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Abstract. We establish necessary and sufficient conditions of near-optimality for nonlin-
ear systems governed by forward-backward stochastic differential equations with controlled
jump processes (FBSDEJs in short). The set of controls under consideration is necessarily
convex. The proof of our result is based on Ekeland’s variational principle and continuity
in some sense of the state and adjoint processes with respect to the control variable. We
prove that under an additional hypothesis, the near-maximum condition on the Hamilto-
nian function is a sufficient condition for near-optimality. At the end, as an application
to finance, mean-variance portfolio selection mixed with a recursive utility optimization
problem is given.
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1. Introduction

Let T > 0 be a fixed time horizon. We consider the stochastic control problem of

near-optimality for systems governed by nonlinear FBSDEJs of the form

dx(t) = f(t, x(t), u(t)) dt+ σ(t, x(t), u(t)) dW (t)(1.1)

+

∫

Θ

c(t, x(t−), u(t), θ)N(dθ, dt),
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ATRST-ANDRU 2011-2013. The second author was supported by the Czech CTU grant
SGS12/197/OHK4/3T/14 and MSMT grant INGO II INFRA LG12020.
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−dy(t) =

∫

Θ

g(t, x(t), y(t), z(t), rt(θ), u(t))µ(dθ) dt− z(t) dW (t)

−

∫

Θ

rt(θ)N(dθ, dt),

x(0) = ζ, y(T ) = ϕ(x(T )).

Here, W = (W (t))t∈[0,T ] is a standard d-dimensional Brownian motion defined on

the filtered probability space (Ω,F , (Ft)t∈[0,T ],P) satisfying the usual conditions.

The initial condition ζ is an F0-measurable random variable. Further, N(dθ, dt) is

a one dimensional Poisson martingale measure independent ofW with characteristics

µ(dθ) dt. The filtration (Ft)t∈[0,T ] is a canonical filtration of W and N augmented

by P-null sets.

The criterion to be minimized associated with the state equation (1.1) is defined

by

(1.2) J(u(·)) = E

[∫ T

0

∫

Θ

l(t, x(t), y(t), z(t), rt(θ), u(t))µ(dθ) dt+h(x(T ))+γ(y(0))

]
,

and the value function is defined as

(1.3) V = inf{J(u(·)), u(·) ∈ Uad},

where f , σ, c, g, l, h, ϕ, γ are some appropriate functions and the process u(·) is

a control from some set of admissible controls Uad.

Near-optimization is as sensible and important as optimization both from the

theory and application point of view. The stochastic control problems have been

investigated extensively, both by Bellman’s dynamic programming method [2] and

by Pontryagin’s maximum principle [20]. Many more near-optimal controls are avail-

able than the optimal ones. Indeed, optimal controls may not even exist in many

situations, while near-optimal controls always exist. Various kinds of near-optimal

control problems have been investigated in [6], [10], [12], [11], [13], [16], [18], [31],

[32], [33]. In an interesting paper, Zhou [33] established second-order necessary as

well as sufficient conditions for near-optimal stochastic controls for controlled dif-

fusion, where the coefficients were assumed to be twice continuously differentiable.

However, in Hafayed, Abbas and Veverka [11], the authors extended Zhou’s maxi-

mum principle [33] to singular stochastic control. The near-optimal control problem

for systems governed by Volterra integral equations has been studied in Pan and Teo

[18]. The near-optimal stochastic control problem for systems governed by diffusions

with jump processes, with application to finance has been investigated by Hafayed,

Veverka and Abbas [12]. For justification of establishing a theory of near-optimal

controls, see Zhou ([31], [32], [33] Introduction).
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The stochastic maximum principle of optimality for FBSDEs has been studied by

many authors, see e.g. [19], [25], [24], [23], [28], [29]. Necessary conditions of optimal-

ity for FBSDEs in global form, with uncontrolled diffusions coefficient was derived

by Xu [28]. However, Shi and Wu [23] were the first who derived the stochastic max-

imum principle for the fully coupled forward-backward stochastic control system in

global form. The near optimal control problems for FBSDEs have been treated in [1],

[13]. Very recently, Yong [29] completely solved the problem of maximum principle

of optimality for fully coupled FBSDEs. He considered an optimal control problem

for general coupled FBSDEs with mixed initial-terminal conditions and derived nec-

essary conditions for optimality when the control variable appears in the diffusion

coefficients of the forward-equation and the control domain is not necessarily convex.

The stochastic optimal control problems for jump processes have been investigated

by many authors, see e.g. [3], [5], [9], [17], [21]–[27]. Situ [26] first established the

maximum principle for the stochastic control system with uncontrolled random jumps

in global form. Tang and Li [27] completely proved the maximum principle in global

form, where the control variable is allowed to enter both into the diffusion and jump

coefficients by using the second-order expansion. Necessary and sufficient conditions

of optimality for FBSDEJs were obtained by Shi and Wu [25], [24]. In an interest-

ing paper, Shi [22] generalized Yong’s maximum principle for FBSDEs obtained in

Yong [29] to the jump case. He established the stochastic maximum principle for

optimality for fully coupled FBSDEJs when the control variable appears both in the

diffusion and jump coefficients and the control domain is not assumed to be con-

vex. A good account and an extensive list of references on the stochastic maximum

principle for FBSDEJs can be found in [17], [22].

Our purpose in this paper is to establish necessary as well as sufficient condi-

tions for near-optimality for systems governed by nonlinear FBSDEJs. The control

variable appears both in the diffusion and jump coefficients. The control domain is

necessarily convex. The proof of our result is based on Ekeland’s variational princi-

ple [6] and some delicate estimates of the state and adjoint processes. Moreover, we

prove that under some additional assumptions, the necessary conditions are also suf-

ficient for near-optimality. As an application to finance, the mean-variance portfolio

selection mixed problem is provided.

This paper is organized as follows. In Section 2, we formulate the control problem

and describe the assumptions of the model. In Sections 3 and 4, we establish the

necessary and sufficient conditions of near-optimality. An application to finance is

given in the last section.
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2. Problem formulation and preliminaries

Let (Ω,F , (Ft)t∈[0,T ],P) be a fixed filtered probability space equipped with a P-

completed right continuous filtration on which a d-dimensional Brownian motion

W = (W (t))t∈[0,T ] is defined. Let η be a one dimensional homogeneous (Ft)-Poisson

point process independent of W . We denote by Ñ(dθ, dt) the random counting

measure induced by η, defined on Θ×R+, where Θ is a fixed nonempty subset of R
k

with its Borel σ-field B(Θ). Further, let µ(dθ) be the local characteristic measure of

η, i.e., µ(dθ) is a σ-finite measure on (Θ,B(Θ)) with µ(Θ) <∞. We then define

N(dθ, dt) = Ñ(dθ, dt)− µ(dθ) dt,

where N is the Poisson martingale measure on B(Θ) × B(R+) with local charac-

teristics µ(dθ) dt. We assume that (Ft)t∈[0,T ] is the P-augmentation of the natural

filtration (F
(W,N)
t )t∈[0,T ] defined as

F
(W,N)
t = σ(W (s) : 0 6 s 6 t) ∨ σ

(∫ s

0

∫

B

N(dθ, dr) : 0 6 s 6 t, B ∈ B(Θ)

)
∨ G,

where G denotes the totality of P-null sets, and σ1 ∨σ2 denotes the σ-field generated

by σ1 ∪ σ2.

Notation. We will use the following notation in this paper:

1. Any element a ∈ Rn will be identified with a column vector whose i-th compo-

nent is ai. The norm here is defined as |a| = |a1|+ . . .+ |an|.

2. Denote by M∗ the transpose of any vector or matrix M and denote the trace

of the matrix M by Tr{M}.

3. Denote by E the expectation with respect to P.

4. For a function ψ ∈ C1 denote by ψx its gradient or Jacobian with respect to

the variable x.

5. sgn(·) denotes the sign function.

6. In the sequel, L2
F ([0, T ];R

n) denotes the Hilbert space of (Ft)-progressively

measurable, Rn-valued processes (x(t))t∈[0,T ] such that

E

∫ T

0

|x(t)|2 dt <∞,

and M2
F ([0, T ];R

m) denotes the Hilbert space of (Ft)-predictable, R
m-valued pro-

cesses (ψ(t, θ))t∈[0,T ] defined on [0, T ]×Θ such that

E

∫ T

0

∫

Θ

|ψ(t, θ)|2µ(θ) dt <∞.
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7. Let M ∈ Rn×d×n and N ∈ Rn×d. Then the multiplication MN is a vector

in Rn defined as (MN)i =
d∑

j=1

n∑
l=1

MijlNil =
d∑

j=1

〈Mij•, N•j〉, where N•j denotes the

j-th column of the matrix N .

8. C denotes a generic positive constant which may differ from line to line.

Definition 1. Let T > 0 be a fixed strictly positive real number and U a

nonempty compact convex subset of Rm. An admissible control is defined as a func-

tion u(·) : [0, T ]× Ω −→ U which is (Ft)-predictable, E
∫ T

0 |u(t)|2 dt < ∞, and such

that the equation (1.1) has a unique solution u(·) ∈ Uad.

Throughout this paper, we also assume that the coefficient functions

f : [0, T ]× R
n × U → R

n,

σ : [0, T ]× R
n × U → R

n×d,

c : [0, T ]× R
n × U×Θ → R

n,

g : [0, T ]× R
n × R

m × R
m×d × R

m × U → R
m,

l : [0, T ]× R
n × R

m × R
m×d × R

m × U → R,

h : R
n→ R,

ϕ : R
n→ R

m,

γ : R
m→ R,

satisfy the following standing assumptions:

(H1) The functions f , σ, g, c, l, h, γ, ϕ are continuously differentiable in their

variables including (x, y, z, r, u).

(H2) The derivatives fx, fu, σx, σu, ϕx, hx, g̺, l̺ (̺ = x, y, z, r, u) are bounded and

∫

Θ

(|cx(t, x, u, θ)|
2 + |cu(t, x, u, θ)|

2)µ(dθ) <∞.

Further, functions f , σ, c, cx, cu, hx have at most linear growth in variable x,

γy has at most linear growth in y, the function g has at most linear growth in

x, y and gy = gy(t, x, u), i.e., gy is independent of y, z, r. For ̺ = x, y, z, r, u,

the function l̺ has at most linear growth in x, y, z, r.

(H3) For ̺ = x, u the functions f̺, σ̺, g̺, gy, c, c̺, h, hx, ϕx are globally Lipschitz

in the variable x. The function γ is globally Lipschitz in the variable y. For

̺ = x, u, y the function l̺ is globally Lipschitz in x, y, z, r.

From (H2) it follows that the function g(t, x, ·, z, r, u) is “close to” linear function

in y. Under the assumptions (H1), (H2) and (H3) equation (1.1) has a unique
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solution (x(t), y(t), z(t), rt(·)) ∈ L2
F ([0, T ];R

n)×L2
F ([0, T ];R

m)×L2
F ([0, T ];R

m×d)×

M2
F ([0, T ];R

m).

For any u(·) ∈ Uad we introduce the following adjoint equations:

(2.1)






−dpt =

{
f∗
x(t, x(t), u(t))pt + σ∗

x(t, x(t), u(t))qt

+

∫

Θ

[c∗x(t, x(t), u(t), θ)Rt(θ) + l∗x(t,Λt(θ), u(t))]µ(dθ)

−

∫

Θ

g∗x(t,Λt(θ), u(t))ktµ(dθ)

}
dt− qt dW (t)

−

∫

Θ

Rt(θ)N(dθ, dt),

pT = − ϕ∗
x(x(T ))kT + hx(x(T )),

dkt =

∫

Θ

[g∗y(t,Λt(θ), u(t))kt − l∗y(t,Λt(θ), u(t))]µ(dθ) dt

+

∫

Θ

[g∗z(t,Λt(θ), u(t))kt − l∗z(t,Λt(θ), u(t))]µ(dθ) dW (t)

+

∫

Θ

[g∗r (t,Λt−(θ), u(t))kt − l∗r(t,Λt−(θ), u(t))]N(dθ, dt),

k0 = − γy(y(0)),

where Λt(θ) = (x(t), y(t), z(t), rt(θ)). Further, we define the Hamiltonian function

H : [0, T ]× Rn × Rm × Rm×d × Rm× U × Rn × Rn×d × Rm × Rn → R associated

with the stochastic control problem (1.1)–(1.2) as

(2.2) H(t, x, y, z, r(·), u, p, q, k, R(·)) = p∗f(t, x, u) + Tr{q∗σ(t, x, u)}

−

∫

Θ

[k∗g(t, x, y, z, r(θ), u) +R∗(θ)c(t, x, u, θ) − l(t, x, y, z, r(θ), u)]µ(dθ).

Denoting Ψt(θ) = (pt, qt, kt, Rt(θ)) and H(t, ·) ≡ H(t,Λt(·), ut,Ψt(·)), the adjoint

equation (2.1) can be rewritten as follows:

(2.3)





−dpt = Hx(t) dt− qt dW (t)−

∫

Θ

Rt(θ)N(dθ, dt),

pT = − ϕ∗
x(x(T ))kT + hx(x(T )),

dkt = −Hy(t) dt−Hz(t) dW (t)−

∫

Θ

Hr(t−, θ)N(dθ, dt),

k0 = − γy(y(0)).

It is a well known fact that under assumptions (H1)–(H3), the adjoint equations

(2.1) or (2.3) admit a unique solution quartet (pt, qt, kt, Rt(·)) such that

(pt, qt, kt, Rt(·)) ∈ L
2
F ([0, T ];R

n)×L
2
F ([0, T ];R

n×d)×L
2
F ([0, T ];R

m)×M
2
F ([0, T ];R

n).
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Moreover, since the corresponding derivatives of f, σ, g, l, c, h, ϕ are bounded, we

deduce by standard arguments that

(2.4) E

{
sup

t∈[0,T ]

|pt|
2 +

∫ T

0

|qt|
2 dt+

∫ T

0

|kt|
2 dt+

∫ T

0

∫

Θ

|Rt(θ)|
2µ(dθ) dt

}
<∞.

3. Necessary conditions for near-optimality of FBSDEJs

Our objective in this section is to derive near-optimality necessary conditions for

FBSDEJs, where the control domain is necessarily convex. The proof of our main

result is based on Ekeland’s variational principle [6] and some estimates of the state

and adjoint processes with respect to the control variable.

Let us recall the definition of the near-optimal control of order ελ as given in Zhou

([33], Definitions (2.1) and (2.2)) and Ekeland’s variational principle which will be

used in the sequel.

Definition 2 (Near-optimal control of order ελ). For a given ε > 0 an admissible

control uε(·) is called the near-optimal if

(3.1) |J(uε(·)) − V | 6 Q(ε),

where Q(·) is a function of ε satisfying lim
ε→0

Q(ε) = 0. The estimator Q(ε) is called an

error bound. If Q(ε) = Cελ for some λ > 0 independent of the constant C then uε(·)

is called the near-optimal control of order ελ. If Q(ε) = ε, the admissible control

uε(·) is called ε-optimal.

Lemma 1 (Ekeland’s Variational Principle [6]). Let (E, d) be a complete metric

space and f : E → R a lower semi-continuous function which is bounded from below.

For a given ε > 0, suppose that there is uε ∈ E satisfying

f(uε) 6 inf
u∈E

(f(u)) + ε.

Then for any δ > 0 there exists uδ ∈ E such that

1. f(uδ) 6 f(uε),

2. d(uδ, uε) 6 δ,

3. f(uδ) 6 f(u) + εδ−1d(u, uδ) for all u ∈ E.

To apply Ekeland’s variational principle to our problem, we must define a metric d

on the space of admissible controls such that (Uad, d) becomes a complete metric

space. For any u(·), v(·) ∈ Uad we define

(3.2) d(u(·), v(·)) = P⊗dt{(ω, t) ∈ Ω× [0, T ] : u(ω, t) 6= v(ω, t)},
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where P⊗ dt is the product measure of P with the Lebesgue measure dt on [0, T ].

Moreover, it has been shown in the book by Yong and Zhou ([30], Lemma 6.4,

146–147) that

1. (Uad, d) is a complete metric space,

2. the cost function J is continuous from Uad into R.

In the sequel, we adopt the following notation. For u(·) ∈ Uad we denote by

Λu
t (θ) = (xu(t), yu(t), zu(t), rut (θ)) and Ψu

t (θ) = (put , q
u
t , k

u
t , R

u
t (θ)) the solutions to

state equation (1.1) and to adjoint equations (2.3) respectively, corresponding to u(·).

Lemma 2. For any λ ∈ [0, 1/2) and for any ε > 0 there exist ūε(·) ∈ Uad and an

(Ft)-adapted process (p̄
ε
t , q̄

ε
t , k

ε
t , R

ε

t (·)) such that for all u ∈ U :

(3.3) E

∫ T

0

H∗
u(t,Λ

ε

t (·), ū
ε
t ,Ψ

ε

t (·))(u − ūε(t)) dt > −Cελ,

where C = C(λ, µ(Θ), T ) is a positive constant.

P r o o f. Applying Ekeland’s variational principle with δ = ε1/2 there exists an

admissible control ūε(·) such that

(3.4) d(ūε(·), uε(·)) 6 ε1/2,

and Jε(ūε(·)) 6 Jε(u(·)) for any u(·) ∈ Uad, where

(3.5) Jε(u(·)) = J(u(·)) + ε1/2d(ūε(·), u(·)).

Notice that ūε(·) is near-optimal for the initial cost J and it is optimal for the new

cost Jε defined by (3.5).

Let uε,̺(·) denote a family of perturbed controls indexed by ̺ ∈ [0, 1] given by

uε,̺(t) = ūε(t) + ̺(u(t)− ūε(t)).

By using the fact that Jε(ūε(·)) 6 Jε(uε,̺(·)) and d(ūε(·), uε,̺(·)) 6 C̺, we obtain

(3.6) J(uε,̺(·)) − J(ūε(·)) > −ε1/2d(ūε(·), uε,̺(·)) > −Cε1/2̺.

Dividing (3.6) by ̺ and sending ̺ to zero, we have

(3.7)
d

d̺
(J(uε,̺(·)))

∣∣∣
̺=0

> −Cε1/2 > −Cελ.

Finally, arguing as in Shi and Wu ([25] Theorem 2.1) for the left-hand side of in-

equality (3.7), the desired result follows. �

Now we are able to derive necessary conditions of near-optimality for systems

governed by FBSDEJs, which is the main result of this paper.
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Theorem 1 (Necessary Near-Optimal Maximum Principle). Let the assumptions

(H1), (H2) and (H3) hold. Then for any λ ∈ [0, 1/2) there exists a positive constant

C = C(λ, µ(Θ), T ) such that for any ε > 0 and any near-optimal control uε(·), the

following inequality holds for all u ∈ U:

(3.8) E

∫ T

0

H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(u − uε(t)) dt > −Cελ.

To prove the above theorem, we need the following auxiliary results on the vari-

ation of the state and adjoint processes with respect to the control variable. First,

let us recall the following proposition, which will be used to prove Lemma 3.

Proposition 1. Let A be a predictable σ-field on Ω× [0, T ], and f an A⊗B(Θ)-

measurable function such that

E

{∫ T

0

∫

Θ

|f(s, θ)|2µ(dθ) ds

}
<∞.

Then for all γ > 2 there exists a positive constant C = C(γ, T, µ(Θ)) such that

E

{
sup

t∈[0,T ]

∣∣∣∣
∫ t

0

∫

Θ

f(s, θ)N(ds, dθ)

∣∣∣∣
γ}

6 CE

{∫ T

0

∫

Θ

|f(s, θ)|γµ(dθ) ds

}
.

P r o o f. See Bouchard and Elie ([4], Appendix). �

The next lemma is an extension of Lemma 3 in Zhou [33], to the forward-backward

stochastic differential equations.

Lemma 3. Let (xu(t), yu(t), zu(t), ru(t, ·))t∈[0,T ] and (xv(t), yv(t), zv(t),

rv(t, ·))t∈[0,T ] be two solutions of the state equation (1.1) associated, respectively,

with some admissible controls u(·) and v(·) such that d(u(·), v(·)) 6 1. Then for

any α ∈ (0, 1), β > 0 and β′ ∈ (1, 2] satisfying αβ < 1, αβ′ < 1 there exist positive

constants C1 = C1(α, β, µ(Θ), T ) and C2 = C2(α, β, β
′, µ(Θ), T ) such that

E

(
sup

06t6T
|xu(t)− xv(t)|β

)
6 C1d(u(·), v(·))

αβ/2,(3.9)

E

{
sup

06t6T
|yu(t)− yv(t)|β

′

+

∫ T

0

|zu(t)− zv(t)|β
′

dt(3.10)

+

∫ T

0

∫

Θ

|rus (θ)− rvs (θ)|
β′

µ(dθ) ds

}
6 C2d(u(·), v(·))

αβ′/2.
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P r o o f. First we show that under (H1)–(H3) the solution process (y(t))t∈[0,T ]

to Equation (1.1) corresponding to the backward component satisfies

(3.11) E

(
sup

06t6T
|y(t)|p

)
<∞ ∀ p > 0.

To prove it, denote Λt(θ) = (x(t), y(t), z(t), rt(θ)) and first assume p > 2. Then we

have for each t ∈ [0, T ]

y(t) = E

[
ϕ(x(T )) +

∫ T

t

∫

Θ

g(s,Λs(θ), u(s))µ(dθ) ds
∣∣∣Ft

]
.

Now by the Jensen and generalized triangle inequality we derive

|y(t)|p 6 CE

[
|ϕ(x(T ))|p +

∫ T

t

∫

Θ

|g(s,Λs(θ), u(s))|
pµ(dθ) ds

∣∣∣Ft

]
.

Due to the Lipschitz property of ϕ and at most linear growth of g in x and y we

obtain

(3.12) |y(t)|p 6 CE

[
1 + |x(T )|p +

∫ T

t

(|x(s)|p + |y(s)|p) ds
∣∣∣Ft

]
,

and hence,

(3.13) E|y(t)|p 6 CE

[
1 + |x(T )|p +

∫ T

t

(|x(s)|p + |y(s)|p) ds

]
.

By the Gronwall inequality and the fact that E
(
sup

06t6T
|x(t)|p

)
< ∞, p > 0, we can

show that

(3.14) sup
06t6T

E|y(t)|p <∞.

To obtain a similar estimate with the supremum inside the expectation we realize

that due to (3.12)

E

(
sup

06t6T
|y(t)|p

)
6 C + CE

(
sup

06t6T
E

[
|x(T )|p +

∫ T

t

(|x(s)|p + |y(s)|p) ds
∣∣∣Ft

])
.

By virtue of the fact that E
(
sup

06t6T
|x(t)|p

)
<∞, p > 0, and (3.14) the processes

M1(t) = E[|x(T )|p|Ft], M2(t) = E

[ ∫ T

0

|x(s)|p ds
∣∣∣Ft

]
,
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and

M3(t) = E

[ ∫ T

0

|y(s)|p ds
∣∣∣Ft

]
, t ∈ [0, T ],

are L2-martingales with càdlàg paths and therefore, the Burkholder-Davis-Gundy

and Cauchy-Schwarz inequalities imply

(3.15) E

(
sup

06t6T
|M1(t)|

)
6 CE

√
〈M1〉T 6 C

√
E〈M1〉T <∞.

As for M2 (and similarly for M3) we take into account that

(3.16) E

(
sup

06t6T
E

[ ∫ T

t

|x(s)|p ds
∣∣∣Ft

])

6 E

(
sup

06t6T
|M2(t)|

)
+ E|M2(0)|

6 2E
(

sup
06t6T

|M2(t)|
)
,

and repeat the line from (3.15). Thus we conclude that indeed

E

(
sup

06t6T
|y(t)|p

)
<∞, p > 2.

The case when p ∈ [0, 2) follows easily by the Hölder inequality.

Next denote x̃(t) = xu(t)− xv(t) and define similarly the processes ỹ(t), z̃(t) and

r̃t(·). First we prove (3.9) for two cases. First, let β = 2p, p > 1. Then by using

standard techniques we have that

E

(
sup

06t6T
|x̃(t)|2p

)
6 CE

∫ T

0

|f(t, xu(t), u(t))− f(t, xv(t), v(t))|2p dt

+CE

∫ T

0

|σ(t, xu(t), u(t))− σ(t, xv(t), v(t))|2p dt

+CE

∫ T

0

∫

Θ

|c(t, xu(t), u(t), θ) − c(t, xv(t), v(t), θ)|2pµ(dθ) dt

= I1 + I2 + I3.

By the definition of the metrics d and by the growth conditions on f we can estimate

I1 in the following way:

I1 6 CE

∫ T

0

|f(t, xu(t), u(t))− f(t, xu(t), v(t))|2p dt

+ CE

∫ T

0

|f(t, x(t), v(t)) − f(t, xv(t), v(t))|2p dt

= I1,1 + I1,2.
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Applying the Hölder inequality with a = 1/(αp) > 1, b > 1 such that 1/a+ 1/b = 1

leads to

I1,1 = CE

∫ T

0

|f(t, xu(t), u(t)) − f(t, xu(t), v(t))|2p1{u(t) 6=v(t)}(t) dt

6 C

(
E

∫ T

0

(1 + |xu(t)|2pb) dt

)1/b
(d(u(·), v(·)))αp

6 Cd(u(·), v(·))αp.

The estimate of I1,2 follows from the Lipschitz property of f and from the fact that

I1,2 6 CE

∫ T

0

|x̃(t)|2p dt 6 C

∫ T

0

E

(
sup

06t6τ
|x̃(t)|2p

)
dτ.

Repeating the same steps we derive similar estimates for I2 and I3 obtaining

E

(
sup

06t6T
|x̃(t)|2p

)
6 Cd(u(·), v(·))αβ/2 + C

∫ T

0

E

(
sup

06t6τ
|x̃(t)|2p

)
dτ.

Application of Gronwall’s lemma therefore leads to

(3.17) E

(
sup

06t6T
|x̃(t)|2p

)
6 Cd(u(·), v(·))αβ/2.

Now, let β = 2p, p ∈ [0, 1). Due to the Hölder inequality (with a = 1/p > 1) and the

preceding result one has

E

(
sup

06t6T
|x̃(t)|2p

)
6

(
E

(
sup

06t6T
|x̃(t)|2

))p

6 Cd(u(·), v(·))αp.

Now we proceed to proving the inequality (3.10). Denote Λu
t (θ) = (xu(t), yu(t), zu(t),

rut (θ)) and consider again the two cases for β
′.

First, let β′ = 2. It is easy to see that the triple (ỹ(t), z̃(t), r̃t(θ))t∈[0,T ] satisfies

−ỹ(t)−

∫ T

t

z̃(s) dW (s)−

∫ T

t

∫

Θ

r̃s(θ)N(dθ, ds)

= − (ϕ(xu(T ))− ϕ(xv(T )))

+

∫ T

t

∫

Θ

(g(s,Λu
s (θ), u(s)) − g(s,Λv

s(θ), v(s)))µ(dθ) ds.
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Now by scalar multiplying each side of the above equality with itself and taking

expectation one obtains

(3.18) E

(
|ỹ(t)|2 +

∫ T

t

|z̃(s)|2 ds+

∫ T

t

∫

Θ

|r̃s(θ)|
2µ(dθ) ds

)

6 CE

(∫ T

t

∫

Θ

|g(s,Λu
s (θ), u(s)) − g(s,Λv

s(θ), v(s))|µ(dθ) ds

)2

+ CE|ϕ(xu(T ))− ϕ(xv(T ))|2

= I1 + I2.

We have used the facts that

E

[
ỹ(t)

∫ T

t

z̃(s) dW (s)

]
= 0, E

[
ỹ(t)

∫ T

t

∫

Θ

r̃s(θ)N(dθ, ds)

]
= 0,

E

[ ∫ T

t

∫

Θ

r̃s(θ)N(dθ, ds)

∫ T

t

z̃(s) dW (s)

]
= 0,

due to independence of W and N and due to independence of its increments after

time t on Ft.

By the Lipschitz property of ϕ and by (3.9) the estimate of I2 follows easily as

(3.19) I2 6 CE|x̃(T )|2 6 Cd(u(·), v(·))α.

To estimate I1 let us write

I1 6 CE

(∫ T

t

∫

Θ

|g(s,Λu
s (θ), u(s))− g(s,Λv

s(θ), u(s))|
2µ(dθ) ds

)2

+ CE

∫ T

t

∫

Θ

|g(s,Λv
s(θ), u(s)) − g(s,Λv

s(θ), v(s))|
2
1{u(s) 6=v(s)}(s)µ(dθ) ds

= I1,1 + I1,2.

By virtue of the growth condition on g in (H2) (recall that |g(t, x, y, z, r)| 6 C(1 +

|x| + |y|)), the Hölder inequality with a = 1/α > 1, b > 1 such that 1/a + 1/b = 1

and by (3.11) it follows that

(3.20) I1,2 6 CE

∫ T

t

∫

Θ

(1 + sup
06s6T

|xv(s)|2 + sup
06s6T

|yv(s)|2)1{u(s) 6=v(s)}(s)µ(dθ) ds

6 C
(
1 + E

[
sup

06s6T
|xv(s)|2/(1−α)

]
+ E

[
sup

06s6T
|yv(s)|2/(1−α)

])1−α

×

(
E

∫ T

t

∫

Θ

1{u(s) 6=v(s)}(s)µ(dθ) ds

)α

6 Cd(u(·), v(·))α.
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Now, let us turn to estimate I1,1. Using the Lipschitz property of g and the Cauchy-

Schwarz inequality one has

(3.21) I1,1 6 CTE
(

sup
06t6T

|x̃(t)|2
)

+ CTE

∫ T

t

|ỹ(s)|2 ds+ C(T − t)E

∫ T

t

|z̃(s)|2 ds

+ C(T − t)E

∫ T

t

∫

Θ

|r̃s(θ)|
2µ(dθ) ds.

Let us now take a particular t ∈ [0, T ] so that δ = T − t < 1/(2C). Then putting

together (3.18), (3.19), (3.20), (3.21), and (3.9) we obtain after rearranging the terms

the estimate

E|ỹ(t)|2 +
1

2
E

∫ T

t

|z̃(s)|2 ds+
1

2
E

∫ T

t

∫

Θ

|r̃s(θ)|
2µ(dθ) ds

6 Cd(u(·), v(·))α ∀ t ∈ [T − δ, T ].

Repeating similar steps we obtain a similar estimate for all t ∈ [T − 2δ, T − δ] and

after a finite number of iterations we cover the whole interval [0, T ].

The proof of the same estimate but for β′ ∈ [0, 2) follows by the Hölder inequality

similarly to the proof of (3.9). This completes the proof of Lemma 3. �

Lemma 4. Let (put , q
u
t , k

u
t , R

u
t (·)) and (pvt , q

v
t , k

v
t , R

v
t (·)) be two adjoint solution

processes to equations (2.1) corresponding to some admissible controls u(·) and v(·)

respectively with d(u(·), v(·)) 6 1. Then for any β ∈ (1, 2) and α ∈ (0, 1) satisfying

(1 + α)β < 2 there is a positive constant C = C(α, β, µ(Θ), T ) such that

(3.22) E

∫ T

0

{
|put − pvt |

β + |qut − qvt |
β +

∫

Θ

|Ru
t (θ) −Rv

t (θ)|
βµ(dθ)

}
dt

6 Cd(u(·), v(·))αβ/2

and

(3.23) E

∫ T

0

|kut − kvt |
β dt 6 Cd(u(·), v(·))αβ/2.

P r o o f. For each t ∈ [0, T ] and θ ∈ Θ, we denote p̃t = put − pvt , q̃t = qut − qvt ,

k̃t = kut − kvt and R̃t(θ) = Ru
t (θ) − Rv

t (θ). Further, similarly to the previous proof

denote Λu
t (θ) = (xu(t), yu(t), zu(t), rut (θ)).
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We start by proving (3.23). Note that the process (k̃t)t∈[0,T ] satisfies the following

(forward) stochastic differential equation:






dk̃t =

∫

Θ

(g∗y(t,Λ
u
t (θ), u(t))k̃t +Gy(t, θ))µ(dθ) dt

+

∫

Θ

(g∗z(t,Λ
u
t (θ), u(t))k̃t +Gz(t, θ))µ(dθ) dW (t)

+

∫

Θ

(g∗r (t,Λ
u
t−(θ), u(t))k̃t +Gr(t, θ))N(dθ, dt), t ∈ (0, T ],

k̃0 = − (γy(y
u(0))− γy(y

v(0))),

where

Gy(t, θ) = [gy(t,Λ
u
t (θ), u(t)) − gy(t,Λ

v
t (θ), v(t))]k

v
t

+ ly(t,Λ
u
t (θ), u(t)) − ly(t,Λ

v
t (θ), v(t)),

Gz(t, θ) = [gz(t,Λ
u
t (θ), u(t))− gz(t,Λ

v
t (θ), v(t))]k

v
t

+ lz(t,Λ
u
t (θ), u(t)) − lz(t,Λ

v
t (θ), v(t)),

Gr(t, θ) = [gr(t,Λ
u
t−(θ), u(t)) − gr(t,Λ

v
t−(θ), v(t))]k

v
t

+ lr(t,Λ
u
t−(θ), u(t))− lr(t,Λ

v
t−(θ), v(t)).

Then we have for each t ∈ [0, T ]

−k̃t = (γy(y
u(0))− γy(y

v(0)))

+

∫ t

0

∫

Θ

(g∗y(t,Λ
u
t (θ), u(t))k̃s +Gy(s, θ))µ(dθ) ds

+

∫ t

0

∫

Θ

(g∗z(t,Λ
u
t (θ), u(t))k̃s +Gz(s, θ))µ(dθ) dW (s)

+

∫ t

0

∫

Θ

(g∗r (t,Λ
u
t−(θ), u(t))k̃s +Gr(s, θ))N(dθ, ds).

The adjoint equation for k̃t is the ODE

(3.24)





dψt = −

[∫

Θ

g∗y(t,Λ
u
t (θ), u(t))ψtµ(dθ) + |k̃t|

β−1 sgn(k̃t)

]
dt,

ψT = 0,

where β ∈ (1, 2). The equation has random coefficients (due to processes (x(t)) and

(u(t)), see (H3)) but has neither the diffusion nor the jump part. Since gy is bounded

and Lipschitz in x, it can be easily shown that (3.24) admits a unique solution in
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L2 which can be found pathwise. Moreover, the following estimate holds for γ > 2,

1/β + 1/γ = 1:

(3.25) E

[
sup

t∈[0,T ]

|ψt|
γ
]
<∞.

Indeed, by integrating (3.24) from t to T and taking | · |γ one gets

|ψt|
γ
6 C

∣∣∣∣
∫ T

t

ψs

∫

Θ

g∗y(t,Λ
u
t (θ), u(t))µ(dθ) ds

∣∣∣∣
γ

+ C

∣∣∣∣
∫ T

t

|k̃s|
β−1 sgn(k̃s) ds

∣∣∣∣
γ

6 C

(∫ T

t

|ψs|

∫

Θ

|g∗y(t,Λ
u
t (θ), u(t))|µ(dθ) ds

)γ
+ Cmγ/2

(∫ T

t

|k̃s|
β−1 ds

)γ
,

where m is the dimension of k̃t. Using now the Hölder inequality and boundedness

of gy by K, we have

(3.26) |ψt|
γ 6 CKγµγ(Θ)(T − t)γ−1

∫ T

t

|ψs|
γ ds+ Cmγ/2(T − t)γ−1

∫ T

t

|k̃s|
β ds

6 C̃

∫ T

t

|ψs|
γ ds+ C̃

∫ T

t

|k̃s|
β ds,

where C̃ = C̃(T, γ,K, µ(Θ),m).

Now, first taking expectation and supremum over time leads to

(3.27) sup
t∈[0,T ]

E|ψt|
γ 6 C̃E

∫ T

0

|ψs|
γ ds+ C̃E

∫ T

0

|k̃s|
β ds.

Note that by the Hölder inequality one has

(3.28) E

∫ T

0

|k̃s|
β ds 6 C

(
E

∫ T

0

|k̃s|
2 ds

)β/2
6 K̃ <∞.

Therefore, applying Gronwall’s lemma to (3.27) and (3.28), we conclude that

(3.29) sup
t∈[0,T ]

E|ψt|
γ
6 K̃ exp(C̃T ) <∞.

Now, taking the supremum over time in (3.26), taking expectation and applying the

previous estimates, we end with

E

[
sup

t∈[0,T ]

|ψt|
γ
]
6 C̃E

∫ T

0

|ψs|
γ ds+ C̃E

∫ T

0

|k̃s|
β ds

6 C̃K̃ exp(C̃T )T + C̃K̃ <∞.
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Let us derive now a better estimate of E
[
sup

t∈[0,T ]

|ψt|
γ
]
. Taking expectation in (3.26),

applying Gronwall’s inequality and taking supremum, one gets

(3.30) sup
t∈[0,T ]

E|ψt|
γ 6 KE

∫ T

0

|k̃s|
β ds.

Using the previous estimate, one can derive along similar lines the estimate

(3.31) E

[
sup

t∈[0,T ]

|ψt|
γ
]
6 KE

∫ T

0

|k̃s|
β ds.

The duality of ψt and k̃t is shown by the Itô formula applied to k̃
∗
tψt on [0, T ]. After

taking E(·) it gives

(3.32) E

∫ T

0

|k̃t|
β dt = −E[k̃0ψ0]− E

∫ T

0

∫

Θ

ψ∗
tGy(t, θ)µ(dθ) dt.

The estimation of E[k̃0ψ0] goes as follows (using the Hölder inequality for γ > 2 and

the uniform estimate (3.31) for ψ)

(3.33) E[k̃0ψ0] 6 (E|ψ0|
γ)1/γ(E|k̃0|

β)1/β

6

(
E sup

t∈[0,T ]

|ψt|
γ
)1/γ

(E|γy(y
u(0))− γy(y

v(0))|β)1/β

6 K

(
E

∫ T

0

|k̃s|
β ds

)1/γ
(E|yu(0)− yv(0)|β)1/β

6 C

(
E

∫ T

0

|k̃s|
β ds

)1/γ
d(u(·), v(·))α/2.

The second term is estimated as follows. Applying the Hölder inequality yields that

(3.34) E

∫ T

0

∫

Θ

|ψ∗
tGy(t, θ)|µ(dθ) dt

6 E

[
sup

t∈[0,T ]

|ψt|

∫ T

0

∫

Θ

|Gy(t, θ)|µ(dθ) dt

]

6 (E sup
t∈[0,T ]

|ψt|
γ)1/γ

(
E

∫ T

0

∫

Θ

|Gy(t, θ)|
βµ(dθ) dt

)1/β

6 K

(
E

∫ T

0

|k̃s|
β ds

)1/γ(
E

∫ T

0

∫

Θ

|Gy(t, θ)|
βµ(dθ) dt

)1/β
.
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Since 1− 1/γ = 1/β, one obtains putting the previous results together that

(3.35) E

∫ T

0

|k̃t|
β dt 6 Cd(u(·), v(·))αβ/2 + CE

∫ T

0

∫

Θ

|Gy(t, θ)|
βµ(dθ) dt.

Therefore, it remains to estimate the last term. Recalling that

Gy(t, θ) = [gy(t,Λ
u
t (θ), u(t)) − gy(t,Λ

v
t (θ), v(t))]k

v
t

+ ly(t,Λ
u
t (θ), u(t))− ly(t,Λ

v
t (θ), v(t)),

and denoting

(3.36) E

∫ T

0

∫

Θ

|Gy(t, θ)|
βµ(dθ) dt

6 CE

∫ T

0

∫

Θ

(|gy(t,Λ
u
t (θ), u(t))− gy(t,Λ

v
t (θ), v(t))|

β |kvt |
β

+ |ly(t,Λ
u
t (θ), u(t))− ly(t,Λ

v
t (θ), v(t))|

β)µ(dθ) dt

= I1 + I2,

we estimate the two integrals separately. Starting with I2 we note that

(3.37) I2 6 E

∫ T

0

∫

Θ

|ly(t,Λ
u
t (θ), u(t)) − ly(t,Λ

v
t (θ), u(t))|

βµ(dθ) dt

+ E

∫ T

0

∫

Θ

|ly(t,Λ
v
t (θ), u(t))− ly(t,Λ

v
t (θ), u(t))|

β
1{u(t) 6=v(t)}(t)µ(dθ) dt

= I
1
2 + I

2
2.

Due to the growth condition on ly in (H2) (|ly(t, x, y, z, r, u)| 6 C(1+ |x|+ |y|+ |z|+

|r|)), the Hölder inequality with s = 2/β > 1, r = 2/(2− β) > 1 and by Lemma 3 it

follows that

(3.38) I
2
2 6 CE

∫ T

0

∫

Θ

(1 + sup
06t6T

[|xv(t)|β + |yv(t)|β ] + |zv(t)|β + |rvt (θ)|
β)

× 1{u(t) 6=v(t)}(t)µ(dθ) dt

6 C

(
1 + E

[
sup

06t6T
|xv(t)|2

]
+ E

[
sup

06t6T
|yv(t)|2

]
+ E

∫ T

0

|zv(t)|2 dt

+

∫ T

0

∫

Θ

|rvt (θ)|
2µ(dθ) dt

)β/2(
E

∫ T

0

∫

Θ

1{u(t) 6=v(t)}(t)µ(dθ) dt

)(2−β)/2

6 Cd(u(·), v(·))αβ/2.
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Now by the Lipschitz property of ly and by Lemma 3 it follows that

I
1
2 6 CE

∫ T

0

∫

Θ

(|x̃t|
β + |ỹt|

β + |z̃t|
β + |r̃t(θ)|

β)µ(dθ) dt 6 Cd(u(·), v(·))αβ/2.

Similarly we can write for I1

I1 6 E

∫ T

0

∫

Θ

|gy(t,Λ
u
t (θ), u(t))− gy(t,Λ

v
t (θ), u(t))|

β |kvt |
βµ(dθ) dt

+ E

∫ T

0

∫

Θ

|gy(t,Λ
v
t (θ), u(t)) − gy(t,Λ

v
t (θ), v(t))|

β |kvt |
β
1{u(t) 6=v(t)}(t)µ(dθ) dt.

Due to the boundedness of gy and its independence of y, z, r we obtain (along similar

lines) the final estimate

I1 6 Cd(u(·), v(·))αβ/2.

Following similar lines we finally prove that

E

∫ T

0

|k̃t|
β dt 6 Cd(u(·), v(·))αβ/2.

Now, let us prove inequality (3.11). It is not difficult to see that (p̃t, q̃t, k̃t,

R̃t(θ))t∈[0,T ] satisfies the backward stochastic differential equation

− dp̃t =

{
f∗
x(t, x

u(t), u(t))p̃t + σ∗
x(t, x

u(t), u(t))q̃t

+

∫

Θ

[c∗x(t, x
u(t), u(t), θ)R̃t(θ)− g∗x(t,Λ

u
t (θ), u(t))k̃t

+ l∗x(t,Λ
u
t (θ), u(t)) − l∗x(t,Λ

v
t (θ), v(t))]µ(dθ) + L(t)

}
dt

− q̃t dW (t)−

∫

Θ

R̃t(θ)N(dθ, dt),

p̃T = − [ϕ∗
x(x

u(T ))kuT − ϕ∗
x(x

v(T ))kvT ] + [hx(x
u(T ))− hx(x

v(T ))],

where the process (L(t))t∈[0,T ] is given by

L(t) = [f∗
x(t, x

u(t), u(t))− f∗
x(t, x

v(t), v(t))]pvt

+ [σ∗
x(t, x

u(t), u(t))− σ∗
x(t, x

v(t), v(t))]qvt

+

∫

Θ

[(c∗x(t, x
u(t), u(t), θ) − c∗x(t, x

v(t), v(t), θ))Rv
t (θ)

− (g∗x(t,Λ
u
t (θ), u(t))− g∗x(t,Λ

v
t (θ), v(t)))k

v
t ]µ(dθ).
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Let (ϕt)t∈[0,T ] be the solution of the (forward) linear SDE

(3.39)






dϕt = [f∗
x(t, x

u(t), u(t))ϕt + |p̃t|
β−1 sgn(p̃t)] dt

+ [σ∗
x(t, x

u(t), u(t))ϕt + |q̃t|
β−1 sgn(q̃t)] dW (t)

+

∫

Θ

[c∗x(t, x
u(t−), u(t), θ)ϕt + |R̃t(θ)|

β−1 sgn(R̃t(θ))]N(dθ, dt),

ϕ0 = 0,

where sgn(a) = (sgn(a1), sgn(a2), . . . , sgn(an))
∗ for any vector a = (a1, a2, . . . , an)

∗.

Note that since fx, σx, gx are bounded, cx is bounded in some integral sense (see

(H2)) and due to the fact that

E

∫ T

0

{||p̃t|
β−1 sgn(p̃t)|

2 + ||q̃t|
β−1 sgn(q̃t)|

2 + ||k̃t|
β−1 sgn(k̃t)|

2} dt

+ E

∫ T

0

∫

Θ

||R̃t(θ)|
β−1 sgn(R̃t(θ))|

2µ(dθ) dt <∞,

the linear SDE (3.39) has a unique strong solution.

Let γ > 2 be such that 1/γ + 1/β = 1, β ∈ (1, 2). Then according to (2.4) we get

(3.40) E

(
sup

06t6T
|ϕt|

γ
)

6 CE

∫ T

0

{
|p̃t|

βγ−γ + |q̃t|
βγ−γ + |k̃t|

βγ−γ +

∫

Θ

|R̃t(θ)|
βγ−γµ(dθ)

}
dt

= CE

∫ T

0

{
|p̃t|

β + |q̃t|
β + |k̃t|

β +

∫

Θ

|R̃t(θ)|
βµ(dθ)

}
dt.

Note that the right-hand side of the above inequality is bounded due to (2.4). Hence,

we have

E

(
sup

06t6T
|ϕt|

γ
)
<∞.

Now, by applying Itô formula to ϕ∗
t p̃t on [0, T ] and taking expectation, we obtain

E[p̃∗TϕT ] = E

∫ T

0

{
|p̃t|

β + |q̃t|
β +

∫

Θ

|R̃t(θ)|
βµ(dθ)

}
dt

−E

∫ T

0

ϕ∗
t

(∫

Θ

[lx(t,Λ
u
t (θ), u(t))− lx(t,Λ

v
t (θ), v(t))]µ(dθ)

)
dt

−E

∫ T

0

ϕ∗
tL(t) dt+ E

∫ T

0

ϕ∗
t

(∫

Θ

g∗x(t,Λ
u
t (θ), u(t))k̃tµ(dθ)

)
dt.
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Now taking into account the value of p̃∗T and rearranging the terms, we deduce that

(3.41) E

∫ T

0

{
|p̃t|

β + |q̃t|
β +

∫

Θ

|R̃t(θ)|
βµ(dθ)

}
dt = I1 + I2 + I3 + I4 + I5,

where

I1 = −E(ϕ∗
T [ϕ

∗
x(x

u(T ))kuT − ϕ∗
x(x

v(T ))kvT ]),

I2 = E(ϕ∗
T [hx(x

u(T ))− hx(x
v(T ))]),

I3 = E

∫ T

0

ϕ∗
tL(t) dt,

I4 = E

∫ T

0

ϕ∗
t

(∫

Θ

[l∗x(t,Λ
u
t (θ), u(t))− l∗x(t,Λ

v
t (θ), v(t))]µ(dθ)

)
dt,

I5 = E

∫ T

0

ϕ∗
t

(∫

Θ

g∗x(t,Λ
u
t (θ), u(t))k̃tµ(dθ)

)
dt.

Due to the Hölder inequality with γ > 2, 1/γ + 1/β = 1, we have

Ii 6

[
E

(
sup

06t6T
|ϕt|

γ
)]1/γ

Ĩi for each i = 1, . . . , 5.

Then we deduce from (3.40) and (3.41) that

E

∫ T

0

{
|p̃t|

β + |q̃t|
β +

∫

Θ

|R̃t(θ)|
βµ(dθ)

}
dt

6 C

(
E

∫ T

0

{|p̃t|
β + |q̃t|

β +

∫

Θ

|R̃t(θ)|
βµ(dθ)} dt

)1/γ 5∑

i=1

Ĩi,

and therefore (denoting Ji = Ĩ
β
i )

E

∫ T

0

{
|p̃t|

β + |q̃t|
β +

∫

Θ

|R̃t(θ)|
βµ(dθ)

}
dt 6 C

5∑

i=1

Ji.

Now, it remains to find appropriate estimates of Ji, i = 1, . . . , 5. Using (H3),

Lemma 3, (3.23) and the fact that [E|kT |
2]β/2 <∞, we obtain

(3.42) J1 = E|ϕ∗
x(x

u(T ))kuT − ϕ∗
x(x

v(T ))kvT |
β

= E|[ϕ∗
x(x

u(T ))− ϕ∗
x(x

v(T ))]kuT + ϕ∗
x(x

v(T ))k̃T |
β

6 C([E|kuT |
2]β/2[E|ϕ∗

x(x
u(T ))− ϕ∗

x(x
v(T ))|2β/(2−β)]1−β/2 + E|k̃T |

β)

6 C([E|x̃(T )|2β/(2−β)]1−β/2 + E|k̃T |
β) 6 Cd(u(·), v(·))αβ/2.
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Using similar arguments, we see that

(3.43) J2 = E|hx(x
u(T ))− hx(x

v(T ))|β 6 CE|x̃(T )|β 6 Cd(u(·), v(·))αβ/2.

Note that the estimation of J4 = E
∫ T

0

∫
Θ |l∗x(t,Λ

u
t (θ), u(t))−l

∗
x(t,Λ

v
t (θ), v(t))|

βµ(dθ) dt

and of J3 = E
∫ T

0 |L(t)|β dt follows lines similar to the estimation of I2 in (3.36).

The estimate of J5 = E
∫ T

0

∫
Θ
|g∗x(t,Λ

u
t (θ), u(t))k̃t|

βµ(dθ) dt follows immediately by

the boundedness of gx and (3.23).

Finally, the desired result (3.22) follows immediately by putting all the previous

estimates together. This completes the proof of Lemma 4. �

P r o o f of Theorem 1. First, for each ε > 0 and λ ∈ [0, 1/2), by using Lemma 2

there exists ūε(·) ∈ Uad and an (Ft)-adapted process Ψ
ε

t (·) = (p̄εt , q̄
ε
t , k

ε
t , R

ε

t (·))t∈[0,T ]

such that for all u ∈ U we have

E

∫ T

0

H∗
u(t,Λ

ε

t (·), ū
ε(t),Ψ

ε

t (·))(u − ūε(t)) dt > −Cελ.

Now, to prove (3.8) it remains to estimate the difference

∆ε = E

∫ T

0

H∗
u(t,Λ

ε

t (·), ū
ε(t),Ψ

ε

t (·))(u − ūε(t)) dt

− E

∫ T

0

H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(u − uε(t)) dt.

First, by adding and subtracting the term Hu(t,Λ
ε
t (·), u

ε(t),Ψε
t (·))ū

ε(t), we have

∆ε = E

∫ T

0

[H∗
u(t,Λ

ε

t (·), ū
ε(t),Ψ

ε

t (·))−H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))](u − ūε(t)) dt

+ E

∫ T

0

H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(u

ε(t)− ūε(t)) dt

= I
ε
1 + I

ε
2.

Now, by using the Cauchy-Schwarz inequality, boundedness of Hu in some integral

sense, the fact that E
∫ T

0
|(uε(t)−ūε(t))|2 dt 6 C and (3.4) we obtain for 1/α+1/γ = 1

I
ε
2 = E

∫ T

0

H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(u

ε(t)− ūε(t)) dt(3.44)

6 E

∫ T

0

|Hu(t,Λ
ε
t (·), u

ε(t),Ψε
t (·))||(u

ε(t)− ūε(t))| dt

6

[
E

∫ T

0

|Hu(t,Λ
ε
t (·), u

ε(t),Ψε
t (·))|

2 dt

]1/2

×

[
E

∫ T

0

|(uε(t)− ūε(t))|21{uε(t) 6=ūε(t)}(t) dt

]1/2
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6 C

[
E

∫ T

0

|(uε(t)− ūε(t))|2γ dt

]1/(2γ)[
E

∫ T

0

1{uε(t) 6=ūε(t)}(t) dt

]α/2

6 Cd(uε(·), ūε(·))α/2 6 Cελ.

Let us turn to the first term. We have

I
ε
1 = E

∫ T

0

[H∗
u(t,Λ

ε

t (·), ū
ε(t),Ψ

ε

t (·))−H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))](u − uε(t)) dt

= E

∫ T

0

[(p̄εt )
∗fu(t, x̄

ε(t), ūε(t)) − (pεt )
∗fu(t, x

ε(t), uε(t))](u − uε(t)) dt

+ E

∫ T

0

[(q̄εt )
∗σu(t, x̄

ε(t), ūε(t))− (qεt )
∗σu(t, x

ε(t), uε(t))](u − uε(t)) dt

+ E

∫ T

0

∫

Θ

[(R
ε

t (θ))
∗cu(t, x̄

ε(t), ūε(t), θ)

− (Rε
t (θ))

∗cu(t, x
ε(t), uε(t), θ)](u − uε(t))µ(dθ) dt

+ E

∫ T

0

∫

Θ

[(kεt )
∗gu(t,Λ

ε

t (θ), ū
ε(t))− (kεt )

∗gu(t,Λ
ε
t (θ), u

ε(t))](u − uε(t))µ(dθ) dt

+ E

∫ T

0

∫

Θ

[l∗u(t,Λ
ε

t (θ), ū
ε(t))− l∗u(t,Λ

ε
t (θ), u

ε(t))](u − uε(t))µ(dθ) dt

= J
ε
1 + J

ε
2 + J

ε
3 + J

ε
4 + J

ε
5.

We estimate the first term on the right-hand side Jε1 by adding and subtracting

(pεt )
∗fu(t, x̄

ε(t), ūε(t)). Then we obtain

J
ε
1 6 E

∫ T

0

|p̄εt − pεt ||fu(t, x̄
ε(t), ūε(t))(u − uε(t))| dt

+ E

∫ T

0

|(pεt )
∗(fu(t, x̄

ε(t), ūε(t))− fu(t, x
ε(t), uε(t)))(u − uε(t))| dt.

Now, again by adding and subtracting fu(t, x
ε(t), ūε(t)), we arrive at

J
ε
1 6 E

∫ T

0

|p̄εt − pεt ||fu(t, x̄
ε(t), ūε(t))(u − uε(t))| dt

+ E

∫ T

0

|fu(t, x̄
ε(t), ūε(t))− fu(t, x

ε(t), ūε(t))||pεt ||u− uε(t)| dt

+ E

∫ T

0

|fu(t, x
ε(t), ūε(t))− fu(t, x

ε(t), uε(t))|1{ūε(t) 6=uε(t)}(t)|p
ε
t ||u − uε(t)| dt

= J
ε,1
1 + J

ε,2
1 + J

ε,3
1 .
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Using the Hölder inequality with 1/γ + 1/β = 1, β ∈ (1, 2), the boundedness of fu

and Lemma 4 leads to

J
ε,1
1 6 E

∫ T

0

|fu(t, x̄
ε
t , ū

ε
t )||u − uεt ||p̄

ε
t − pεt |1{uε

t
6=ūε

t
}(t) dt

6 C

(
E

∫ T

0

|p̄εt − pεt |
β dt

)1/β(
E

∫ T

0

1{uε

t
6=ūε

t
}(t) dt

)1/γ

6 Cdα/2(ūε(·), uε(·))d1/γ(ūε(·), uε(·)) 6 Cεα/4+1/(2γ) 6 Cελ;

since α/4 + 1/(2γ) ∈ (0, 1/2), one can choose α/4 + 1/(2γ) 6 λ.

To estimate the second term J
ε,2
1 we employ the Lipschitz property of fu from

(H3) and the Hölder inequality with 1/γ + 1/β = 1, β ∈ (1, 2) to obtain

J
ε,2
1 6 CE

∫ T

0

|x̄εt − xεt ||p
ε
t (u − uεt )| dt 6 CE

∫ T

0

|x̄εt − xεt ||p
ε
t |1{uε

t
6=ūε

t
}(t) dt

6 C

(
E

∫ T

0

|x̄εt − xεt |
γ dt

)1/γ(
E

∫ T

0

|pεt |
β
1{uε

t
6=ūε

t
}(t) dt

)1/β

6 Cdα/2(ūε(·), uε(·))

(
E

∫ T

0

|pεt |
2 dt

)1/2(
E

∫ T

0

1{uε

t
6=ūε

t
}(t) dt

)1/β(1−β/2)

6 Cdα(ūε(·), uε(·)) 6 Cεα/2 6 Cελ,

where we also used the fact that 1− β/2 > αβ/2.

Next, by the Lipschitz property of fu and by the Hölder inequality (with β and γ

same as above) we can proceed to estimate J31 as follows:

J
ε,3
1 6 CE

∫ T

0

|ūεt − uεt ||p
ε
t ||u− uεt |1{uε

t
6=ūε

t
}(t) dt

6 C

(
E

∫ T

0

|pεt |
β
1{uε

t
6=ūε

t
}(t) dt

)1/β(
E

∫ T

0

|ūεt − uεt |
γ
1{uε

t
6=ūε

t
}(t) dt

)1/γ

6 C

(
E

∫ T

0

|pεt |
2 dt

)1/2(
E

∫ T

0

1{uε

t
6=ūε

t
}(t) dt

)1/β(1−β/2)(
E

∫ T

0

1{uε

t
6=ūε

t
}(t) dt

)1/γ

6 Cdα/2+1/γ(ūε(·), uε(·)) 6 Cεα/4+1/(2γ) 6 Cελ.

Using arguments similar to those developed above for Jε2, J
ε
3, J

ε
4, and Jε5, we can

prove that Iε1 6 Cελ, and finally conclude that

(3.45) E

∫ T

0

[H∗
u(t,Λ

ε

t (·), ū
ε(t),Ψ

ε

t (·))−H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))](u − uε(t)) dt

6 Cελ,
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which together with (3.44) implies that

(3.46) ∆ε 6 Cελ.

Now, combining (3.3) in Lemma 2 and (3.46) we complete the proof of Theorem 1.

�

4. Sufficient conditions for near-optimality of FBSDEJs

In this section, we will prove that under an additional hypothesis, the near-

maximality condition on the Hamiltonian function is a sufficient condition for near-

optimality. This is the second main result of this paper.

Theorem 2. (Sufficient Near-Optimality Maximum Principle). Let uε(·) be

an admissible control and let the processes Λε
t (·) = (xε(t), yε(t), zε(t), rε(t, ·)) and

Ψε
t (·) = (pεt , q

ε
t , k

ε
t , R

ε
t (·)) be the solutions to equation (1.1) and adjoint equa-

tions (2.1), respectively, both associated with uε(·).

Further, let us assume that the function H(t, ·, ·, ·, ·,Ψε
t (·)) is convex for a.e. t ∈

[0, T ], P-a.s. and functions γ, h are convex. If for some λ ∈ [0, 1/2), ε > 0 and for

any u ∈ U the near-maximality relation

(4.1) E

∫ T

0

H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(u − uε(t)) dt > −Cελ

holds then we have

J(uε(·)) 6 inf
v(·)∈Uad

J(v(·)) + Cελ,

where C is a positive constant independent of ε.

In other words, the process uε(·) is a near-optimal control of order λ to the control

problem (1.1)–(1.2).

P r o o f. Let us fix an arbitrary v(·) ∈ Uad and denote its corresponding trajec-

tory Λv
t (·) = (xv(t), yv(t), zv(t), rv(t, ·)). Then we have

J(uε(·))− J(v(·)) = E[h(xε(T ))− h(xv(T ))] + E[γ(yε(0))− γ(yv(0))]

+ E

∫ T

0

∫

Θ

{l(t,Λε
t(θ), u

ε(t))− l(t,Λv
t (θ), v(t))}µ(dθ) dt.
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Now, since h and γ are convex, we have

h(xv(T ))− h(xε(T )) > h∗x(x
ε(T ))(xv(T )− xε(T )),

γ(yv(0))− γ(yε(0)) > γ∗y(y
ε(0))(yv(0)− yε(0)).

Therefore, one easily obtains that

J(uε(·)) − J(v(·)) 6 E[h∗x(x
ε(T ))(xε(T )− xv(T ))] + E[γ∗y(y

ε(0))(yε(0)− yv(0))]

+ E

∫ T

0

∫

Θ

{l(t,Λε
t (θ), u

ε(t)) − l(t,Λv
t (θ), v(t))}µ(dθ) dt.

Next, employing the initial and terminal conditions of the adjoint equations

γy(y
ε(0)) = kε0 and hx(x

ε(T )) = pεT + ϕ∗
x(x

ε(T ))kεT , it follows that

(4.2) J(uε(·))− J(v(·)) 6 E[(pεT )
∗(xε(T )− xv(T ))]

+ E[(ϕ∗
x(x

ε(T ))kεT )
∗(xε(T )− xv(T ))] + E[(kε0)

∗(yv(0)− yε(0))]

+ E

∫ T

0

∫

Θ

{l(t,Λε
t (θ), u

ε(t)) − l(t,Λv
t (θ), v(t))}µ(dθ) dt.

On the other hand, by applying Itô formula to (pεt )
∗(xε(t) − xv(t)) on [0, T ] and

taking expectation, we get

E[(pεT )
∗(xε(T )− xv(T )) + (ϕ∗

x(x
ε(T ))kεT )

∗(xε(T )− xv(T ))](4.3)

= E

∫ T

0

{
−f∗

x(t, x
ε(t), uε(t))pεt − σ∗

x(t, x
ε(t), uε(t))qεt

+

∫

Θ

g∗x(t,Λ
ε
t (θ), u

ε(t))kεtµ(dθ)

−

∫

Θ

[c∗x(t, x
ε(t), uε(t), θ)Rε

t (θ) + l∗x(t,Λ
ε
t (θ), u

ε(t))]µ(dθ)

+ (pεt )
∗[f(t, xε(t), uε(t))− f(t, xv(t), v(t))]

+ Tr{(qεt )
∗[σ(t, xε(t), uε(t))− σ(t, xv(t), v(t))]}

+

∫

Θ

(Rε
t (θ))

∗[c(t, xε(t), uε(t), θ)− c(t, xv(t), v(t), θ)]µ(dθ)

}

× (xε(t)− xv(t)) dt+ E[h∗x(x
ε(T ))(xε(T )− xv(T ))].
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Similarly, by applying Itô formula to kεt (y
ε(t) − yv(t)) then combining (4.2), (4.3),

and using the definition of the Hamiltonian function, we obtain

E

∫ T

0

∫

Θ

{l(t,Λε
t(θ), u

ε(t))− l(t,Λv
t (θ), v(t))}µ(dθ) dt

= E

∫ T

0

{H(t,Λε
t (·), u

ε(t),Ψε
t (·))−H(t,Λv

t (·), u
v(t),Ψv

t (·))} dt

+ E

∫ T

0

{−(pεt)
∗[f(t, xε(t), uε(t))− f(t, xv(t), v(t))]

− Tr{(qεt )
∗[σ(t, xε(t), uε(t))− σ(t, xv(t), v(t))]}} dt

+ E

∫ T

0

∫

Θ

{(kεt )
∗[g(t,Λε

t (θ), u
ε(t))− g(t,Λv

t (θ), v(t))]

− (Rε
t (θ))

∗[c(t, xε(t), uε(t), θ)− c(t, xv(t), v(t), θ)]}µ(dθ) dt.

Then we have

(4.4) J(uε(·))− J(v(·))

6 E

∫ T

0

[H(t,Λε
t (·), u

ε(t),Ψε
t (·)) −H(t,Λε

t (·), v(t),Ψ
ε
t (·))] dt

− E

∫ T

0

H∗
x(t,Λ

ε
t (·), u

ε,Ψε
t (·))(x

ε(t)− xv(t)) dt

− E

∫ T

0

H∗
y (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(y

ε(t)− yv(t)) dt

− E

∫ T

0

H∗
z (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(z

ε(t)− zv(t)) dt

− E

∫ T

0

H∗
r (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(r

ε
t (·)− rvt (·)) dt.

Since H(t, ·, ·, ·, ·, ·,Ψε
t (·)) is convex in (x, y, z, r, u), we obtain

H(t,Λε
t (·), u

ε(t),Ψε
t (·))−H(t,Λv

t (·), v(t),Ψ
ε
t (·))

6 H∗
x(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(x

ε(t)− xv(t))

+H∗
y (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(y

ε(t)− yv(t))

+H∗
z (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(z

ε(t)− zv(t))

+H∗
r (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(r

ε
t (·)− rvt (·))

+H∗
u(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(u

ε(t)− v(t)).
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By integrating both sides and noting (4.1), we obtain

(4.5) E

∫ T

0

{H(t,Λε
t(·), u

ε(t),Ψε
t (·)) −H(t,Λv

t (·), v(t),Ψ
ε
t (·))} dt

6 E

∫ T

0

H∗
x(t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(x

ε(t)− xv(t)) dt

+ E

∫ T

0

H∗
y (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(y

ε(t)− yv(t)) dt

+ E

∫ T

0

H∗
z (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(z

ε(t)− zv(t)) dt

+ E

∫ T

0

H∗
r (t,Λ

ε
t (·), u

ε(t),Ψε
t (·))(r

ε
t (·)− rvt (·)) dt+ Cελ.

Combining (4.1) and (4.5), we get

J(uε(·))− J(v(·)) 6 Cελ.

Finally, since v(·) is arbitrary, the desired result follows. �

5. Application to finance: Mixed problem of

mean-variance portfolio selection

In this section we will apply our maximum principle of near-optimality to study

a perturbed mean-variance portfolio selection problem mixed with a recursive utility

functional optimization in a financial market and we will derive the explicit expression

for the near-optimal portfolio selection strategy. The near-optimal control will be

taken as the optimal control to the unperturbed problem (see Shi and Wu [24]) and

we will show that this candidate satisfies the assumptions of Theorem 2.

Suppose that we are given a mathematical market consisting of two investment

possibilities (see Framstad, Øksendal and Sulam [9]):

(1) Bond price: the first asset is a risk-free security whose price P0(t) evolves

according to the ordinary differential equation

(5.1)

{
dP0(t) = P0(t)̺t dt, t ∈ [0, T ],

P0(0) > 0,

where ̺ : [0, T ] → R+ is a locally bounded deterministic function.

(2) Stock price: a risky security (e.g. a stock), where the price P1(t) at time t is

given by

(5.2)

{
dP1(t) = P1(t−)

[
ςt dt+ σt dW (t) +

∫

Θ

ξt(θ)N(dθ, dt)
]
,

P1(0) > 0,
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where ς, σ : [0, T ] → R are bounded deterministic functions such that ςt, σt 6= 0 and

ςt > ̺t for all t ∈ [0, T ].

(3) Assumptions. In order to ensure that P1(t) > 0 for all t ∈ [0, T ] we assume

that

(i) ξt(θ) > −1 for µ-almost all θ ∈ Θ and all t ∈ [0, T ],

(ii)
∫
Θ ξ

2
t (θ)µ(dθ) is bounded.

(4) Portfolio strategy. A portfolio is an (Ft)-predictable process (e0(t), e1(t)) giv-

ing the number of units of the risk-free and the risky security held at time t. Let

πt = e1(t)P1(t) denote the amount invested in the risky security. We call the control

process π(·) a portfolio strategy.

(5) The wealth dynamics. Let xπ(0) = ζ > 0 be the initial wealth. By combining

(5.1) and (5.2) we introduce the wealth dynamics

(5.3)





dxπ(t) = [̺tx
π(t) + (ςt − ̺t)πt] dt+ σtπt dW (t) +

∫

Θ

ξt(θ)πtN(dθ, dt),

xπ(0) = ζ.

Let U be a compact convex subset of R. We denote by Uad the set of admissible

(Ft)-predictable portfolio strategies π(·) valued in U.

The mean-variance portfolio selection problem in the above jump-diffusion frame-

work has been studied in [9], [25]. In Framstad, Øksendal and Sulam [9], the

investor’s object is to find an admissible portfolio which minimizes the variance

Var(xπ(T )) at a future time T > 0 under the condition that E[xπ(T )] = a for

some given a ∈ R+. By using sufficient maximum principle, the authors in [9] gave

the expression for the optimal portfolio selection. Optimal portfolio and consump-

tion decision problems for a small investor in a market model have been studied in

[14], [15]. The near-optimal consumption-investment problem has been discussed

in Hafayed, Veverka and Abbas [12]. Stochastic optimization problems with recur-

sive utility have important economic background, see [8], [7]. The continuous time

mean-variance portfolio selection problem has been studied in Zhou [34].

In this section, the objective is to use our near-optimal maximum principle to

study the mean-variance portfolio selection problem mixed with a recursive utility

functional maximization. We consider a small investor endowed with an initial wealth

xπ(0) > 0 who chooses at each time t his or her portfolio strategy πt. The investor

wants to choose a portfolio strategy πε(·) ∈ Uad which near-maximizes the expected

utility functional. This functional can be separated into two parts: the former is the

equivalent terminal reward E[−1/2(xπ(t) − a)2] while the latter part is a recursive

utility functional with generator g(t, x, y, π) = ̺tx+ (ςt − ̺t)π − cy, c > 0.
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We assume that we originally have a family of optimization problems parameter-

ized by a parameter ε > 0 representing the complexity of the cost functional

(5.4) Jε(π(·)) = E

{∫ T

0

εϕ(πt) dt+
1

2
(xπ(T )− a)2

}
+ y(0),

where ϕ : R → R is a nonlinear, convex and continuously differentiable function

independent of ε. Further, we define the wealth process (x(t)) and the recursive

utility process (y(t)) corresponding to π(·) ∈ Uad as the solutions to the FBSDEJs

(5.5)






dx(t) = [̺tx(t) + (ςt − ̺t)πt] dt+ σtπt dW (t) +

∫

Θ

ξt(θ)πtN(dθ, dt),

− dy(t) = [̺tx(t) + (ςt − ̺t)πt − cy(t)] dt− z(t) dW (t)

−

∫

Θ

rt(θ)πtN(dθ, dt),

x(0) = ζ, y(T ) = x(T ).

We notice that setting ε = 0 in (5.4) leads to

(5.6) J0(π(·)) = E

{1

2
(xπ(T )− a)2

}
+ y(0).

The optimal control to the problem (5.5)–(5.6) (with the new cost J0(·)) has already

been solved explicitly by using the stochastic maximum principle in Shi and Wu [25],

Theorem 3.1 where the optimal solution, denoted by (x⋆, π⋆), is given in the state

feedback form as

(5.7)





π⋆
t =

(̺t − ςt)(Φtx
⋆(t) + Ψt − exp(−ct))

Φt(σ2
t +

∫
Θ
ξ2t (θ)µ(dθ))

,

p⋆t = Φtπ
⋆
t +Ψt,

q⋆t = σtΦtπ
⋆
t ,

k⋆t = exp(−ct),

R⋆
t (θ) = Φtξt(θ)π

⋆
t ,

where Φt and Ψt are some deterministic differentiable functions satisfying the ordi-

nary differential equations

(5.8)





Φ′

t =
( (̺t − ςt)

2

σ2
t +

∫
Θ ξ

2
t (θ)µ(dθ)

− 2̺t

)
Φt,

ΦT = 1,
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and

(5.9)





Ψ′
t =

( (̺t − ςt)
2

σ2
t +

∫
Θ
ξ2t (θ)µ(dθ)

− ̺t

)
Ψt − e−ct

( (̺t − ςt)
2

σ2
t +

∫
Θ
ξ2t (θ)µ(dθ)

− ̺t

)
,

ΨT = − (a+ 1).

The Hamiltonian of problem (5.5)–(5.6) is given by

(5.10) H(t, x, y, z, r(·), π, p, q, k, R(·))

= [̺tx+ (ςt − ̺t)π](k − p) + σtqπ + π

∫

Θ

ξt(θ)R(θ)µ(dθ).

Since π⋆(·) is optimal for the problem (5.5)–(5.6), by using maximum condition ([25],

Theorem 2.1) we conclude that

(5.11) (ςt − ̺t)(p
⋆
t − k⋆t ) + σtq

⋆
t +

∫

Θ

ξt(θ)R
⋆
t (θ)µ(dθ) = 0, P-a.s., dt-a.e.,

where we denote by the superscript ⋆ all the processes computed for the optimal

control π⋆(·).

However, the Hamiltonian Hε for the problem (5.5)–(5.4) can be rewritten in the

form

(5.12) Hε(t, x, y, z, r(·), π, p, q, k, R(·))

= [̺tx+ (ςt − ̺t)π](k − p) + σtqπ + π

∫

Θ

ξt(θ)R(θ)µ(dθ) − εϕ(π)

= H(t, x, y, z, r(·), π, p, q, k, R(·))− εϕ(π)

for all (x, y, z, r(·), π, p, q, k, R(·)). Therefore, if (x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

denotes the optimal trajectory to the (unperturbed) control problem (5.5)–(5.6) we

can express the difference of the Hamiltonian at different control points but at this

fixed optimal trajectory in the following way:

(5.13) Hε(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π, p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

−Hε(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π

⋆
t , p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

= H(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π, p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

−H(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π

⋆
t , p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))− ε[ϕ(π)− ϕ(π⋆

t )].

By virtue of the fact that the function ϕ(·) is continuously differentiable and U is

a compact convex subset in R it follows that

−ε[ϕ(π)− ϕ(π⋆
t )] 6 ε|ϕ′(π)||π − π⋆

t | 6 Cε.
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Now, employing the above fact, taking max
π∈U

in (5.13) and using the optimality of π⋆

we arrive at

max
π∈U

Hε(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π, p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

−Hε(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π

⋆
t , p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

6 max
π∈U

H(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π, p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

−H(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π

⋆
t , p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·)) + εmax

π∈U
{|ϕ′(π)||πt − π⋆

t |}

6 H(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π

⋆
t , p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

−H(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π

⋆
t , p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·)) + Cε = Cε,

which implies the near-maximality property of π⋆(·)

Hε(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π

⋆
t , p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))

> max
π∈U

Hε(t, x⋆(t), y⋆t , z
⋆
t , r

⋆
t (·), π, p

⋆
t , q

⋆
t , k

⋆
t , R

⋆
t (·))− Cε.

Finally, since the function ϕ(·) is convex, the Hamiltonian Hε is concave. Due to

the sufficient maximum principle (Theorem 2), the portfolio strategy π⋆(·) is indeed

a near-optimal for the problem (5.5)–(5.4).

R em a r k. When ε→ 0, our result reduces to the necessary and sufficient condi-

tions of optimality developed in Shi and Wu [23].

Appendix

The following result is a special case of the Itô formula for jump diffusions.

Lemma A (Integration by parts formula for jumps processes). Suppose that the

processes x1(t) and x2(t) are given for j = 1, 2, t ∈ [s, T ]:





dxj(t) = f(t, xj(t), u(t)) dt+ σ(t, xj(t), u(t)) dW (t)

+

∫

Θ

g(t, xj(t−), u(t), θ)N(dθ, dt),

xj(s) = 0.

Then

E[x1(T )x2(T )]

= E

[ ∫ T

s

x1(t) dx2(t) +

∫ T

s

x2(t) dx1(t)

]
+ E

∫ T

s

σ∗(t, x1(t), u(t))σ(t, x2(t), u(t)) dt

+ E

∫ T

s

∫

Θ

g∗(t, x1(t), u(t), θ)g(t, x2(t), u(t), θ)µ(dθ) dt.
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See Framstad, Øksendal and Sulam ([9], Lemma 2.1) for the detailed proof of the

above lemma.

A c k n ow l e d g em e n t. We are thankful to the anonymous referees and the han-

dling editor for their expert comments and suggestions which helped us to improve

the manuscript considerably.

References

[1] K.Bahlali, N.Khelfallah, B.Mezerdi: Necessary and sufficient conditions for near-opti-
mality in stochastic control of FBSDEs. Syst. Control Lett. 58 (2009), 857–864.

[2] R.Bellman: Dynamic Programming. With a new introduction by Stuart Dreyfus.
Reprint of the 1957 edition. Princeton Landmarks in Mathematics, Princeton University
Press, Princeton, 2010.

[3] R.Boel, P. Varaiya: Optimal control of jump processes. SIAM J. Control Optim. 15
(1977), 92–119.

[4] B.Bouchard, R. Elie: Discrete-time approximation of decoupled forward-backward SDE
with jumps. Stochastic Processes Appl. 118 (2008), 53–75.

[5] A.Cadenillas: A stochastic maximum principle for systems with jumps, with applica-
tions to finance. Syst. Control Lett. 47 (2002), 433–444.

[6] I. Ekeland: On the variational principle. J. Math. Anal. Appl. 47 (1974), 324–353.
[7] N.El Karoui, S.G. Peng, M.C.Quenez: Backward stochastic differential equations in
finance. Math. Finance 7 (1997), 1–71.

[8] N.El Karoui, S.G. Peng, M.C.Quenez: A dynamic maximum principle for the optimiza-
tion of recursive utilities under constraints. Ann. Appl. Probab. 11 (2001), 664–693.

[9] N.C. Framstad, B.Øksendal, A. Sulem: Sufficient stochastic maximum principle for the
optimal control of jump diffusions and applications to finance. J. Optim. Theory. Appl.
121 (2004), 77–98; erratum ibid. 124 (2005), 511–512.

[10] R.Gabasov, F.M.Kirillova, B. Sh.Mordukhovich: The ε-maximum principle for subop-
timal controls. Sov. Math., Dokl. 27 (1983), 95–99; translation from Dokl. Akad. Nauk
SSSR 268 (1983), 525–529. (In Russian.)

[11] M.Hafayed, S. Abbas, P.Veverka: On necessary and sufficient conditions for near-opti-
mal singular stochastic controls. Optim. Lett. 7 (2013), 949–966.

[12] M.Hafayed, P.Veverka, S. Abbas: On maximum principle of near-optimality for diffu-
sions with jumps, with application to consumption-investment problem. Differ. Equ.
Dyn. Syst. 20 (2012), 111–125.

[13] J.Huang, X. Li, G.Wang: Near-optimal control problems for linear forward-backward
stochastic systems. Automatica 46 (2010), 397–404.

[14] M.Jeanblanc-Picqué, M.Pontier: Optimal portfolio for a small investor in a market
model with discontinuous prices. Appl. Math. Optimization 22 (1990), 287–310.

[15] I.Karatzas, J. P. Lehoczky, S. E. Shreve: Optimal portfolio and consumption decisions
for a “Small investor” on a finite horizon. SIAM J. Control Optim. 25 (1987), 1557–1586.

[16] B. Sh.Mordukhovich: Approximation Methods in Problems of Optimization and Control.
Nauka, Moskva, 1988. (In Russian.)

[17] B.Øksendal, A. Sulem: Applied Stochastic Control of Jump Diffusions. Second edition.
Universitext, Springer, Berlin, 2007.

[18] L.P. Pan, K. L.Teo: Near-optimal controls of class of Volterra integral systems. J. Op-
timization Theory Appl. 101 (1999), 355–373.

439



[19] S.Peng, Z.Wu: Fully coupled forward-backward stochastic differential equations and
application to optimal control. SIAM J. Control Optim. 37 (1999), 825–843.

[20] L. S. Pontryagin, V.G. Boltanskii, R. V.Gamkrelidze, E. F.Mishchenko: The Mathemat-
ical Theory of Optimal Processes. Translation from the Russian, Interscience Publishers,
New York, 1962.

[21] R.Rishel: A minimum principle for controlled jump processes. Control Theory, Numer.
Meth., Computer Syst. Mod.; Internat. Symp. Rocquencourt 1974, Lecture Notes Econ.
Math. Syst. 107 (1975), 493–508.

[22] J. Shi: Necessary conditions for optimal control of forward-backward stochastic systems
with random jumps. Int. J. Stoch. Anal. 2012 (2012), Article ID 258674, 50 pp.

[23] J. Shi, Z.Wu: The maximum principle for fully coupled forward-backward stochastic
control system. Acta Autom. Sin. 32 (2006), 161–169.

[24] J. Shi, Z.Wu: Maximum principle for fully coupled forward-backward stochastic con-

trol system with random jumps. Proceedings of the 26th Chinese Control Conference,
Zhangjiajie, Hunan, 2007, pp. 375–380.

[25] J. Shi, Z.Wu: Maximum principle for forward-backward stochastic control system with
random jumps and applications to finance. J. Syst. Sci. Complex. 23 (2010), 219–231.

[26] R. Situ: A maximum principle for optimal controls of stochastic systems with random
jumps. Proceedings of National Conference on Control Theory and its Applications.
Qingdao, China, 1991.

[27] S. L. Tang, X. J. Li: Necessary conditions for optimal control of stochastic systems with
random jumps. SIAM J. Control Optim. 32 (1994), 1447–1475.

[28] W.Xu: Stochastic maximum principle for optimal control problem of forward and back-
ward system. J. Aus. Math. Soc., Ser. B 37 (1995), 172–185.

[29] J.Yong: Optimality variational principle for controlled forward-backward stochastic dif-
ferential equations with mixed intial-terminal conditions. SIAM J. Control. Optim. 48
(2010), 4119–4156.

[30] J.Yong, X.Y. Zhou: Stochastic Controls. Hamiltonian Systems and HJB Equations.
Applications of Mathematics 43, Springer, New York, 1999.

[31] X.Y. Zhou: Deterministic near-optimal control. I: Necessary and sufficient conditions
for near-optimality. J. Optimization Theory Appl. 85 (1995), 473–488.

[32] X.Y. Zhou: Deterministic near-optimal controls. II: Dynamic programming and viscosity
solution approach. Math. Oper. Res. 21 (1996), 655–674.

[33] X.Y. Zhou: Stochastic near-optimal controls: Necessary and sufficient conditions for
near-optimality. SIAM J. Control. Optim. 36 (1998), 929–947 (electronic).

[34] X.Y. Zhou, D. Li: Continuous-time mean-variance portfolio selection: A stochastic LQ
framework. Appl. Math. Optimization 42 (2000), 19–33.

Authors’ addresses: Mokhtar Hafayed, Laboratory of Applied Mathematics, P.O.
Box 145, Biskra University 07000, Biskra, Algeria, e-mail: hafa.mokh@yahoo.com; Petr
Veverka, Department of Mathematics, Faculty of Nuclear Sciences and Physical Engi-
neering, Czech Technical University, Trojanova 13, Praha 120 00, Czech Republic, e-mail:
panveverka@seznam.cz; Syed Abbas, School of Basic Sciences, Indian Institute of Technol-
ogy Mandi, Mandi H.P. 175001 India, e-mail: sabbas.iitk@gmail.com.

440


		webmaster@dml.cz
	2020-07-02T13:58:53+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




