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ON THE EIGENVALUES OF A ROBIN PROBLEM

WITH A LARGE PARAMETER

Alexey Filinovskiy, Moskva

(Received September 29, 2013)

Abstract. We consider the Robin eigenvalue problem ∆u+λu = 0 in Ω, ∂u/∂ν +αu = 0
on ∂Ω where Ω ⊂ R

n, n > 2 is a bounded domain and α is a real parameter. We investigate
the behavior of the eigenvalues λk(α) of this problem as functions of the parameter α. We
analyze the monotonicity and convexity properties of the eigenvalues and give a variational
proof of the formula for the derivative λ′1(α). Assuming that the boundary ∂Ω is of class C

2

we obtain estimates to the difference λDk −λk(α) between the k-th eigenvalue of the Laplace
operator with Dirichlet boundary condition in Ω and the corresponding Robin eigenvalue
for positive values of α for every k = 1, 2, . . ..
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1. Introduction

Let us consider the eigenvalue problem

∆u + λu = 0 in Ω,(1)

∂u

∂ν
+ αu = 0 on Γ,(2)

where Ω ⊂ R
n, n > 2 is a bounded domain with C2 class boundary surface Γ = ∂Ω.

By ν we mean the outward unit normal vector to Γ, α is a real parameter.

The problem (1), (2) is usually referred to as the Robin problem for α > 0 (see [6],

Chapter 7, Paragraph 7.2) and as the generalized Robin problem for all α ([5]).

We have the sequence of eigenvalues λ1(α) < λ2(α) 6 . . . → ∞ enumerated

according to their multiplicities where λ1(α) is simple with a positive eigenfunction.

The research was in part supported by RFBR Grant (no. 11-01-00989).
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By the variational principle ([11], Chapter 4, Paragraph 1, no. 4) we have

(3) λk(α) = sup
v1,...,vk−1∈L2(Ω)

inf
v∈H1(Ω)

(v,vj)L2(Ω)=0

j=1,...,k−1

∫

Ω
|∇v|2 dx+ α

∫

Γ
v2 ds

∫

Ω v2 dx
, k = 1, 2, . . . .

Let 0 < λD
1 < λD

2 6 . . . → ∞ be the sequence of eigenvalues of the Dirichlet

eigenvalue problem

∆u + λu = 0 in Ω,(4)

u = 0 on Γ.(5)

Also, by the variational principle we have

(6) λD
k = sup

v1,...,vk−1∈L2(Ω)

inf
v∈H̊1(Ω)

(v,vj)L2(Ω)=0
j=1,...,k−1

∫

Ω |∇v|2 dx
∫

Ω
v2 dx

, k = 1, 2, . . . .

It is easy to show the inequality λ1(α) 6 λD
1 which gives an upper bound of λ1(α)

for all values of α. It was noticed in ([2], Chapter 6, Paragraph 2, No. 1) that for

n = 2 and smooth boundary lim
α→∞

λ1(α) = λD
1 . Later in [12] for n = 2 the two-side

estimates

λD
1

(

1 +
λD
1

αq1

)−1

6 λ1(α) 6 λD
1

(

1 +
4π

α|Γ|
)−1

, α > 0,

were obtained where q1 is the first eigenvalue of the Steklov problem

∆2u = 0 in Ω,

u = 0, ∆u− q
∂u

∂ν
= 0 on Γ.

In [4] for any n > 2 we established the asymptotic expansion

λ1(α) = λD
1 −

∫

Γ

(

∂uD
1 /∂ν

)2
ds

∫

Ω(u
D
1 )2 dx

α−1 + o(α−1), α → ∞,

where uD
1 is the first eigenfunction of the Dirichlet problem (4), (5).

The case α < 0 has received attention in the last years after [9]. It was shown in [9]

that for piecewise-C1 boundary lim inf
α→−∞

λ1(α)/−α2 > 1. Later for C1-class boundaries

it was proved ([10], [5]) that lim
α→−∞

λ1(α)/−α2 = 1. Here the condition of C1-class is

optimal, in [9] plane triangle domains were prepared for which lim
α→−∞

λ1(α)/−α2 > 1.

In [3] authors proved that for C1 boundaries lim
α→−∞

λk(α)/−α2 = 1 for all k =

1, 2, . . ..
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2. Main results

Theorem 1. The eigenvalues λk(α) have the following properties:

(i) λk(α1) 6 λk(α2) 6 λD
k for α1 < α2, k = 1, 2, . . .;

(ii) λ1(α) is differentiable and

(7) λ′

1(α) =

∫

Γ
u2
1,α ds

∫

Ω
u2
1,α dx

> 0,

where u1,α(x) is the corresponding eigenfunction;

(iii) λ1(α) is a concave function of α:

(8) λ1(βα1 + (1− β)α2) > βλ1(α1) + (1 − β)λ1(α2), 0 < β < 1.

Theorem 1 establishes some known properties of eigenvalues of the problem (1),

and (2) (see [2], Chapter 6 for (i) and [9], [1] for (ii) and (iii) (in [1] planar domains

with piecewise analytic boundaries were considered)).

Hence the behavior of eigenvalues can be illustrated by Figure 1:

α

λ1(α)

λ2(α)

λ3(α)

λ
D

1

λ
D

2

λ
D

3

Figure 1.

Theorem 2. The eigenvalues λk(α), k = 1, 2, . . ., satisfy the estimates

(9) 0 6 λD
k − λk(α) 6 C1α

−1/2(λD
k )2, α > 0,

where the constant C1 does not depend on k.

343



3. Qualitative properties of eigenvalues

P r o o f of Theorem 1. The increasing of λk(α) follows from (3). Using (6) and

the inclusion H̊1(Ω) ⊂ H1(Ω), we have

λk(α) = sup
v1,...,vk−1∈L2(Ω)

inf
v∈H1(Ω)

(v,vj)L2(Ω)=0

j=1,...,k−1

∫

Ω
|∇v|2 dx+ α

∫

Γ
v2 ds

∫

Ω
v2 dx

6 sup
v1,...,vk−1∈L2(Ω)

inf
v∈H̊1(Ω)

(v,vj)L2(Ω)=0
j=1,...,k−1

∫

Ω
|∇v|2 dx+ α

∫

Γ
v2 ds

∫

Ω v2dx

= sup
v1,...,vk−1∈L2(Ω)

inf
v∈H̊1(Ω)

(v,vj)L2(Ω)=0
j=1,...,k−1

∫

Ω
|∇v|2 dx

∫

Ω
v2 dx

= λD
k .

To obtain (7) we use the inequalities

λ1(α1)− λ1(α) = λ1(α1)− inf
v∈H1(Ω)

∫

Ω |∇v|2 dx+ α
∫

Γ v
2 ds

∫

Ω
v2 dx

> λ1(α1)−
∫

Ω |∇u1,α1 |2 dx+ α
∫

Γ u
2
1,α1

ds
∫

Ω u2
1,α1

dx

= (α1 − α)

∫

Γ u2
1,α1

ds
∫

Ω u2
1,α1

dx
,

λ1(α1)− λ1(α) = inf
v∈H1(Ω)

∫

Ω
|∇v|2 dx+ α1

∫

Γ
v2 ds

∫

Ω v2 dx
− λ1(α)

6

∫

Ω
|∇u1,α|2 dx+ α1

∫

Γ
u2
1,α ds

∫

Ω
u2
1,α dx

− λ1(α)

= (α1 − α)

∫

Γ
u2
1,α ds

∫

Ω
u2
1,α dx

.

Therefore

(10)

∫

Γ
u2
1,α1

ds
∫

Ω
u2
1,α1

dx
6

λ1(α1)− λ1(α)

α1 − α
6

∫

Γ
u2
1,α ds

∫

Ω
u2
1,α dx

.

Considering the problem (1), (2) in the space H1(Ω) we search the values of λ for

which there exists a nonzero function u ∈ H1(Ω) satisfying the integral identity

(11)

∫

Ω

(∇u,∇v) dx+ α

∫

Γ

uv ds = λ

∫

Ω

uv dx
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for any v ∈ H1(Ω). The relation (11) can be rewritten as

(12)

∫

Ω

((∇u,∇v) +Muv) dx+ α

∫

Γ

uv ds = (λ +M)

∫

Ω

uv dx

with an arbitrary M > 0. Let us define an equivalent scalar product in the space

H1(Ω) by the formula

[u, v]M =

∫

Ω

((∇u,∇v) +Muv) dx, ‖u‖2M = [u, u]M .

Now (12) transforms to

[u, v]M + α[Tu, v]M = (λ +M)[Bu, v]M ,

where self-adjoint nonnegative operators T : H1(Ω) → H1(Ω) and B : H1(Ω) →
H1(Ω) were determined by bilinear forms

(13) [Tu, v]M =

∫

Γ

uv ds, [Bu, v]M =

∫

Ω

uv dx, u, v ∈ H1(Ω).

So we have the following equation in the space H1(Ω) with the norm ‖ · ‖M :

(14) (I + αT )u = (λ+M)Bu.

Now we use the inequality ([11], Chapter 3, Paragraph 5, Formula 19)

(15) ‖v‖2L2(Γ)
6 ε‖∇v‖2L2(Ω) + Cε‖v‖2L2(Ω),

valid for v(x) ∈ H1(Ω) with an arbitrary ε > 0. Using (13), (15), we obtain

(16) ‖Tu‖2M = [Tu, Tu]M =

∫

Γ

uTu ds 6 ‖u‖L2(Γ)‖Tu‖L2(Γ)

6 ε

(
∫

Ω

(

|∇Tu|2 + Cε

ε
(Tu)2

)

dx

)1/2(∫

Ω

(

|∇u|2 + Cε

ε
u2

)

dx

)1/2

6 ε‖Tu‖M‖u‖M ,

where ε > 0, M = Mε = Cε/ε. It follows from (16) that

‖Tu‖Mε
6 ε‖u‖Mε

,

so for any ε > 0 we have ‖αT ‖H1(Ω)→H1(Ω) < 1 for |α| < 1/ε. Hence, the inverse

operator (I + αT )−1 is bounded and ‖(I + αT )−1‖ 6 (1− |α|‖T ‖)−1. Therefore the

equation (14) is equivalent to

(I − (λ +M)(I + αT )−1B)u = 0.
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The operator B is compact ([11], Chapter 3, Paragraph 4, Theorem 3) and the

operator (I + αT )−1B : H1(Ω) → H1(Ω) is compact too. So the spectrum of the

problem (14) consists of eigenvalues λj(α) ∈ R, j = 1, 2, . . ., of finite multiplicity

with the only limit point at infinity. By (13), (14) we obtain the inequality

λj(α) > −Mε + (1− |α|‖T ‖)
( ‖uj,α‖Mε

‖uj,α‖L2(Ω)

)2

> −Mε

where uj,α is the corresponding eigenfunction. Therefore λj(α) → ∞, j → ∞.
The eigenvalue λ1 is simple. So the self-adjoint operator (I + αT )−1B satisfies

the conditions of the asymptotic perturbation theory ([7], Chapter 8, Paragraph 2,

Theorem 2.6). It means that the eigenfunction u1,α depends continuously on α in

the space H1(Ω). By ([11], Chapter 3, Paragraph 5, Theorem 4) the trace of u1,α on

Γ depends continuously on α in the space L2(Γ). Now it follows from (10) that

λ′

1(α) = lim
α1→α

λ1(α1)− λ1(α)

α1 − α
=

∫

Γ
u2
1,α ds

∫

Ω
u2
1,α dx

.

By ([11], Chapter 4, Paragraph 2, Theorem 4) u1,α ∈ H2(Ω) and satisfies equation

(1) almost everywhere and the boundary condition in the sense of trace (the so-called

strong solution). In the case
∫

Γ u
2
1,α ds = 0 we have by (2)

u1,α =
∂u1,α

∂ν
= 0 on Γ.

Applying the uniqueness theorem for the Cauchy problem for second-order elliptic

equations ([8], Chapter 1, Paragraph 3), we get u1,α = 0 in Ω. So,
∫

Γ
u2
1,α ds > 0

and we proved the inequality λ′

1(α) > 0.

Taking into account (7), for α2 > α1 we have λ1(α2) > λ1(α1) and λ1(α) < λD
1

for all α.

To prove the concavity of λ1(α) consider the inequality

λ1(βα1 + (1− β)α2) = inf
v∈H1(Ω)

∫

Ω |∇v|2 dx+ (βα1 + (1− β)α2)
∫

Γ v
2 ds

∫

Ω v2 dx

> β inf
v∈H1(Ω)

∫

Ω |∇v|2 dx+ α1

∫

Γ v
2 ds

∫

Ω
v2 dx

+ (1 − β) inf
v∈H1(Ω)

∫

Ω |∇v|2 dx+ α2

∫

Γ v
2 ds

∫

Ω
v2 dx

= βλ1(α1) + (1 − β)λ1(α2), 0 < β < 1.

This completes the proof of Theorem 1. �
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4. Operator approach

The proof of Theorem 2 is based on an estimate with respect to the parameter

α of the norm of a certain operator acting in the L2(Ω) space. This operator is

a difference between operators associated with the Robin and Dirichlet problems.

Now, using compactness and positivity of these operators we can apply estimates to

eigenvalues by the norm of a difference operator (Theorem 3 below).

Let us consider the boundary value problem

−∆u+ u = h in Ω,(17)

∂u

∂ν
+ αu = 0 on Γ, α > 0.(18)

For h(x) ∈ L2(Ω) a weak solution u(x) ∈ H1(Ω) of the problem (17), (18) satisfying

the integral identity

(19)

∫

Ω

((∇u,∇v) + uv) dx+ α

∫

Γ

uv ds =

∫

Ω

hv dx

for all v ∈ H1(Ω). By definition, introduce a scalar product in the space H1(Ω)

(20) (u, v)H1(Ω),α =

∫

Ω

((∇u,∇v) + uv) dx+ α

∫

Γ

uv ds

and the corresponding norm

‖u‖2H1(Ω),α = (u, u)H1(Ω),α.

Using (19), (20), we obtain the relation

(21) (u, v)H1(Ω),α = (h, v)L2(Ω).

Hence, consider a linear functional lh(v) = (h, v)L2(Ω) in the H
1(Ω) space. The func-

tional lh(v) is bounded: |lh(v)| 6 ‖h‖L2(Ω)‖v‖L2(Ω). Now, by the Riesz lemma there

exists a unique function u ∈ H1(Ω) satisfying the integral identity (19). Applying

(21) with v = u, we obtain ‖u‖2H1(Ω),α 6 ‖h‖L2(Ω)‖u‖H1(Ω),α. Therefore,

(22) ‖u‖L2(Ω) 6 ‖u‖H1(Ω),α 6 ‖h‖L2(Ω),

and we can define a bounded linear operator Aα : L2(Ω) → L2(Ω) such that u = Aαh

and ‖Aα‖ 6 1. Moreover, the space H1(Ω) in a bounded domain Ω with C2-class
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boundary embeds compactly into the space L2(Ω) ([6], Theorem 1.1.1). It means

that the operator Aα is compact. Note that

(23) (h,Aαg)L2(Ω) =

∫

Ω

hAαg dx =

∫

Ω

hv dx

=

∫

Ω

((∇u,∇v) + uv) dx+ α

∫

Γ

uv ds

=

∫

Ω

ug dx = (Aαh, g)L2(Ω), f, g ∈ L2(Ω),

with u = Aαh, v = Aαg, u, v ∈ H1(Ω). The relation (23) means that Aα is a self-

adjoint operator. Now, by the relation (23) we have

(h,Aαh)L2(Ω) =

∫

Ω

uh dx =

∫

Ω

(|∇u|2+u2) dx+α

∫

Γ

u2 ds = ‖u‖2H1(Ω),α > 0, h 6= 0.

Hence, the operator Aα is positive. Now, Aα is a self-adjoint positive compact

operator in the Hilbert space H = L2(Ω). By the well-known theorem ([6], The-

orem 1.2.1), Aα has a sequence of eigenvalues {µk(α)}, k = 1, 2, . . . with finite

multiplicities such that 0 < µk(α) 6 1, µk(α) ց 0, k → ∞. Let us denote by
uk,α ∈ L2(Ω) the corresponding eigenfunction satisfying Aαuk,α = µk(α)uk,α. Thus,

µk(α)(uk,α, v)H1(Ω),α = (uk,α, v)L2(Ω) and

µk(α)

(
∫

Ω

((∇uk,α,∇v) + uk,αv) dx+ α

∫

Γ

uk,αv ds

)

=

∫

Ω

uk,αv dx.

It is readily seen that µk(α) = (λk(α) + 1)−1. Let us note that for α > 0 we have

µk(α) 6 (λ1(α) + 1)−1 < 1, so ‖Aα‖ < 1.

Furthermore, consider the Dirichlet problem

−∆u+ u = h in Ω,(24)

u = 0 on Γ.(25)

For h ∈ L2(Ω) a weak solution u(x) ∈ H̊1(Ω) of the problem (24), (25) satisfies the

integral identity

(26)

∫

Ω

((∇u,∇v) + uv) dx =

∫

Ω

hv dx

for all v ∈ H̊1(Ω). By definition, introduce a scalar product in the space H̊1(Ω)

(27) (u, v)H̊1(Ω) =

∫

Ω

((∇u,∇v) + uv) dx
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and the corresponding norm

‖u‖2
H̊1(Ω)

= (u, u)H̊1(Ω).

Using (26), (27), we obtain the relation

(28) (u, v)H̊1(Ω) = (h, v)L2(Ω).

Hence, consider a linear functional lh(v) = (h, v)L2(Ω) in the H̊1(Ω) space. The

functional lh(v) is bounded: |lh(v)| 6 ‖h‖L2(Ω)‖v‖L2(Ω). Now, by the Riesz lemma

there exists a unique function u ∈ H̊1(Ω) satisfying the integral identity (26). Using

(26) with v = u, we obtain ‖u‖2
H̊1(Ω)

6 ‖h‖L2(Ω)‖u‖H̊1(Ω). Therefore,

(29) ‖u‖L2(Ω) 6 ‖u‖H̊1(Ω) 6 ‖h‖L2(Ω),

and we can define the bounded linear operator AD : L2(Ω) → L2(Ω) such that

u = ADh and ‖A‖ 6 1. Moreover, the space H̊1(Ω) in the bounded domain Ω

embeds compactly into the space L2(Ω) ([6], Theorem 1.1.1) so the operator A
D is

compact. Note that

(30) (h,ADg)L2(Ω) =

∫

Ω

hADg dx =

∫

Ω

hv dx =

∫

Ω

((∇u,∇v) + uv) dx

=

∫

Ω

ug dx = (ADh, g)L2(Ω), f, g ∈ L2(Ω),

with u = ADh, v = ADg, u, v ∈ H̊1(Ω). The relation (30) means that AD is

a self-adjoint operator. Now, by (30) we have

(h,ADh)L2(Ω) =

∫

Ω

uh dx =

∫

Ω

(|∇u|2 + u2) dx = ‖u‖2
H̊1(Ω)

> 0, h 6= 0.

Hence, the operator AD is positive. Now, AD is a self-adjoint positive compact

operator in the Hilbert space H = L2(Ω). By the well-known theorem ([6], The-

orem 1.2.1) there exists a sequence of eigenvalues {µD
k }, k = 1, 2, . . ., with finite

multiplicities such that 0 < µD
k 6 1, µD

k ց 0, k → ∞ of the operator AD. Denote

by uD
k ∈ L2(Ω) the corresponding eigenfunctions satisfying ADuD

k = µD
k uD

k . Thus,

µD
k (uD

k , v)H̊1(Ω) = (uD
k , v)L2(Ω) and

µD
k

∫

Ω

((∇uD
k ,∇v) + uD

k v) dx =

∫

Ω

uD
k v dx.

Hence, µD
k = (λD

k + 1)−1. Let us note that µD
k 6 (λD

1 + 1)−1 < 1 so ‖AD‖ < 1.
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Now we obtain an estimate of the norm ‖Aα −AD‖L2(Ω)→L2(Ω) for large positive

values of α.

Let us remark that in domains with C2-class boundary surface the functions u =

Aαh and v = ADh are strong solutions and belong to H2(Ω) ([11], Chapter 4,

Paragraph 2, Theorem 4). Moreover, the estimate

(31) ‖v‖H2(Ω) 6 C2‖h‖L2(Ω)

holds. Now we use the estimate (15) with ε = 1:

(32) ‖v‖L2(Γ) 6 C3‖v‖H1(Ω).

Combining (31) and (32) we have the inequality

(33) ‖∇v‖L2(Γ) 6 C4‖v‖H2(Ω).

Since
∣

∣

∂v
∂ν

∣

∣

Γ
6 |∇v| on Γ, from (33) we obtain the estimate

(34) ‖∂v
∂ν

‖L2(Γ) 6 C5‖h‖L2(Ω).

Let w = (AD −Aα)h. By (17), (18), (24), (25) the function w is a solution of the

boundary value problem

−∆w + w = 0 in Ω,(35)

∂w

∂ν
+ αw =

∂v

∂ν
on Γ.(36)

Multiplying the equation (35) byw and integrating on Ω with respect to the boundary

condition (36), for α > 0 we get the relation

(37)

∫

Ω

(|∇w|2 + w2) dx+
1

α

∫

Γ

(∂w

∂ν

)2

ds =
1

α

∫

Γ

∂w

∂ν

∂v

∂ν
ds.

From (37) we obtain the inequality

‖w‖2L2(Ω) +
1

α

∥

∥

∥

∂w

∂ν

∥

∥

∥

2

L2(Γ)
6

1

α

∥

∥

∥

∂w

∂ν

∥

∥

∥

L2(Γ)

∥

∥

∥

∂v

∂ν

∥

∥

∥

L2(Γ)

and, consequently,

‖w‖2L2(Ω) +
1

α

∥

∥

∥

∂w

∂ν

∥

∥

∥

2

L2(Γ)
6

1

2α

∥

∥

∥

∂w

∂ν

∥

∥

∥

2

L2(Γ)
+

1

2α

∥

∥

∥

∂v

∂ν

∥

∥

∥

2

L2(Γ)
.
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Therefore, we have the estimate

(38) ‖w‖L2(Ω) 6
1√
2α

∥

∥

∥

∂v

∂ν

∥

∥

∥

L2(Γ)
, α > 0.

Combining (38) with (34), we get

‖w‖L2(Ω) 6 C6α
−1/2‖h‖L2(Ω), α > 0,

with the constant C6 independent of α. Thus, for all h ∈ L2(Ω) we have the estimate

‖(AD −Aα)h‖L2(Ω) 6 C6α
−1/2‖h‖L2(Ω)

and

(39) ‖AD −Aα‖ 6 C6α
−1/2, α > 0.

To prove the inequalities (9) we need the following statement (see [6], Theo-

rem 2.3.1).

Theorem 3. Let T1 and T2 be two self-adjoint, compact and positive operators

on a separable Hilbert space H . Let µk(T1) and µk(T2) be their k-th respective

eigenvalues. Then

(40) |µk(T1)− µk(T2)| 6 ‖T1 − T2‖ = sup
h∈H

‖(T1 − T2)h‖
‖h‖ .

Now we apply this theorem to the operators T1 = Aα, T2 = AD. Then by the

relations

µk(α) =
1

λk(α) + 1
, µD

k =
1

λD
k + 1

,

and inequalities (39), (40) we get the estimate

(41)
∣

∣

∣

1

λk(α) + 1
− 1

λD
k + 1

∣

∣

∣
6 C6α

−1/2.

Therefore,

(42) |λD
k − λk(α)| 6 C6α

−1/2(λD
k + 1)(λk(α) + 1)

and taking into account the inequalities λk(α) 6 λD
k , we obtain the estimate

(43) 0 6 λD
k − λk(α) 6 C6α

−1/2(λD
k + 1)2 6 C1α

−1/2(λD
k )2.

Proof of Theorem 2 is completed. �
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