Mathematica Bohemica

Futoshi Takahashi

Continuum spectrum for the linearized extremal eigenvalue problem with boundary
reactions

Mathematica Bohemica, Vol. 139 (2014), No. 2, 137-144

Persistent URL: http://dml.cz/dmlcz/143844

Terms of use:

© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/143844
http://dml.cz

139 (2014) MATHEMATICA BOHEMICA No. 2, 137-144

CONTINUUM SPECTRUM FOR THE LINEARIZED EXTREMAL
EIGENVALUE PROBLEM WITH BOUNDARY REACTIONS

FuTosHI TAKAHASHI, Osaka

(Received August 6, 2013)

Abstract. We study the semilinear problem with the boundary reaction

—Au+u=0 inQ, g—u:/\f(u) on 0f,
v

where Q@ ¢ RN, N > 2, is a smooth bounded domain, f: [0,00) — (0,00) is a smooth,
strictly positive, convex, increasing function which is superlinear at co, and A > 0 is a pa-
rameter. It is known that there exists an extremal parameter A* > 0 such that a classical
minimal solution exists for A < A*, and there is no solution for A > \*. Moreover, there is
a unique weak solution u* corresponding to the parameter A = \*. In this paper, we con-
tinue to study the spectral properties of ©* and show a phenomenon of continuum spectrum
for the corresponding linearized eigenvalue problem.
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1. INTRODUCTION

In this paper, we consider the boundary value problem with the boundary reaction

(1.1) —Au+u=0 in{, %:/\f(u) on 0N

where A > 0 and Q ¢ RY, N > 2 is a smooth bounded domain. Throughout the

paper, we assume

(1.2) f:]0,00) = (0,00) is smooth, convex, increasing, f(0) > 0,

Part of this work was supported by JSPS Grant-in-Aid for Challenging Exploratory Re-
search, No. 24654043, and JSPS Grant-in-Aid for Scientific Research (B), No. 23340038.
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and superlinear at oo in the sense that

09 tim H = o
Then the maximum principle implies that solutions are positive on Q.
It is known that there exists an extremal parameter \* € (0, c0) such that
(i) for every A € (0,A*), (1.1)5 has a positive, classical, minimal solution uy €
C?(Q) which is strictly stable in the sense that

(1.4) /Q(|V<p|2 + %) dz > )\/BQ f(ux)@? ds,

for every ¢ € C1(Q), ¢ Z0,
(ii) for A = \*, the pointwise limit

1. (x) =l Q
(1.5) u*(z) Jim ur(z), xe€qQ,
becomes a weak solution of (1.1)-,
(iii) for A > A*, there exists no solution of (1.1), not even in the weak sense.
Here, we call a function u = (u1,u2) € L (Q) x L1(9Q) a weak solution to (1.1)y if
f(u2) € LY(09Q) and

(1.6) /Q(—AC + O da = /m (Mf(ua) - %UQ) ds,

holds for any ¢ € C%(Q). The statement (ii) says that, under the assumption (1.3),
u* = (u*|q,u*|sq) is a weak solution in the above sense. We proved in [10] Theo-
rem 11 that u* € W17 (Q) for any v € [1, N/(N — 2)) when N > 3 (for any 7 € [1, o)
when N = 2), so u*|sn € W'1/77(9Q) ¢ LIN-D7/(N=7)(9Q) is the usual trace of
the W17 function u* on 9. For the facts (ii), (iii), we refer the reader to [10]. In
the following, we call u* the extremal solution of (1.1). In [10], the author obtained
several properties such as regularity and uniqueness of the extremal solution u*. This
paper is a sequel to [10]. For related elliptic problems with boundary reaction terms,

see, e.g., [4], [6], [9]. For a well-studied problem
—Au = Af(u) in Q, u=0 ondf

where f satisfies (1.2), (1.3), see [1], [2], [3], [5], [7], [8], and the references therein.
For A € (0,\*), we denote by u1(Af'(uy)) the first eigenvalue of the eigenvalue

problem

9 _

—Ap+¢=0 inQ, =
v

Af'(ux)p + pp  on 9.
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By the variational characterization, we have

\V4 2 2 de — ! 2d N
pi(Af'(ux)) = inf Jo(IVel® + ¢%) da 2fan Flux)¢”dsa
PECH(Q), 920 Joq ¥% dsa

Note that pi(Af'(ux)) > 0 since the minimal solution wy is strictly stable, and
decreases as A T A\*. Denote

(1.7) pi = lim (A f' ()

If w* is classical, it must hold that puj = 0 by considering (iii) above. However, if
u* = (u*|q, u*lan) & L>®(Q) x L>(99Q), it could happen that pf is positive. In [10],
we proved that even when pj > 0, there exists a nonnegative weak solution of

(1.8) —Ap+¢=0 1in Q, g—f =Xf'(u*)p + pp on N

for 4 = 0. This is a phenomenon of the existence of (L!-)zero eigenvalue for the
eigenvalue problem (1.8). The main purpose of this paper is to prove the following
result, which is a generalization of the result by Cabré and Martel [3] to our setting,
and may be seen as a phenomenon of the existence of (L'-)continuum spectrum for
the eigenvalue problem (1.8).

Theorem 1.1. Let u} be defined by (1.7). Then for any u € [0, u}] there exists
a weak solution ¢ to (1.8), p € WH4(Q) (1 < ¢ < N/(N —1)), ¢ = 0, in the sense
that f'(u*)plao € L'(9Q) and

0
Jac+pda= [ {0 elon + nplan)C - Gclony ds.

for all ¢ € C?(Y). Here ¢|sq is the usual trace of o € W14(Q).

2. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. We need the uniqueness theorem from [10],
which is an analogue of the result by Y. Martel [8].
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Theorem 2.1 ([10], Theorem 14). Assume (1.1)x~ has a weak supersolution
w = (wy,wy) € L}(Q) x L1(9Q), in the sense that f(wy) € L'(0Q) and

¢
_ > * _
/Q( AC—i—C)wldx//(m {)\ flwe2)¢ 8ng}dsgg
for any ¢ € C%(Q), ¢ > 0 on Q. Then (wy,ws) = (u*|q,u*|sq), where u* is defined
by (1.5).
The following is Lemma 17 in [10].

Lemma 2.2. Let {u,} C C*(Q) be a sequence of functions such that

—Auy, +u, =0 inQQ, %20 on 0f).

Assume |[uy||z1(90) < C for some C > 0 independent of n. Then there exists
a subsequence (denoted again by u,) and u € W9(Q) such that

Up — u  weakly in Wh(Q), 1 < g < N1

Moreover, for any 1 < p < (N — 1)/(N — 2) there exists a constant Cj, > 0 depending
only on p such that

lunllLeo0) < Cplltunllpraq) for any n € N.

Now, we prove Theorem 1.1.

Proof. We follow the argument by X. Cabré and Y. Martel [3].
Step 1. For n € N, define a sequence of functions f,, as

- f(S) if s <n,
P = {f(m +F)s=n) ifs>n,

and consider the approximated problem

0
(2.1) —Au+u=0 inQ, a—z = Afn(u) on 9.
Denote A’ = sup{A > 0: (2.1), admits a minimal solution € C?(Q)}, and let u,, » €
C?(Q) be the classical minimal solution to (2.1)y for A < A%. Since f,, < fnt1 < f,

we have u, x < Upy1a < ux and A* <Ay < A, for any n € N. Define

Vol|? + @) dz — [ AMfh(un)e? dsy
(2.2) (A fh(unn)) = inf fQ(| ol* +¢%) da 2fdQ I (un\)p® ds .
pECI(Q), 90 Joq ¥* dsa
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Note that p1(Af),(un ) is continuous with respect to A by (2.2). Take 0 < p <
pi where pi is defined by (1.7). Since wy x: is classical (which is because f, is
asymptotically linear) and there is no classical solution of (2.1)y for A > A%, the
linearized problem around (A}, %, +) must have zero eigenvalue. Thus

(A fr(unaz ) = 0 < < pf < pn (N, (o))

here we have used the fact that f] < f’ and u, \ < uy, which implies p1 (Af'(uy)) <
u1(Af} (un,x)). By the Intermediate Value Theorem, there exists A,, € [A*, A%] such
that

1 (A fr (Unx,)) = 1,

which in turn implies there exists ¢, > 0 with f 50 Pn ds, = 1 such that

9n

(2.3) A, + ¢, =0 in Q, 5

= Mo f) (Un.x, ) Pn + ppn  on O
Recall also that wu,, , satisfies

Oun z,,

2.4 —Au, —— in Q,
(2.4) UpA, T Uny, =0 in £y

= M fn(tn,,) on Q.
We claim there exists ng € N such that

(2.5) l[tin 2.,

L1(09) < C for any n > ng.

Indeed, let 91 be the first eigenfunction of the Steklov type eigenvalue problem

(2.6) A1+ =0 in Q, % = K11 omn If2

with the first eigenvalue 1, which is normalized as [, ¥1 ds, = 1. Multiplying (2.4)

by 11 and using Jensen’s inequality for f,,, we obtain

K1 1P1Un,,\n dsz - >\n fn(un,)\n)wl dsz
[519)

o0
= /\nfn (/ wlun,/\n dsx) = /\*fn (/ wlun,/\n dsx)
o0 o0

Put a,, = [, 1un,», ds,. Then we have

(2.7) %>§nmy
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Assume by contradiction that f,(an) = f'(n)(an, —n) + f(n) for some n € N suf-
ficiently large. Then, since a,, > n and f(n) > (k1/A)n, f'(n) > (k1/X\*) for n
sufficiently large by (1.2) and (1.3), we have, by (2.7),

an > ﬁfnmn) _ %I{f’(n)(an — )+ f(n)}

>an—n+n:an,

which is a contradiction. Thus we conclude there exists ng € N such that f,(a,) =
f(ayn) for any n > no. Again, this and (2.7) imply a,, > (A*/k1)f(ay) for any n > ng.
Now, by the assumption on f, we have C' > 0 such that f(s) > (2k1/A*)s — C holds
for any s > 0. From this and the former estimate, we have a, < (A*/k1)C for
n = ng. This implies the claim (2.5).

Step 2. By (2.5), we have [Jup x,
recall that ||| 71(s0) = 1 for a solution ¢, of (2.3). Thus we can apply Lemma 2.2

r1o0) < C for some C independent of n. Also

and the trace Sobolev embedding to obtain w, p € L1(Q), ¢ > 0 a.e. satisfying

(2.8) Unr, =W, @n— ¢ weakly in wha(Q),
U r, = W, @n —> @ strongly in LP(02) and a.e. on 92

forany 1 < ¢ < N/(N—-1)and 1 <p < (N —1)/(N —2). Since [,,¢ds, =1, we
see ¢ # 0 on 0.

In the following, we prove that A, | \* as n — oo and w = u*. We will show
that w € WhH4(Q) is a weak supersolution in the sense of Theorem 2.1. Then the

conclusion is obtained by Theorem 2.1. To prove that w is a weak supersolution, put
A= ian An. Since A\, > \*, we have X > \*. We observe that
ne

/(—AC + Qunp,z, do = / Jrn(tn,,)Cdsg — / —Up\, dSg
Q 81/

holds for all ¢ € C%(Q), ¢ > 0. Using the fact that u, x, — w in L*(Q) or L}(99),
respectively, and Fatou’s lemma, we have

_ a¢
/Q(—Ag—i—g)wdx > )\/BQf(w)Cdsm _/89 511“1895

_ [ % 25
mf(ﬂ))édsz /aQ 8ywdsg,:, V¢ € C*(Q), ¢ =0.

This implies also f(w) € L'(99Q) if we take ¢ = 1. Thus, we conclude that w is
a weak supersolution to (1.1)x«
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Step 3. Let @, ¢ be as in Step 2. We claim that
(2.9) M (non, )on — AN f (u*)p  strongly in L'(9Q)

as n — oo. For the proof, we invoke Vitali’s Convergence Theorem. First, by (2.8),
we see

Ao (Unon, (2))on () = X f(u*(2))p(z)  ae z € 0Q

for a subsequence. Next, we prove the uniformly absolute continuity property of the
sequence {\,f;(Un 1, )Pn}tnen. For that purpose, let A C 9Q be measurable and
€ > 0 be given arbitrary. Since f,, is convex, we have

210)  fu(4D) 2 fn, @) + o, (@) (A s, @)

9 9

a.e. & € 0L); here y 4 is the characteristic function of A. By (2.3) and (2.4), we have

(2.11) A, In(unx, )on dse = Ay frlz(un,kn)un,%@n dsz + M/ Un, X, P A8z
o o0 o0

= An fr/L(un,An)un,AnSOn dsg.
o0

Also an easy consideration shows that

(2.12) {fn(XA—(x)) - f(O)}gon(x) < f(é)gon(x)XA(x) a.e. on O0f).

3

Thus by (2.10), (2.11) and (2.12), we have

13) [ filwa) Lo, ds,

<[ n(B)endset [ fiunduanignds = [ falwnn)onds,

<[ £(2)ents = [ {1.(2) - 10}endse+ [ r0pas,

| 1) emxads+ £0) < 1(2) 1A Il rion + £0)
<of(2)IA + £(0)

for any 1 < p < (N — 1)/(N — 2), where |A| denotes the (N — 1) dimensional Haus-

dorff measure of A C 9 and p’ = p/(p — 1). In (2.13) we have used ||¢n || Lr90) < C
for some C' > 0 independent of n by (2.8). Define

5(e) = (%)p .

N
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Then for any e > 0 we obtain [, f/,(un,x, )¢n ds. < 2f(0)e if A C 9Q satisfies that
|A] < d(¢) by (2.13). This implies the uniform absolute continuity of the sequence
{An S (Un ) on tnen. Also for any e > 0, if we take E C 9 such that |[0Q\ E| < 4(¢)
where d(¢) is as above, we obtain that faﬂ\E M Sl (U, x, )pn dsy < Ce. This implies
the uniform integrability of { Ay f,,(un x,)¥n}nen. Therefore, Vitali’s Convergence
Theorem ensures the claim (2.9).

By (2.9), we pass to the limit n — oo in the weak formulation of (2.3):

[ a0+ Qendr= [ Oufiluns,) +mon = Gopndss, ¥ € C2Q),
Q o0 v

and conclude that ¢ is a weak solution of

0
~Ap+p=0 inQ, a—f = N f(u)o+pp on O
Recall ¢ € WH4(Q) for any 1 < ¢ < N/(N —1). The proof of Theorem 1.1 is
completed. O
References

[1] H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa: Blow up for uy — Au = g(u) revis-
ited. Adv. Differ. Equ. 1 (1996), 73-90.

[2] H. Brezis, J.L. Vizquez Blow-up solutions of some nonlinear elliptic problems. Rev.
Mat. Univ. Complutense Madr. 10 (1997), 443-469.

[3] X. Cabré, Y. Martel: Weak eigenfunctions for the linearization of extremal elliptic prob-
lems. J. Funct. Anal. 156 (1998), 30-56.

[4] M. Chipot, I. Shafrir, M. Fila: On the solutions to some elliptic equations with nonlinear
Neumann boundary conditions. Adv. Differ. Equ. 1 (1996), 91-110.

[5] J. Ddvila: Singular solutions of semi-linear elliptic problems. Handbook of Differential
Equations: Stationary Partial Differential Equations (M. Chipot, ed.). Elsevier, Ams-
terdam, 2008, pp. 83-176.

[6] J. Ddvila, L. Dupaigne, M. Montenegro: The extremal solution of a boundary reaction
problem. Commun. Pure Appl. Anal. 7 (2008), 795-817.

[7] L. Dupaigne: Stable Solutions of Elliptic Partial Differential Equations. Chapman &
Hall Monographs and Surveys in Pure and Applied Mathematics 143, CRC Press, Boca
Raton, 2011.

[8] Y. Martel: Uniqueness of weak extremal solutions of nonlinear elliptic problems. Houston
J. Math. 23 (1997), 161-168.

[9] P. Quittner, W. Reichel: Very weak solutions to elliptic equations with nonlinear Neu-
mann boundary conditions. Calc. Var. Partial Differ. Equ. 32 (2008), 429-452.

[10] F. Takahashi: Extremal solutions to Liouville-Gelfand type elliptic problems with non-
linear Neumann boundary conditions. Commun. Contemp. Math. (2014), 27 pages,
DOI:10.1142/50219199714500163.

Author’s address: Futoshi Takahashi, Department of Mathematics, Osaka City Univer-
sity, Osaka, Japan, e-mail: futoshi@sci.osaka-cu.ac. jp.

144



		webmaster@dml.cz
	2020-07-01T18:34:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




