useful in conformal field theory
and string theory [10], constitutes the basis for the construction of bialgebras, and
gives rise to pseudo-Riemannian geometry. The first structure results on general
quadratic Lie algebras appear in [9] and [23]; paper [9] focuses on quasiclassical Lie
algebras with nontrivial center and includes a complete classification of quadratic
nilpotent Lie algebras of dimension ≤ 7. New general classifications are included
in [17] and [20]. The results in [17] lead to the classification of indecomposable
quasiclassical nilpotent Lie algebras of dimension ≤ 10 in [18]. Recently, in [4] the
authors prove that n2,3 and n3,2 are the unique free nilpotent Lie algebras that
are regular quadratic.

3.2 Research project #2: Lie algebras with a given nilradical. This
project is a reformulation of a problem related to the Levi decomposition of a Lie
algebra: For a given solvable algebra r, classify all Lie algebras without semisimple
ideals such that r is their solvable radical. A Lie algebra without semisimple ideals
is called faithful. In 1944, I.A. Malcev [26, Theorem 4.4, Section 4] gives a general
answer to this classical problem in terms of derivations and automorphisms of the
solvable Lie algebra r (see [25] for a complete explanation). According to Malcev,
the problem has a positive answer only in case Der r has nonzero Levi subalgebras.
This is the main argument showing that there are no faithful nonsolvable Lie
algebras with radical a filiform Lie algebra of dimension ≥ 4 (see [2], [5, Corollary
2.6]). For a given nilpotent Lie algebra n, we can study two questions (the second
one depends on the first):

• Question #2.1: Classify solvable Lie algebras with nilradical n.

• Question #2.2: Classify nonsolvable Lie algebras with nilradical n.

Following Malcev’s ideas, a general technique to solve both questions is based on
extending nilpotent Lie algebras by convenient subalgebras of their Lie algebras
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of derivations; the isomorphisms among different extensions are determined by
using the group of automorphisms. In Question #2.1 , the solvable algebras arise
by means of subalgebras of Der n without nilpotent elements for which the corre-
sponding derived subalgebra is contained in the ideal Inner n. In Question #2.2

and according to [33, Section 2], the nonsolvable algebras arise from subalgebras
of Der n that satisfy the previous conditions and the additional feature of being
centralized by any Levi subalgebra of Der n. Explicit classifications that follow
these ideas are given in [29], [6], [7] and [1]. Some general structural results and
methods on this research project can be found in [27] and [5]. In the last paper
the results involve free nilpotent algebras and their quotients.

3.3 Research project #3: Anosov Lie algebras. Anosov diffeomorphisms
give examples of structurally stable dynamical systems (see [19, Section 2] for a
precise definition). In 1967, S. Smale [31] raised the problem of classifying the
nilmanifolds admitting Anosov diffeomorphisms; at the level of Lie algebras, this
problem corresponds to the classification of Anosov Lie algebras.

Following [19], a rational Lie algebra n of dimension d is said to be Anosov, if
it admits an hyperbolic automorphism τ (i.e. all eigenvalues of τ have absolute
value different from 1). The map τ is called an Anosov automorphism of the Lie
algebra. It is well known that any Anosov Lie algebra is necessarily nilpotent.
The free nilpotent Lie algebra nd,t is Anosov in case t < d.

In 1970, L. Auslander and J. Scheuneman [3] established the correspondence
between Anosov automorphisms of nilpotent Lie algebras, and semisimple hyper-
bolic automorphisms of free nilpotent Lie algebras preserving ideals that satisfy
four special conditions called the Auslander-Scheuneman conditions. Following
this approach, the study of ideals of free nilpotent Lie algebras yields in [28]
general properties of Anosov Lie algebras. The results therein extend the classi-
fication of Anosov Lie algebras to some new classes of two-step Lie algebras.

Some background on the present state of knowledge regarding Anosov Lie al-
gebras can be found in [21]. Several natural questions on this class of Lie algebras
are included in [19, Section 1].
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